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Grand Challenge program  
Large Scale applications on TSUBAME 2.5 

Solving the Schrödinger Equations of Molecules

 

Schrödinger equation

H Eψ ψ=

Pauli principle

( )PPψ ψ= −

Free Complement (FC) theory

Must be satisfied for electrons
Very time consuming process

Solving the Schrödinger Equations 
of Molecules

the exact molecular wave function is expressed as
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Iφwhere the complement functions (cf’s) is written in 
Hartree product form as

When we use Slater-type valence-bond (VB) function as  , 0ψ

FC method 
of generating complement functions

1) Nk algorithm

・ determinant based  N3-4 algorithm 
・ not suitable for complex wave  functions

2) iExg algorithm

・ anti-symmetrization theory for molecules.
・ natural order-N theory.

These theories would be helpful for doing chemistry 
in Schrödinger and Dirac accuracy.

H. Nakashima, H. Nakatsuji, J. Chem. Phys. 139, 044112 (2013).

Pauli principle: Anti-symmetrization
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variation method LSE method
require local Schrödinger equation

at each sampling point

: has “exact structure”
(potentially exact )

FC methodH,

{ }ic

general atoms & 
molecules

0ψ complement function (cf):

highly accurate energy and 
analytical solution

automatically accurate analytical solution
of the Schrödinger equation

FC wave function:             

（complement = element of complete）

Hamiltonian generates its own complete space

difficult for most 
atoms & 

molecules

Review: H. Nakatsuji,  Acc. Chem. Res. 45, 1480 (2012)

no basis set nightmare!

( ) ( )H r E rµ µψ ψ=

calculate    unknown

Free complement (FC) method 
for solving the Schrödinger equation
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Step 1. Function generation according to the Hamiltonian

( )1 1n n n nC g H Eψ ψ+  = + − 

Step 2. FC wave function

Step 3. LSE equation
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3. 1.

• Even task is distributed to each processor (No communication)

3. 2.
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Step 5. Physical observables

• Evaluate Hφ and φ at sampling point (106-108 points)
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Anti-symmetrization: Time consuming

• Peta-flops super parallel machine: Only 1-100 sampling points 
for single processor

• Cost: Mn×Ns×O(Ne
3-5)

• Cost: Mn×Mn×Ns

• Communication: Mn×Mn

Mn: No. of complement functions
Ns: No. of sampling points
Ne: No. of electrons

Collect H,S matrices and make total H,S matrices

• Make local  H,S matrices

Most time consuming step

3. 3.
( ) ( )

( ) ( )

proc

proc

All Local
ij ijn

All Local
ij ijn

H H

S S

=

=

∑
∑

Step 4. Diagonalization (Eigenvalue problem)

Use parallelized numerical library

call MPI_Reduce(S,MPI_SUM)
call MPI_Reduce(H,MPI_SUM)

BLAS3 library
call MPI_Send(rμ)• Distribute sampling points call MPI_Recv(rμ)

Small computational cost

Analytical evaluation
(Small computational cost)

Parallel algorithm of the FC-LSE method

Δ exactMolecule No. of Elec. Mn

Energy (a.u.)
E=EFC-LSE-E

(a.u.)FC-LSE Estimated exact 
from experiment

Furan (C4H4O) 36 161 -229.860 1 -230.027 0.167

Pyrrole (C4H5N) 36 174 -209.974 3 -210.173 0.199

Benzene (C6H6) 42 398 -232.409 3 -232.248 -0.161

Pyridine (C5H5N) 42 386 -247.704 1 (-248.290) 0.586

Order=1: test calculation

Order=2 calculations are necessary for more accurate results.

Medium size molecules: ～40 electrons

Molecule No. of 
Elec. Mn

Energy (a.u.)
ΔE=EFC-LSE-Eexact

(kcal/mol)FC-LSE Exact energy 
(experiment)

Carbon Hydride(CH) 7 1503 -38.480 41 -38.479 0 -0.884

Water(H2O) 10 2075 -76.456 78 -76.457 8 0.671

Dicarbon(C2) 12 1976 -75.923 69 -75.926 5 -0.438

Dinitrogen(N2) 14 1121 -109.537 10 -109.542 7 3.512

Acetylene (C2H2) 14 1709 -77.333 31 -77.335 7 1.49

Ethylene (C2H4) 16 2628 -78.577 95 -78.587 4 5.93

Formaldehyde (H2CO) 16 4083 -114.517 81 -114.508 0 -6.15

The solutions in Schrödinger (Chemical) accuracy could be obtained.

Order=2

Small organic molecules: ～20 electrons
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Parallel efficiency: 111.5%
(Base: 460 Cores)

Parallel efficiency on TSUBAME2
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Now, organic chemistry can be done in Schrödinger accuracy !!

Petascale Solver for Semidefinite Programming Problems
● SDP (semidefinite programming) is one of the most central problems in mathematical optimization.
● Many applications: structural optimization, combinatorial optimization, quantum chemistry, sensor network location, etc. 

Algorithmic Framework of PDIPM

Dual

Primal

Primal-Dual Formulation
• ELEMENTS : Computation of the SCM
 Memory Access-intensive
 Time-complexity:

• CHOLESKY : Cholesky factorizations of the SCM
 Compute-intensive
 Time-complexity:

Two major bottleneck parts (80~90% of execution time) 

or

n : matrix size
m: # of constraints

quantumtorus

m < n (not m >> n), and Fully Dense SCM

ELEMENTS-bound SDP problems

Comb. Opt. 

m >> n, and Fully Dense SCM

CHOLESKY-bound SDP problems

Quad. assignment

Scalable Implementation of ELEMENTS Scalable Implementation of CHOLESKY
ELMENTS for large-scale SDP problems generally 
requires significant computational resources in 
terms of CPU cores and memory bandwidth. 

Efficient Hybrid (MPI-OpenMP) parallel Computation of SCM B
with Automatic configuration for CPU Affinity and memory interleaving

Fk (k = 1,…, m)
Memory interleaving

Scatter-type CPU Affinity

Our algorithm

i-loop for Fi

j-loop for Fi

B

j-loop for Fj

i-loop for Fi

Electronic5 (SCM size: 47.7k x 47.7k)

“interleaving” is effective.

CPU time varied with affinity/interleaving setting

“scatter and interleaving” is fastest.

Efficiency
for large problem

Strong Scaling
based on 128 nodes

Electronic4 (SCM size: 76.6k x 76.6k)

high efficiency 

Scalability of “scatter and interleaving”

Performance of CHOLESKY for 
QAP on GPUs of TSUBAME 2.0/2.5

For problems with m >> n, high performance CHOLESKY is implemented for GPU supercomputers.
Key for petaflops is overlapping computation, PCI-Express communication and MPI communication.
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DTRSM DGEMM

Producer of panel L Consumers of panel L

nb =1024 (for TSUBAME 2.0),  2048 (for TSUBAME 2.5)

Matrix distribution on 6 (=2x3) processes

B
B’

Each process has a “partial-matrix”

L’

L
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m

Data Distribution:
The dense matrix B
(m x m) is distributed
in 2D Block cylic
distribution

Our algorithm with overlapping

1.713 PFLOPS (DP)
with 4080GPUs!!

Performance of ELEMENTS for 
quantum on CPUs of TSUBAME 2.0

SDPARA can solve the largest SDP problem in 1.7PFLOPS !
- DNN relaxation problem for QAPLIB with 2.3million constraints

Project leader: Katsuki Fujisawa (Chuo Univ)


