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GPU-acceleration on TSUBAME 2.5
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MEGA DOCK [M. Ohue, et al., Protein Pept Lett, (2013)]
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e PPI| network prediction:
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Environmental samples DNA extraction

v

e Protein docking (rigid-docking based):

e original rPSC model + electrostatic interaction
e 3-D convolution by FFT: O(#°) -O(n’ log n)
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DNA sequencing
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Estimate microbes and their genes in asample
comparing reference sequence databases
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Comparison of phylogenetic composition
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Comparison of functional composition

as solls, seas, and human bodies.
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Reconstruction and comparison of
metabolic pathways

Metagenome analysis: the study of the genomes
of uncultured microbes obtained directly from mi-
crobial communities in their natural habitats such

Speedups (vs. BLAST)

e Protein-Protein Interaction (PPI) prediction:
e post-docking analysis by clustering and threshold logic
e multi-level MPI parallelization for all-to-all analysis

e Fast sequence homology search for metagenomics
[Suzuki et al., PLoS ONE, (2012)]

e enough sensitive for metagenomic annotation
e similar to BLAST but optimized for GPU-calculation
e implemented on GPUs by NVIDIA CUDA
e approximately 130 times faster than NCBI BLAST ¥
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MEGADOCK-GPU: GPU-acceleration of prote

GPU implemetation [T. shimoda, et al., ParBio2013, (2013)]

P1. Initialization

P2. Receptor voxelization P6: Modulation

P3. Forward FFT of a receptor

P5, P7: Forward FFT & Inverse FFT
This process is accelerated using CUFFT library.

This process performs complex conjugates and | |
multiplication ofthe results of forward FFT, and )i =
Isparallelized by element : 6 B o dr Wl rdivs
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This process assigns a value to each grid within
P6. Modulation van der Waals radius of the atom, and parallel-
ized for each atom — 0

= FFT[R)* x FFT[L] QL O -
P4: Ligand voxelization - |‘ -

P7. Inverse FFT (Score calculation)
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P8: Finding the best solutions — —
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—K P8. Finding the best solutions ) This process selects the best docking poses ac-
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cording to the docking score, and accelerated

k P9. Post processes

) using reduction method

Speedup by GPGPU
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—— Docking calculations
27 1 for 352 protein pairs

[vs. 1 CPU core]
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e application to bacterial chemotaxis (about 100x100 pairs)
e application to lung cancer pathway (about 500x500 pairs)

e 33.9-fold

1 CPU core 12 CPU cores 12 CPU cores 12 CPU cores
3 GPUs 3 GPUs

(Tesla M2050, (Tesla K20Xm,

TSUBAME 2.0) TSUBAME 2.5)

speedup with 3 GPUs on TSUBAME 2.5

GHOSTM: GPU-acceleration of sequence homo

Data flow and processing

Queries

Reading queries
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(1) Searching alignment candidates
Counting candidates
— GPU threads
Storing candidates
1 AA\

(2) Local alignment
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Candidates
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Alignments ONVIDIA

(3) Sorting by alignment scores

results

Search speed and sensitivity
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e 233-fold speedup with 1 GPU on TSUBAME 2.5

http://www.gsic.titech.ac.jp/sc13




