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TSUBAME2.0 Lustre checkpoint time 
Background: Increasing system failures
● A node failure occurred every 13 hours on 

average
A parallel file system (PFS) checkpointing 
overhead ( 3 hours )

Objective : Reduce PFS checkpoint 
overhead
Proposed method :  Implementation and 
modeling of an asynchronous checkpointing
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Efficiency=
ideal _ runtime

expected_ runtime
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Figure 13: Efficiency comparison: Blocking vs. Non-blocking check-
pointing

crease. To explore the e�ects, we increase failure rates and
checkpoint costs by factors of 1, 2, and 10, and compare
efficiency between both a blocking checkpointing and a non-
blocking one. As for checkpoint size per compute node,
we employ 29GB, which is just a half of memory size
of TSUBAME2.0 thin nodes. As show in Figure 12, a
XOR encoding rate is constant regardless of the number
of compute nodes, which means XOR encoding scales with
system size. Thus, when we increase checkpoint costs, we
increase only PFS checkpoint cost.
Figure 13 shows thatefficiency of both checkpointing

methods under di�erent failure rates and checkpoint costs.
We define theefficiencyas ideal time

expected time . Here, ideal time is
the runtime assuming the application encounters no failures
and take no checkpoints, whileexpectedtime is the ex-
pected runtime computed from our model for a non-blocking
method and an existing model [4] for a blocking one.
When we compute the efficiency, we optimize (1) Level 1
counts between Level 2 checkpoints, and (2) the interval
between checkpoints, given failure rates and checkpoint
costs. The efficiency can bemaximal efficiency. We found
that the non-blocking method achieves higher efficiency than
a blocking method in any cases. Especially, the efficiency
gap become more apparent in higher failure rate and higher
checkpoint cost because longer PFS checkpoint time on a
blocking checkpointing is easy to encounter a lower level
failure during the PFS checkpoint, and rollback to the
beginning, while a non-blocking method can rollback to
the recent XOR checkpoint. Moreover, since overhead of a
blocking checkpoint is identical to checkpoint latency, which
is directlly added to an application runtime, the efficiency
become lower than a non-blocking checkpointing.
Because a non-blocking checkpointing overlaps with an

application computation, the checkpointing method can
imapct the application runtime depending on overhead fac-
tor, α . If the overhead factor becomes larger, our non-
blocking checkpointing can introduce lower efficiency than
a blocking checkpointing. Figure 14 shows efficiency of
systems with increasing overhead rate in di�erent failure

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!" !#%" !#'" !#)" !#+" $"

!"
#$

%
&

#'
(

)*%+,%-.(+-/%(012((

-.$/"0.$/"12345678"

-.$/"0.$/"937:;2345678"

-.%/"0.%/"12345678"

-.%/"0.%/"937:;2345678"

-.%/"0.$!/"12345678"

-.%/"0.$!/"937:;2345678"

-.$!/"0.%/"12345678"

-.$!/"0.%/"937:;2345678"

Figure 14: Efficiency under varying the overhead factor:α
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Figure 15: Required PFS throughput at di�erent failure rates

rates factor and PFS checkpoint cost factor. We found that a
blocking checkpointing can become more efficient than our
non-blocking with larger overhead factor in current failure
rates and cost. However, in future systems where the failure
rates and cost become larger, a non-blocking checkpointing
can be e�ective even with large overhead factor. In large
failure rate and checkpoint cost factors, checkpoint interval
become short and the overhead dominate to the overall
runtime. Especially, since an application is blocked with a
blocking checkpointing, the checkpiont latency impacts an
application runtime rather than a non-blocking one in future
systems.

C. Building an efficient and resilient system

When building a reliable data center or supercomputer,
two major concerns are cost of the PFS and how much
throughput a PFS should have to maintain high efficiency.
Generally, we want to minimize cost, but not sacrifice
performance. Using our model, we can predict the required
PFS bandwidth for achieving high system efficiency when
using our checkpointing system.
Figure 15 presents the required PFS bandwidth to main-

tain 90%, 80%, and 70% efficiency under increasing failure
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Fig. 9 overhead factor under varying
checkpoint rate
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Fig. 11 E�ciency comparison: Synchronous vs. Asynchronous
checkpointing
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Fig. 12 E�ciency under varying the overhead factor:α

while expectedtime is the expected runtime computed from our
model for an asynchronous method and an existing model [3] for
a synchronous one. Whenwe compute the e�ciency, we optimize
(1) Level 1 counts between Level 2 checkpoints, and (2) the inter-
val between checkpoints, given failure rates and checkpoint costs.
The e�ciency can bemaximale�ciency. We found that the asyn-
chronous method achieves higher e�ciency than a synchronous
method in any cases. Especially, the e�ciency gap become more

x1.1 ~ x1.8 System efficiency improvement

Asynchronous Checkpointing System Multi-tier Resilient Storage Design 
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• A burst buffer is a storage space to bridge the gap in latency and bandwidth 
between node-local storage and the PFS 

Shared by a subset of compute nodes 
• Although additional nodes are required, several advantages 

More Reliable because burst buffers are located on a smaller # of nodes 
Efficient utilization of storage resources  with uncoordinated checkpointing 
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In Exa-scale supercomputing systems, the "memory wall" problem will become even higher, which prevents the realization 
of exa-scale real world simulations. 
In our project, “Software Technology that Deals with Deeper Memory Hierarchy in Post-petascale Era”, we promote research 
in aspect of “Architecture”, “Algorithm” and “System software”.

[Architecture]
To suppose supercomputerm architecture with deeper 
memory hierarchy including hybrid memory devices, including 
non-volatile RAM (NVRAM).

Hybrid Memory Cube (HMC):
DRAM chips are stacked with TSV technology.
It will have advantage in bandwidth over DDR,
but capacity will be smaller.

NAND Flash:
SSDs are already commodity.
Newer products, such as IO-drive have
O(GB/s) bandwidth.
Next-gen non-volatile RAM (NVRAM):
Several kinds of NVRAM such as STT-
MRAM, ReRAM, FeRAM, etc, will be 
available in a few years.

Dev mem
3GB

Host memory
54GB

L2$
768KB

GPU
cores

150GB/s

8GB/s

Secondary Storage

Currently, we use TSUBAME2, CPU-GPU hybrid
supercomputer as research environment.
Here we have memory hierarchy of GPU device
memory and Host memory.

[Algorithm]
To harness hierarchical memory efficiently, we are
investigating locality improvement of application algorithms.
In stencil applications, temporal blocking is the key.

Step 1 Step  2 Step  3 Step  4

Simulated
Time

Temporal blocking
Step 1 Step  2 Step  3 Step  4

Reduction of redundant computation

Cf) James Demmel et al.
Reduction of buffer
utilization [AsHES 13]

With optimized temporal blocking,
27 tiems larger array than GPU memory
is efficiently used (only 30% overhead)!

3D 7-point stencil on a M2050 GPU
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[System Software]
To support real applications to harness hierarchical memory
with lower development efforts, system software support
is necessary. Our target includes locality aware compiler and
scalable memory management runtime.

PI: Toshio Endo. Supported by JST-CREST


