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Interaction between Topology,
Routing Algorithm and Failures
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Fig.1: Network of TSUBAME2.5
1,555 nodes connected with
258 switches and 3,621 links

Fig.3: Consumption BW for uniform random injection
assuming a 16-ary 2-tree with 256 HCAs

Fig.2: Simulation toolchain based on topology generation
engine, IB tools, and simulation engine (OMNeT++)

Fig.4: Throughput degradation for MPI All-to-All on TSUBAME2.5
assuming a life span of 8 years while running in fail-in-place mode

The growing system size of high performance computers results in 
a steady decrease of the mean time between failures. Exchanging 
network components often requires whole system downtime which 
increases the cost of failures. In this work, we study a fail-in-place 
strategy where broken network elements remain untouched. We 
show, that a fail-in-place strategy is feasible for todays networks 
and the degradation is manageable, and provide guidelines for the 
design.

Contributions
● We show that fail-in-place network design can be accomplished 
   with an appropriate combination of topology and routing algorithm.
● We conducted detailed case studies with TSUBAME2.5 and
   Deimos, and showed that the currently used routing method on
   TSUBAME2.5 can be improved, increasing the
   throughput by up to 2.1x (and 3.1x for Deimos)
   for the fault-free network while increasing
   their fail-in-place characteristics.

Our toolchain allows system designers to plan future fail-in-place net-
works and operation policies while taking failure rates into consider-
ation and allows administrators to evaluate the current state of the net-
work by comparing it to the fault-free state.
OMNeT++ and IB model provide flit-level simulations of high detail 
and accuracy for two available modes
● Uniform random injection: measures consumption bandwidth at 
   each sink (after simulation reached steady state)
● Exchange pattern of varying shift distances: determines the 
   throughput of an MPI All-to-All

All topology-agnostic algorithms were able to route all small-scale topolo-
gies. However, MinHop and SSSP do not prevent deadlocks and thus 
create deadlocking routes in some configurations.

For deterministically
routed IB fat-trees, we 
show that two
failing links may
reduce the overall band-
width by up to 30% when 
a fault-tolerant topology-
aware routing is used, 
such as Fat-Tree routing.

Changing from Up*/Down* (default) to DFSSSP routing on 
TSUBAME2.5 improves the throughput by 2.1x for the fault-
free network and increases TSUBAME’s fail-in-place charac-
teristics.

TABLE I. COMPARISON OF NETWORK-RELATED HARDWARE AND
SOFTWARE FAILURES, MTBF/MTTR, AND ANNUAL FAILURE RATES

Fault Type Deimos∗ LANL Cluster 2 TSUBAME2.5

Percentages of network-related failures
Software 13% 8% 1%
Hardware 87% 46% 99%
Unspecified 46%

Percentages for hardware only
NIC/HCA 59% 78% 1%
Link 27% 7% 93%
Switch 14% 15% 6%

Mean time between failure / mean time to repair
NIC/HCA X† / 10 min 10.2 d / 36 min X / 5–72 h
Link X / 24–48 h 97.2 d / 57.6 min X / 5–72 h
Switch X / 24–48 h 41.8 d / 77.2 min X / 5–72 h

Annual failure rate
NIC/HCA 1% X ≫ 1%
Link 0.2% X 0.9%‡

Switch 1.5% X 1%
∗ Deimos’ failure data is not publicly available
† Not enough data for accurate calculation
‡ Excludes first month, i.e., failures sorted out during acceptance testing
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TABLE II. USABILITY OF TOPOLOGY/ROUTING COMBINATIONS;
O : DEADLOCK-FREE; R : ROUTING FAILED; D : DEADLOCK DETECTED
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artificial topologies
2D mesh r r o o d d o o
3D mesh r r o o d d o o
2D torus r r d o d d o o
3D torus r r o o d d o o

Kautz r r d r d d o o
k-ary n-tree o o o r o o o o

XGFT o o o r o o o o
Dragonfly r r d r d d o o

Random r r o r d d o o
real-world HPC systems

Deimos r o o r o o o o
TSUBAME2.5 o o o r o o o o

topology-aware topology-agnostic


