System Software Research (1)

— TOKyd TlEECH—

Pursuing Excellence

Towards Next-Generation Supercomputing

Performance Analysi

Performance Metrics and Tools
We've installed following performance monitoring
tools into TSUBAMEZ2.5 and can get performance
data of real applications in following metrics.

Tool |Type [Metrics
Scalasca Profiler Time, Visit, MPl Communication, PAPI
Vampir Tracer Time, MPl Comm., GPU Comm., PAPI
Exana Tracer Memory Access (Instruction Level)
PAPI Library Instruction Mix, Main Memory Access

We're giving seminar for those performance tools
for TSUBAME users.

Performance Repository Schema
We're building application performance repository to

||
K R D m et rl c Data Access Trace Data Access Trace
CORE #1 CORE #2

Kernel Reuse Distance

- Reuse distance of Kernel data accesses

- Coarse Grain to reduce overheads

- Tool for the analysis of LLC performance
and its correlation with the WTI

Trace format /

4 bytes 4 bytes 4 bytes M A| N M EM ORY
ID/@ | Timestamp |Size (bytes)!| eee -

Correlation of KRD with Schedulers

s and Runtimes

Task Parallel Runtimes

Support for many types of control makes them a popular choice Tasks

Regular Parallelism

Divide and Conquer

Runtl
C|Ik TBB, O nMP tc)

Irregular Parallelism i ‘ i i

Common issues in runtime scalability: Cores
1. Runtime System overheads ||2. Scheduling Constraints 3. Resource contention
Causes parallelization overhead (PO) | |Causes parallel idleness (Pl) Causes Work Time Inflation (WTI)

Tserial = Z Tkernel + Z Tcontrol

Iparallel =

Z Tkernel + Z Tcontrol
N

X PIXPOXWTI

Case Study: scalability of recursive MatMul

@in1 t1
@|n2>‘> KERNEL <@°u
/

@out2

Synchronized/Merged Trace
1 28 4 5 el@ls 9 [HoAMA2

histogram
generation

.9 /

©

b

>

m //
20

O o o S . o 5 & 2 > 4,
o % o o, B B B B %y Iy A
Data Window (KB)

Update particle information

Correlation of KRD with Hardware Metrics
2 NUMA node / 12 cores

é % & z > o) 7
% T TR m T % Ty
Data Window (KB)

by runtime overheads. WTI also

on design space exploration

i Relative speed to simulation
I?_?I;I:;Tye Exec Time LLC Misses Kernel Time & WTI 1 I
_ MTH 1.653 sec 2.091x108 17479 ns (1.0274x)
S
o TBB 1.721 sec 2.663x10® 17885 ns (1.0513x) S .
Y QThread 2.564 sec 10.866x106 19804 ns (1.164x) I
- | | Global LIFO increases locality in single socket
Threading Building Blocks Reuse Distance MTH and TBB work stealing across node more efficient 02 i
88 _QThread Reuse Distance, Qthread performance on multiple sockets is hampered

I 0
Increases aS a reSUIt uniform-250 uniform-1960 random-250 random-1960 sphere-250 sphere-1960

know following things through performance analysis. FO loca ?, e ?z :] w
* Which machine can solve my application well? scheduling Task Queues scheduling . LIFO global
* Which application are suitable for our supercomputer? scheduling NuwA
- - shepher
We collect various performance data from many O wo FIFOwork Work First B " (chesterd)
teali Work First stealing “Shepher » bulk FIFO.
supercomputers and correlate them to answer these stealing work stealing
questions. MassiveThreads Thread Building Blocks QThread
Experiment = | Experiment Details: 4-socket Intel Xeon E7-4807 (1.86GHz). Matrix size 4096°elem (64MB)
Name, Version, Field, License, Platform, Library selection, P | | | N | - | o |
Library Requirement Runtime Options, Problem size Threading Buiding Blocks Speed-Up | TheadngBuidingods. v | Soo
20 QThread Speed-Up // . QThI’ea)(ii.—“'.'.'j‘—'.'.'___.___,.xA--"’ é o
#Nodes, #CPUs, #GPUs, Network Metric, Result g y ?3 """" ?:30:;2
(Common form throughout tools) 8 512 %o.ézs
Tool Result Proposed Design of 1.~ == A~
Name’ VerSion h SeleCted MetriCS, TOOI Appllcatlon SChema ’ tz 46 NumbgofCores 18 24 0 te 40 Numb1ezrofcores 18 24 > 1 2 4 6 NumbigofCores 1I8 2I4
Supported Metri Link to Raw Data from Tool
upportsd Mefric nk to Rew Data from Tools Speed-UP Overhead (Pl x PO) Speed-Up x OVR
This is collaborative work with Future Technologies Group, Oak Ridge National Laboratory. Product (1/WT|)

Heterogeneous Scheduling
e ease Study: Fast Multipole Method

Complex inter-task dependencies

Input dependent control flow

1)
2) Heterogeneous task runtimes
3)

4)

Mix of compute/memory bound tasks

Where and when to schedule each task

on a CPU/GPU system?

A dynamic task scheduling engine:
StarPU

StarPU: http://runtime.bordeaux.inria.fr/StarPU/

1 NUMA node / 6 cores 4 NUMA nodes / 24 cores A "
100 | 10— pproach:
90 T :
ol S T Use dynamic task scheduler
ol .
g sr - | Comparison of StarPU with:
2 40| R e W
X | T 1) All-GPU: All tasks on GPU
200 MassiveThreads —— | e I /A MassiveThreads | 2) Simple Hybrid, P2P on GPU
10 -Threadlng Buildln%l_Brlr(])rcekasd : | * Threading BuildlngQI_BI_Ir(])rcekasd : and remalnlng phases On CPU
06— ' ' 0L——t— ' |
% Y %»f % s "y %y "y %y Oy 0y 1, o % % %"o% % % % " EARA % 3) Optimal scheduling, based
Data Window Data Window

A task is assigned to =
a PE when dep. are met ?
Task T

E.; :TaskT's estimated exec. time on PE j
availj : The earliest time when PE j is available -
Cij :Comm. cost to execute task i on PE j

Pes are carefully chose to minimize
m,ln(Ei,j +min(avail; + Ci,j)) the execution time
J

SSSSSS

[2] C. Augonnet et al: “StarPU : a Runtime System for Scheduling Tasks over Accelerator-Based Multicore Machines”

Lessons learned:
- Task Size Matters:

CPUs prefer fine-grained tasks
GPUs prefer coarse-grained tasks
- Communication / disjoint memories
- Task runtime prediciton in irregular
applications is a complex problem

http://www.gsic.titech.ac.jp/sc13

