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Performance Metrics and Tools
We've installed following performance monitoring
tools into TSUBAMEZ2.5 and can get performance
data of real applications in following metrics.

Tool  |Type [Metrics
Scalasca Profiler Time, Visit, MPl Communication, PAPI
Vampir  Tracer Time, MPl Comm., GPU Comm., PAPI
Exana Tracer Memory Access (Instruction Level)
PAPI Library Instruction Mix, Main Memory Access

We're giving seminar for those performance tools
for TSUBAME users.

Performance Repository Schema
We're building application performance repository to
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Kernel Reuse Distance

- Reuse distance of Kernel data accesses

- Coarse Grain to reduce overheads

- Tool for the analysis of LLC performance
and its correlation with the WTI
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Correlation of KRD with Schedulers

s and Runtimes

Task Parallel Runtimes

Support for many types of control makes them a popular choice Tasks

Regular Parallelism

Divide and Conquer

Runtl
C|Ik TBB, O nMP tc)

Irregular Parallelism i ‘ i i

Common issues in runtime scalability: Cores
1. Runtime System overheads ||2. Scheduling Constraints 3. Resource contention
Causes parallelization overhead (PO) | |Causes parallel idleness (Pl) Causes Work Time Inflation (WTI)

Tserial = Z Tkernel + Z Tcontrol

Iparallel =

Z Tkernel + Z Tcontrol
N
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Case Study: scalability of recursive MatMul
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Correlation of KRD with Hardware Metrics
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by runtime overheads. WTI also

on design space exploration

i Relative speed to simulation
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know following things through performance analysis. FO loca ?, e ?z : ] w
* Which machine can solve my application well? scheduling Task Queues scheduling . LIFO global
* Which application are suitable for our supercomputer? scheduling NuwA
- - shepher
We collect various performance data from many O wo FIFOwork  Work First B " (chesterd)
teali Work First stealing “Shepher »  bulk FIFO.
supercomputers and correlate them to answer these stealing work stealing
questions. MassiveThreads Thread Building Blocks QThread
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Heterogeneous Scheduling
e ease Study: Fast Multipole Method

Complex inter-task dependencies

Input dependent control flow

1)
2) Heterogeneous task runtimes
3)

4)

Mix of compute/memory bound tasks

Where and when to schedule each task

on a CPU/GPU system?

A dynamic task scheduling engine:
StarPU

StarPU: http://runtime.bordeaux.inria.fr/StarPU/
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A task is assigned to =
a PE when dep. are met ?
Task T

E.; :TaskT's estimated exec. time on PE j
availj : The earliest time when PE j is available -
Cij :Comm. cost to execute task i on PE j

Pes are carefully chose to minimize
m,ln(Ei,j +min(avail; + Ci,j)) the execution time
J
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[2] C. Augonnet et al: “StarPU : a Runtime System for Scheduling Tasks over Accelerator-Based Multicore Machines”

Lessons learned:
- Task Size Matters:

CPUs prefer fine-grained tasks
GPUs prefer coarse-grained tasks
- Communication / disjoint memories
- Task runtime prediciton in irregular
applications is a complex problem

http://www.gsic.titech.ac.jp/sc13




