
http://www.gsic.titech.ac.jp/sc14

Fail-in-Place Network Design
Interaction between Topology,
Routing Algorithm and Failures

ACKNOWLEDGMENT

Presentation at SC14

Simulation Results

Toolchain

Introduction

SESSION: Hardware Vulnerability and Recovery
TIME: 2:00PM - 2:30PM on Wednesday, November 19th
ROOM: 393-94-95
AUTHORS: Jens Domke, Torsten Hoefler, Satoshi Matsuoka

The authors would like to thank Eitan Zahavi for making the initial
IB module for OMNeT++ publicly accessible, and the researchers
at Simula Research Laboratory for their effort to port the original IB
module to the newest OMNeT++ version. Last but not least, the
authors would like to thank the HPC system administrators at
LANL, Technische Universität Dresden and Tokyo Institute of Tech-
nology for collecting highly detailed failure data of their systems
and sharing the information.

Fig.1: Network of TSUBAME2.5
1,555 nodes connected with
258 switches and 3,621 links

Fig.3: Consumption BW for uniform random injection
assuming a 16-ary 2-tree with 256 HCAs

Fig.2: Simulation toolchain based on topology generation
engine, IB tools, and simulation engine (OMNeT++)

Fig.4: Throughput degradation for MPI All-to-All on TSUBAME2.5
assuming a life span of 8 years while running in fail-in-place mode

The growing system size of high performance computers results in
a steady decrease of the mean time between failures. Exchanging
network components often requires whole system downtime which
increases the cost of failures. In this work, we study a fail-in-place
strategy where broken network elements remain untouched. We
show, that a fail-in-place strategy is feasible for todays networks
and the degradation is manageable, and provide guidelines for the
design.

Contributions
● We show that fail-in-place network design can be accomplished
 with an appropriate combination of topology and routing algorithm.
● We conducted detailed case studies with TSUBAME2.5 and
 Deimos, and showed that the currently used routing method on
 TSUBAME2.5 can be improved, increasing the
 throughput by up to 2.1x (and 3.1x for Deimos)
 for the fault-free network while increasing
 their fail-in-place characteristics.

Our toolchain allows system designers to plan future fail-in-place net-
works and operation policies while taking failure rates into consider-
ation and allows administrators to evaluate the current state of the net-
work by comparing it to the fault-free state.
OMNeT++ and IB model provide flit-level simulations of high detail
and accuracy for two available modes
● Uniform random injection: measures consumption bandwidth at
 each sink (after simulation reached steady state)
● Exchange pattern of varying shift distances: determines the
 throughput of an MPI All-to-All

All topology-agnostic algorithms were able to route all small-scale topolo-
gies. However, MinHop and SSSP do not prevent deadlocks and thus
create deadlocking routes in some configurations.

For deterministically
routed IB fat-trees, we
show that two
failing links may
reduce the overall band-
width by up to 30% when
a fault-tolerant topology-
aware routing is used,
such as Fat-Tree routing.

Changing from Up*/Down* (default) to DFSSSP routing on
TSUBAME2.5 improves the throughput by 2.1x for the fault-
free network and increases TSUBAME’s fail-in-place charac-
teristics.

TABLE I. COMPARISON OF NETWORK-RELATED HARDWARE AND
SOFTWARE FAILURES, MTBF/MTTR, AND ANNUAL FAILURE RATES

Fault Type Deimos∗ LANL Cluster 2 TSUBAME2.5

Percentages of network-related failures
Software 13% 8% 1%
Hardware 87% 46% 99%
Unspecified 46%

Percentages for hardware only
NIC/HCA 59% 78% 1%
Link 27% 7% 93%
Switch 14% 15% 6%

Mean time between failure / mean time to repair
NIC/HCA X† / 10 min 10.2 d / 36 min X / 5–72 h
Link X / 24–48 h 97.2 d / 57.6 min X / 5–72 h
Switch X / 24–48 h 41.8 d / 77.2 min X / 5–72 h

Annual failure rate
NIC/HCA 1% X ≫ 1%
Link 0.2% X 0.9%‡

Switch 1.5% X 1%
∗ Deimos’ failure data is not publicly available
† Not enough data for accurate calculation
‡ Excludes first month, i.e., failures sorted out during acceptance testing

Topology Generator Routing Engine Converter

Simulator

Generate
regular
topology

Inject faults w/o
destroying
connectivity

Load
existing
topology

Load topology
into IBsim

Run OpenSM to
generate LFTs

Extract network &
routing information

Generate traffic
pattern

Check connectivity
based on LFTs

Replace LFTs with
external routing

Simulate traffic
pattern w/
OMNet++

Convert network/LFTs
into OMNet++ format

TABLE II. USABILITY OF TOPOLOGY/ROUTING COMBINATIONS;
O : DEADLOCK-FREE; R : ROUTING FAILED; D : DEADLOCK DETECTED

Fa
t-t

re
e

U
p*

/D
ow

n*

D
O

R

To
ru

s-
2Q

oS

M
in

H
op

SS
SP

D
FS

SS
P

LA
SH

artificial topologies
2D mesh r r o o d d o o
3D mesh r r o o d d o o
2D torus r r d o d d o o
3D torus r r o o d d o o

Kautz r r d r d d o o
k-ary n-tree o o o r o o o o

XGFT o o o r o o o o
Dragonfly r r d r d d o o

Random r r o r d d o o
real-world HPC systems

Deimos r o o r o o o o
TSUBAME2.5 o o o r o o o o

topology-aware topology-agnostic

