
http://www.gsic.titech.ac.jp/sc12

The Fast Multipole Method is a hierarchical method with
many applications: N-Body simulation, turbulence simulations,
PDE solvers, etc.. It features two parallel flows:

1. Far-field computation: consists of 5 kernels (P2M, M2M,
M2L, L2L and L2P)

2. Near-field computation: consists of one kernel (P2P)

Fast Multipole Method

System Software
Programming Models and Runtimes

Multicore scalability depends heavily on:
 - task granularity
 - executing tasks early and removing global synchronization points

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

OpenACC
(PGI)

CUDA OpenACC
(PGI)

CUDA OpenMP
(6-threads)

El
ap

se
d

Ti
m

e
[s

ec
]

Host-Device
Others
Time Integration
Viscousity
Convection

vs

Micro-Benchmarks

A Real-world CFD Application：UPACS

0

20

40

60

80

100

120

140

160

Cray PGI CAPS CUDA

Pe
rfo

rm
an

ce
 [G

Fl
op

s]

Matrix Multiplication

Baseline

Thread Mapping

Shared Memory Blocking

0
10
20
30
40
50
60
70
80
90

Cray PGI CAPS CUDA

Th
ro

ug
hp

ut
 [G

B/
s]

7-point stencil

Baseline

Thread Mapping

Register Blocking

OpenACC is a new directive-based programming language for accelerators.
We focus on OpenACC performance compared with CUDA.

naïve optimized

We compared the OpenACC implementations provided by Cray, PGI and CAPS
with CUDA by using Matrix Multiplication and a 7-point stencil while applying
several optimizations.

UPACS (Unified Platform for Aerospace Computational
Simulations) is a large scale CFD application developed
by the Japan Aerospace Exploration Agency.

We ported this application to OpenACC and CUDA,
and applied several optimizations to each
implementation. In the naïve implementation,
OpenACC achieves 80% of the performance of CUDA.
But in the optimized
implementation,
OpenACC gives only 40%
of the performance of
CUDA.
We observe that some
limitations of OpenACC
prevent achieving high
performance.

Physis: An Implicitly Parallel
Framework for Stencil Computations

Stencil Computations
・Iteratively updates grid
 points using neighbors
・A fundamental
 computation pattern in
 scientific simulations

Physis DSL
・Dense grid types
・Intrinsics for manipulating grids
・Functions expressing stencils

Performance Results on Tsubame
・Performance evaluation with the 7-point diffusion kernel

DSL Translator
・Using the ROSE framework
・Domain-specific optimizations
・Automatic parallelization

0

2000

4000

6000

8000

10000

0 100 200 300

GF
lo

ps

Number of GPUs

512x256x256

256x128x128

0

1000

2000

3000

4000

0 50 100 150

GF
lo

ps

Number of GPUs

1-D 2-D

3-D

C

C+MPI

CUDA

CUDA+MPI

void diffusion(const int x, const int y, const int z,
 PSGrid3DFloat g1, PSGrid3DFloat g2,
 float t) {
 float v = PSGridGet(g1,x,y,z)
 +PSGridGet(g1,x-1,y,z)+PSGridGet(g1,x+1,y,z)
 +PSGridGet(g1,x,y-1,z)+PSGridGet(g1,x,y+1,z)
 +PSGridGet(g1,x,y,z-1)+PSGridGet(g1,x,y,z+1);
 PSGridEmit(g2,v/7.0*t);
}

Download at http://github.com/naoyam/physis

Weak Scaling Strong Scaling

Pseudo
hand-tuning

Better

StarPU(hint)StarPU StarPU

Time[s]

Scheduling on Multicore Architectures

A hint is given by the programmer
“P2P” phase tasks must be on GPUs.

Employing StarPU to schedule CPU/GPU tasks
→ Towards robust dynamic load balancing

• Remaining Challenges:
Uniform dist. Sphere Surface dist.

Smarter scheduling / better programming models

Pseudo
hand-tuning

Scheduling on Heterogeneous Architectures

Preliminary Evaluation of
OpenACC Performance

Complex scheduling problem. High variability in task runtimes
Many parameters affect the runtime of the tasks:
 - Input distribution (Cube, Plummer, Sphere, etc)
 - Device (CPU, GPU, etc)
 - Memory locality
 - Task granularity (interaction-level, cell-level, ...)
 - Number of particles per cell (q)

Load imbalance due to variability in task sizes while simulating a
Plummer-like globular star cluster (yellow=running, red=waiting)

q = 100, Plummer Distribution, 80000 bodies
- FINE operates at interaction level
- QUEUE, QUEUE-EE & DATAFLOW operate
 at cell level
- QUEUE-EE & DATAFLOW start execution
 during construction of the interaction lists
- DATAFLOW pipelines M2L→L2L→L2P

Fa
r-f

ie
ld

 C
om

pu
ta

tio
n

N
ear-Field C

om
putation

OmpSs scalability results on a dual Xeon X5670 (12 cores)
Based on ExaFMM code (http://www.bu.edu/exafmm/)

P
lum

m
er

C
ube

P2M P2M P2M P2M

M2M M2M M2M M2M

L2L L2L L2L L2L

L2P L2P L2P L2P

L2L L2L

M2M M2M

M2L M2L

M2L M2LM2LM2L M2L M2LM2L M2L

Sources

Targets

P2P P2PP2PP2P P2P P2PP2P P2P

Sources

Targets

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10 11 12

S
pe

ed
-u

p

Number of Cores

QUEUE
QUEUE-EE

FINE
DATAFLOW

