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邦文抄録（300 字程度） 
 セミラグランジアン法および差分法に基づく 2 つの核融合プラズマ乱流コードの高次元ステンシル演算に対する

GPU 向け最適化技術を開発した。セミラグランジアン法におけるメモリのリストアクセスをテクスチャメモリの利用に

よって大幅に高速化した。差分法においては、演算子の対称性を活用したレジスタ再利用によってメモリアクセス数

を削減した。これらの最適化により、Sandy Bridge で最適化されたコードに対して、GPU を用いてセミラグランジア

ン法で 7.6 倍、差分法で 4 倍の高速化に成功した。 
 

英文抄録（100 words 程度） 
 We developed optimization techniques for high dimensional stencil computations on GPUs, which are 
extracted from two fusion turbulence codes based on Semi-Lagrangian and Finite-Difference schemes. 
The indirect memory access of the Semi-Lagrangian scheme is dramatically accelerated by using the 
texture memory. In the Finite-Difference scheme, the reuse of registers by taking account of the physical 
symmetry of the operator reduces the amount of memory accesses. Through these optimizations, we 
achieve acceleration of 7.6x for the Semi-Lagrangian scheme and of 4x for the Finite- Different scheme 
on GPUs compared with the fully optimized codes on Sandy Bridge. 
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背景と目的 

 磁場閉じ込め核融合炉は約１億度の燃料プラズマを

トーラス形状の磁場で閉じ込めて核融合反応を持続さ

せて、核融合エネルギーを取り出す。炉心プラズマの

閉じ込め性能はプラズマ乱流による燃料粒子やエネル

ギーの輸送で決まっており、プラズマ乱流の第一原理

計算が炉心性能評価に必須のツールとなっている。核

融合炉心プラズマは粒子間の衝突が弱く（クヌーセン数

が大きく）、粒子軌道やランダウ共鳴といった運動論効

果が顕著となるため、その第一原理モデルはサイクロト

ロン運動を平均化した 5 次元のボルツマン方程式（ジャ

イロ運動論方程式）で与えられる。炉心プラズマを構成

するイオンと電子はその質量比のため、熱運動や粒子

軌道半径の時空間スケールが大きく乖離し、イオンに

ついては燃料の重水素、三重水素、および、核融合反

応で生成するヘリウムを含む多種イオン系となる。この

ように、核融合プラズマ乱流コードは、5 次元問題、マ

ルチスケール問題、多相問題という極めてユニークな

大規模科学技術計算となっており、特に、次世代の核

融合実験炉 ITER の解析を行う上でエクサスケール計

算を必要としている。このような、エクサスケール計算

を実現する計算手法を確立することは、将来の核融合

炉心解析コード開発に必要不可欠であり、核融合エネ

ルギー開発に大きく貢献する。 
 エクサスケール計算機では、GPU や Xeon Phi を始

めとするアクセラレータが主要な役割を果たすと考えら

れる。しかしながら、これらアクセラレータ上で既存の

CPU 向け計算手法や最適化手法が有効とは限らない。

そこで本課題では、異なるアルゴリズムを用いる第一

原理的核融合プラズマ乱流コードからホットスポットを

抽出したのち、それらについて GPU 上で最適化し、性

能比較を行う。これにより、アルゴリズムごとの GPU に

対する適正を明らかにするとともに最適化手法を確立

することを目的とする。 
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概要 

 本課題では、核融合プラズマ乱流シミュレーションコ

ード GT5D および GYSELA からホットスポットに対応

するカーネルコード（それぞれ差分法カーネルおよびセ

ミラグランジアン法カーネル）を抽出し、GPU 上で最適

化技術の開発を行った。 
 これらのコードは 4 次元の移流問題に対応する同一

の方程式を異なるアルゴリズムで解く。アクセラレータ

においては、メモリアクセスがボトルネックとなりやすい

ことが知られているため、各アルゴリズムにおけるメモ

リアクセスパターンに着目した。各スキームにおけるメ

モリアクセスパターンを 2 次元（空間 x、速度 v）の移流

方程式に基づき説明する。スカラー量 f の移流方程式

は、 

 

で表される。セミラグランジアン法では、f が特性曲線

（粒子の軌道を意味する）に沿って一定となる性質を利

用し、あるタイムステップにおける各格子点上の f の値

を粒子の出発点の値から評価する。通常、出発点は格

子点上の点とならないため、出発点近傍のデータの補

間によって f を評価する（図１(a)参照）。粒子軌道は空

間の各点によって異なるため、出発点の座標も空間の

各点によって異なる。これは、データ補間のために、出

発点近傍の格子にアクセスする際、リストアクセスが生

じることを意味する。ここで、GYSELA においては 4 次

元移流の演算子を 2 次元+1 次元+1 次元の演算子と

分割することでデータ局所性を向上させている。今回用

いるのは最も計算コストの高い 2 次元の補間カーネル

である。 
 一方、差分法においては、移流方程式を差分化して、

次のタイムステップの f の値を評価する。図１(b)に示す

ように、差分法においては隣接格子の参照が必要とな

る。メモリアクセスパターンを考えると、最内の差分にお

いては連続アクセスとなるが、それ以外の方向におい

ては、ストライドアクセスが生じる。 
 本課題では、リストアクセスおよびストライドアクセスと

いうアルゴリズム特有のメモリアクセスパターンに着目

し、これらのメモリアクセスパターンを持つカーネルが

GPU 上で高い性能を発揮するための最適化技術の開

発を行った。 

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

3.1 Physical model

In this subsection, we briefly describe the physical model
employed in the GYSELA and GT5D codes. Currently, these
codes solve the electrostatic ion turbulence with adiabatic
electrons in an axisymmetric tokamak geometry. These
codes compute nonlinear evolutions of a plasma distribu-
tion function f in 5D phase space

(
x, y, z, v∥, µ

)
based on

the modern gyrokinetic theory [19]. The parallel velocity
v∥ = v · b and the magnetic moment is µ = mv2⊥/2B
with the perpendicular velocity v⊥ = |b × v|, where b
is an unit vector along the magnetic field line. For spa-
tial coordinate, GYSELA code employs the toroidal coordi-
nate as (x, y, z) = (r, θ,ϕ), whereas GT5D code employs
the cylindrical coordinate as (x, y, z) = (R,ϕ, Z). Here,
R = R0+r cos(ϕ), Z = r sin(ϕ), and R0 is the major radius.
The distribution function and the electrostatic potential are
computed by coupling the gyrokinetic equations.

In the collision less limit, the conservative form of gy-
rokinetic equations are given by

∂J f

∂t
+∇ ·

(
J Ṙf

)
+

∂

∂v∥

(
J v̇∥f

)
= 0, (1)

−∇⊥ · P1∇⊥φ+ P2

(
φ− ⟨φ⟩f

)
= g − n0. (2)

Here, J is the Jacobian of the coordinates, Ṙ and v̇∥ are
Hamiltonian flows, which are calculated using the magnetic
field B and the turbulent electrostatic potential φ. P1 and
P2 are coefficients given by the plasma parameters, g is the
ion density computed from f , n0 is the equilibrium electron
density, and ⟨⟩f is flux surface average operator.

Eq. (1) describes nonlinear evolutions of f via a 4D
advection term in the x, y, z, and v∥ directions for a given
parameter µ. The solver of this Eq. (1) corresponds to the
hot spot in both codes. The computational cost for Eq. (2) is
negligible so that we will not consider this part in this study.
The description of each code can be found in Refs. [17], [18].

3.2 Numerical Schemes

In this subsection, we briefly describe the numerical
schemes employed in the kernels (See Ref. [25] for details),
the Semi-Lagrangian and Finite-Difference schemes. For
simplicity, we consider 1D examples of these schemes but
it is straightforward to extend them to higher dimensional
cases. Consider the simple 1D Vlasov equation (the advec-
tion equation in phase space)

∂f

∂t
+ v (x, t)

∂f

∂x
+ a (x, v, t)

∂f

∂v
= 0, (3)

where f is a distribution function, v is the velocity and a is
the acceleration. We will explain how Eq. (3) can be solved
with the Semi-Lagrangian and Finite-Difference schemes,
respectively.

3.2.1 Semi-Lagrangian Scheme

Following Refs. [26], [27], we will introduce some basics on
Semi-Lagrangian scheme. In the Semi-Lagrangian approach,
Eq. (3) is considered as propagating f value along charac-
teristic curves Γ = s (t), where Γ = (x, v) is an Eulerian

position vector in phase space. Here, the Lagrangian char-
acteristic s (t) is defined by

ṡ (t) = V (s (t) , t) , s (0) = Γ0, (4)

with the advection field V = (v, a) and the initial position
Γ0. The main goal of the solver is to derive the f value
at (Γ, t) from Eq. (4) by following back to the initial point
(Γ0, t0).

Considering the discrete grid in phase space as illus-
trated in Fig. 1 (a), the corresponding position vector on
a grid can be defined as Γij = (xi, vj), where “i” is the
index for x direction and “j” is the index for v direction.
Suppose f is known on any grid points at given time tn.
Then, we can evaluate f value at (Γij , tn+1 (= tn +∆t)) by
the backward characteristic scheme through evaluating the
value of f at (s (tn) , tn). Here, the backward characteristics
is approximated by

s (tn) ∼ Γij − (∆t)V (Γij , tn) . (5)

with the previous speed V (Γij , tn). Since the backward
characteristics s (tn) can rarely be on the specific grid point,
the value of f (s (tn) , tn) is evaluated by some interpolation
scheme. It should also be noted that the so-called indirect
memory access is required to evaluate the closest indices to
the backward characteristics s (tn).

3.2.2 Finite-Difference Scheme

If we solve Eq. (3) with 4th-order Finite-Difference method,
it is discretized as

fn+1
i,j − fn

i,j

∆t
+ vi
−fn

i+2,j + 8fn
i+1,j − 8fn

i−1,j + fn
i−2,j

12∆x

+ ai,j
−fn

i,j+2 + 8fn
i,j+1 − 8fn

i,j−1 + fn
i,j−2

12∆v
= 0. (6)

The values of f at next time step t = tn+1 can be
calculated by the Eq. (6) using the values of f at current time
step t = tn as illustrated in Fig. 1 (b). Given the f [i][j] array
is row major (C style), it can be seen that the memory access
is continuous access in “j” direction and strided access in
“i” direction. Thus, the Finite-Difference method generally
involves the combination of continuous and strided access.

Fig. 1. Numerical schemes. (a) Semi-Lagrangian scheme where the
values of f at t = tn+1 at grid points are estimated by the correspond-
ing backward characteristics s (tn) (foot point) at t = tn, (b) Finite-
Difference scheme where the values of f at t = tn+1 at grid points
are estimated by using the values of f at t = tn on the adjacent grid
points (the number of required points can vary on the scheme.).
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図１ (a)セミラグランジアン法カーネル、および、(b)差
分法カーネルにおけるデータアクセスパターン。 

 
結果および考察 

 本課題では、上述した GPU(Tesla K20X)におけるカ

ーネル最適化による性能向上の程度を評価するため、

通 常 比 較 対 象 と な る 汎 用 メ ニ ー コ ア CPU(Sandy 
Bridge)に加え、同じく汎用メニーコア CPU である

FX100(SPARC64XIfx) 、 ア ク セ ラ レ ー タ Xeon 
Phi(Xeon Phi 5110P)において最適化されたコードと

の演算性能比較を行った。FX100 や Xeon Phi は

1TFops 級と GPU と同程度の演算性能を持つため、最

適化効果を確認する上での比較対象としてより適切で

ある。 
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セミラグランジアンカーネルの最適化 
 前述したように、セミラグランジアン法では粒子軌道を

たどることで、分布関数の時間発展を計算する。プラズ

マ乱流中においては、空間の各点で粒子が受ける力が

異なるため、粒子軌道は各格子点で異なったものとな

る。従って、粒子軌道をたどり、その出発点を追跡する

際、格子点ごとに参照する格子点は異なる。このメモリ

アクセスパターンをリストアクセスと呼ぶ。 
 オリジナルの CPU 版カーネルでは、各格子点におい

て出発点の座標データのペア(θ,φ)を保持する Array 

of Structure（AoS）型のデータ構造を取っていた(図
2(a)参照)。このデータ構造のまま GPU に移植したカー

ネルを以降ではオリジナルと呼ぶ。このデータ構造は、

キャッシュ局所性を向上させるため、従来の CPU では

有効な最適化である。しかしながら、この配列へのメモ

リアクセスはストライドアクセスとなるため、GPU には

適さない。そこで、アクセスパターンが連続アクセスとな

るように、配列を構成する構造体を座標データのペア

(θ,φ)でなく、SIMD 幅単位のθ座標列とφ座標列の

ペアからなる構造体へと変更した。図２(b)に示されるよ

うに、この配列へのメモリアクセスは連続アクセスとな

る。ここで、図２(b)では便宜的に SIMD 幅 4 の場合を

示しているが、実コードでは Warp 数 32 の整数倍とし

た 。 こ の よ う な 配 列 の デ ー タ 構 造 は Array of 
Structure of Array（AoSoA）型と呼ばれ、Xeon Phi
などの SIMD 幅が大きいアーキテクチャで有効な最適

化技術として知られる。これにより出発点の座標計算

におけるメモリアクセスを Coalescing load とした。これ

によってオリジナルに対し、1.24 倍の性能向上を得た。 
 加えて、計算された出発点の座標を元に参照される

配列へのリストアクセスについても最適化を行った。プ

ラズマ乱流中における粒子軌道は空間位置によって変

化するものの、電場や磁場といった軌道を決める物理

量が空間内で連続的に変化することから、近接格子点

における軌道も連続的に変化し、近接格子点における

参照点もまた空間的に近接したものとなる。これは、リ

ストアクセスにおけるメモリアクセスパターンにある程度

空間局所性があることを意味する。このアクセスパター

ンは、GPU による画像処理で非常によく用いられるテ

クスチャマッピングと同様である。そこで、GPU が有す

る画像処理パイプラインを有効活用するため、リストア

クセスの参照先配列をテクスチャメモリに配置した。最

終的にこれらの最適化によりオリジナルの 1.79 倍の性

能向上を得た。これは、最適化された Sandy Bridge
版の約 7.55 倍に対応する。 
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Code 2. Access to the foot point array in AoS or AoSoA
1 #define VSIZE 16
2 for(int ii = 0; ii < Nr; ii += VSIZE){
3 for(int i = 0; i < VSIZE; i++){
4 // Load the coordinate of foot points in AoS style
5 theta star AoS[i] = feet[l][k][j][2∗(ii + i)];
6 phi star AoS[i] = feet[l][k][j][2∗(ii + i) + 1];
7

8 // Load the coordinate of foot points in AoSoA style
9 theta star AoSoA[i] = feet[l][k][j][2∗ii + i];

10 phi star AoSoA[i] = feet[l][k][j][2∗ii + i + VSIZE];
11 }
12 }

Fig. 2. The memory layout storing foot points in (θ,ϕ) dimension. (a)
The foot points are stored in the Array of Structure (AoS) layout where
the strided access is required. (b) The foot points are stored in the
Array of Structure of Array (AoSoA) layout where the memory access
is sequential.

SIMD load instruction since both arrays are contiguous. The
corresponding pseudo code is given in Code 2 (line 9-10).
With the memory layout optimization, we measure a speed-
up of 1.10×.

4.2.2 Load balance optimization
For further optimization, we changed the Open-MP
scheduling from static to dynamic. The dynamic scheduling
is helpful for improving the load balance by reducing idling
threads. A possible candidate for the load imbalance is the
indirect access part where the loading costs can differ thread
by thread. As a result, we obtained a speed-up of 1.15×with
respect to the original performance.

4.2.3 Results
The impact of optimization on Xeon Phi is summarized in
Table 3. Firstly, the memory layout of the “feet” array is
modified from the original AoS style to the AoSoA style,
and the speed-up of 1.10× is obtained. Secondly, the load
balance is improved by the Open-MP dynamic scheduling,
which attains the speed up of 1.15×.

Step Elapsed time [s] Speed up Optimization
1 7.557 - Original kernel
2 6.853 1.10 Applying AoSoA layout
3 6.575 1.15 Dynamic scheduling

TABLE 3
Step by step optimization of the Semi-Lagrangian kernel on Xeon Phi.

4.2.4 Future work
Through the optimization, we found that the indirect access
bothers the vectorization (corresponding to line 24-39 in the
Code 1). This kind of data loading operation is classified as a
vector gather operation. To our knowledge, we would have
to apply some kind of intrinsic functions, like “vgatherdps”
on Xeon Phi, in order to vectorize this part, which remains
as a future work.

4.3 Optimization of Semi-Lagrangian kernel on GPGPU
We firstly port the Xeon Phi kernel in a naive manner, except
that we modified the inner-most loop size (VSIZE) to be
64 (which corresponds to the twice as much as the warp
size, 32). Here, the inner-most loop is computed by each
thread in the x dimension, and thus keeping the inner-most
loop size to be a multiple of warp size is necessary for the
best coalescing. We set the block and grid size as blockDim
(64, 8, 1) and gridDim (2, 9, 52). As shown in Code 3, the
registers are used in place of the local arrays, “theta star”
and “phi star”, in Xeon Phi. Values ending with “ r” are
stored in the registers.

Code 3. Pseudo Semi-Lagrangian kernel on GPGPU
1 i = threadIdx%x−1; ii = (blockIdx%x−1)∗blockDim%x
2 j = threadIdx%y−1 + (blockIdx%y−1)∗blockDim%y
3 k = blockIdx%z−1
4 do l = 0, Nvpar
5 ! Load the coordinate of foot points in each direction
6 theta star r = feet(2∗(ii+i)−1, j, k, l)
7 phi star r = feet(2∗(ii+i), j, k, l)
8 ! Corresponding array index in each direction
9 theta pos = int(theta star r∗thetadim invh)

10 phi pos = int(phi star r∗phidim invh)
11 ! Compute spline bases
12 call splinex basis(theta star r, theta pos, theta base1 r, &
13 theta base2 r, theta base3 r, theta base4 r)
14 call splinex basis(phi star r, phi pos, phi base1 r, &
15 phi base2 r, phi base3 r, phi base4 r)
16 ! Load spline coefficients (indirect access)
17 vdata11 r = scoef(theta pos − 1, phi pos − 1, l)
18 vdata21 r = scoef(theta pos + 0, phi pos − 1, l)
19 vdata31 r = scoef(theta pos + 1, phi pos − 1, l)
20 ...
21 vdata44 r = scoef(theta pos + 2, phi pos + 2, l)
22 ! Cubic spline interpolation
23 fval(ii+i, j, k, l) = &
24 (vdata11 r∗theta base1 r + vdata21 r∗theta base2 r &
25 + vdata31 r∗theta base3 r+vdata41 r∗theta base4 r)∗phi base1 r &
26 + (vdata12 r∗theta base1 r + vdata22 r∗theta base2 r &
27 + vdata32 r∗theta base3 r+vdata42 r∗theta base4 r)∗phi base2 r &
28 + (vdata13 r∗theta base1 r + vdata23 r∗theta base2 r &
29 + vdata33 r∗theta base3 r+vdata44 r∗theta base4 r)∗phi base3 r &
30 + (vdata14 r∗theta base1 r + vdata24 r∗theta base2 r &
31 + vdata34 r∗theta base3 r+vdata44 r∗theta base4 r)∗phi base4 r
32 end do

4.3.1 Coalescing
We compare the AoS and AoSoA cases to analyze the impact
of the continuous loading on GPGPU. As well as the Xeon
Phi case, we found a speed up of 1.24×. Here, the inner-
most loop (vector) size set to 64. The AoS style gives a two-
strided access, whereas AoSoA style gives an unit strided
access, that is the coalesced access.

4.3.2 Texture cache usage
The memory access pattern (indirect access) in the Semi-
Lagrangian scheme is fundamentally the same as that in
texture mapping. Figure 3 shows a typical access pattern in
the cubic spline interpolation in the Semi-Lagrangian kernel.
As shown in Fig. 3, the indirect access is not contiguous
memory access. However, it has a good spatial locality on
the 2D plane, which stems from the physical features. This
way, a thread accesses a memory address that is close to the
addresses accessed by threads in the vicinity. As a result,
the indirect memory access pattern can be processed in a
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差分法カーネル最適化 
 図１(b)に示すように差分法では、隣接格子点に対す
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て差分演算を行うが、この際最内の l 方向については

連続アクセスとなるものの、それ以外の k,j,i 方向につ

いてはストライドアクセスとなる。 
 先行研究[Fujita et al., PDSEC2014]によって、

GT5D の GPU 移植が行われていたため、本課題では

移植済みのカーネルをもとに最適化を行った。このカー
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めとするトカマク型装置における軸対称磁場配位の場

合には係数が k 方向に依存しないという特徴を持つ（ト

ロイダル対称性）。オリジナルのカーネルでは、最内 2
次元の(l,k)方向にスレッドを割り当てていた上、係数の

計算結果を shared memory へ格納にするために、if
文を用いた分岐によって係数の計算を k 方向の index
が１のスレッドのみで計算していた。この Warp 分岐を

解消するために、スレッド割り当て方向を(l,j)方向へと

変更し、係数の計算結果はレジスタへ格納するように

変更した。この変更によってオリジナルの 5.43 倍の性
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能向上を得た。 
 k 方向の差分時に参照される隣接点のデータを再

利用するため、カーネルの最内ループを k 方向とした

上、k 方向の隣接点データをレジスタに格納し、サイク

リックに再利用した。これによって、オリジナルの 7.44
倍の性能向上を得た。i 方向の差分については、i 方向

にアンロールすることにより、従来メモリアクセスが生じ

ていた部分の一部をレジスタへのアクセスで置き換え

た。これによりオリジナルの 8.53 倍の性能向上を得た。

最終的に得られたコードの性能は Sandy Bridge の

4.03 倍となった。この差分法カーネルの最適化に関す

る成果を GTCJapan2015 において口頭発表した[1]。 

 
ベンチマーク結果 
 図３に示すように最適化されたカーネルコードの性能

を Sandy Bridge、Xeon Phi、および、FX100 で最適

化されたコードと比較した。各ハードウェアの性能につ

いては、表１に示す。 
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(1D+2D+1D) to solve the 4D advection term. In contrast,
GT5D code solves it with a 4D Finite-Difference scheme.

The preferable aspect of these kernels is the relatively
high computational intensity which could be a good reason
to utilize accelerators. One of the challenging aspect would
be the complex memory access patterns to 4D arrays. The
multi-core CPUs are sophisticated enough to deal with the
complex memory access via large shared caches, but the
accelerators would not be. Therefore, it is worth evaluating
whether these kernels can sustain good performance on the
accelerators, since the most efficient memory access patterns
may be different on each architecture.

In this paper, we present the optimization of the Semi-
Lagrangian and Finite-Difference kernels for the 4D advec-
tion term on the Intel Xeon Phi coprocessor and the Nvidia
Tesla GPGPU. The strategy to extract high performance
on each architecture is investigated through the detailed
comparison of different memory access patterns, the indi-
rect access in the Semi-Lagrangian scheme and the strided
accesses in the Finite-Difference scheme.

This paper is organized as follows. Section 2 describes
the characteristics of accelerators used in this paper. In Sec.
3, the physical model is firstly provided. Then the two
different numerical schemes, the Semi-Lagrangian and the
Finite-Difference schemes are explained focusing on their
memory access patterns. The optimization approaches for
the Semi-Lagrangian scheme is shown in Sec. 4 and for the
Finite-Difference scheme in Sec. 5. In Sec. 6, the optimization
results are discussed with the cross-platform benchmarks.
The obtained results are summarized in Sec. 7.

2 TESTBED DESCRIPTION

In order to understand the difference in the architectures,
we employ typical multi-core CPUs and accelerators. As
the conventional multi-core CPU, we choose the Intel Sandy
Bridge-E5 2680 [20] (Called “Sandy Bridge” in this work). In
addition, as the latest multi-core CPU, we use the Fujitsu
SPARC64 XIfx [21] (“FX100”), which is considered as a kind
of reference architecture in the benchmark in Sec. 6. As
for accelerators, we employ the Intel Xeon Phi coprocessor,
Xeon Phi 5110P [22] and the Nvidia GPGPU, Tesla K20X
[23]. The hardware features of these architectures are given
in Table 1.

Processor Sandy Bridge Xeon Phi GPGPU FX100
Number of cores 8 60 896 32+2
Shared Cache [MB] 20 0.5× 60 1.5 24
Memory [GB] 64 8 6 32
Peak performance 172.8 1010 1310 1000
[GFlops]
Peak B/W [GB/s] 51.2 320 250 480
SIMD width 256 bit (AVX) 512 bit - 256 bit
TDP [W] 130 225 235 −
Power efficiency 562 1501 2973 1910
[GFlops/W]
B/F ratio 0.3 0.3 0.19 0.5

TABLE 1
Hardware description. Thermal Design Power (TDP) is extracted from
venders data-sheets [20], [22], [23]. As a reference, power efficiency
data are derived from the system data of Helios (for Sandy Bridge),
Helios-MIC node (for Xeon Phi), TSUBAME2.5 (for TeslaK20X) and
Plasma simulator (for FX100) in the Green 500 list Nov. 2015 [24].

We employ the Intel Compiler 15.0.2 for the Intel archi-
tectures, the pgfortan 15.1 on the Tesla K20X, and the Fujitsu
Compiler 2.0 on FX100. Hereinafter, the Xeon Phi 5110P is
referred to as “Xeon Phi” and the Tesla K20X is referred to
as “GPGPU”. A fundamental difference between Xeon Phi
and GPGPU is the thread mapping to the tasks. In GPGPU,
the tasks are directly mapped to hardware threads in “Same
Instruction, Multiple Thread (SIMT)” manner. In contrast,
Xeon Phi allocates the fine-grained tasks to each thread. It
is a kind of “Same Instruction, Multiple Data (SIMD)” archi-
tecture. The difference in the memory hierarchy is discussed
below.

2.1 Xeon Phi
Xeon Phi is characterized by multiple SIMD cores. The num-
ber of cores up to 60 (Xeon Phi 5110 P) is larger than conven-
tional CPUs. In this study, we keep the number of threads
as 240 (4 Hyper Threads in each core) and “KMP AFFINITY
= compact” is specified for thread allocation style. Another
important aspect is a L2 cache, which consists of private L2
caches on each core connected with the “Ring Interconnect”
technology. A remarkable characteristics is the coherency in
the L2 cache, and thus it can be considered as the conven-
tional shared L2 cache in the multi-core CPUs. The peak
bandwidth is not large enough to get a sustained computa-
tional performance about 1 TFlops. Although three different
programming models are available on Xeon Phi, we use the
so-called “native” approach for simplicity. Another benefit
of this approach is to avoid the data transfer between host
CPUs and Xeon Phi co-processors.

2.2 GPGPU
As described above, GPGPU has the SIMT architecture.
A thread group consisting of 32 threads, which is called
as “warp”, works with the same instruction. A divergent
branch can be problematic, because all paths in the branch
are executed by unit of warp, and a part of threads are
idling during when they wait for the working threads. The
advantage of GPGPU is the direct access to the local cache,
the so-called “shared memory”. The usage of “shared memory”
allows flexible programming of various memory access pat-
terns, which is not allowed on Xeon Phi. In addition, there
are some cached on-chip memories such as the “constant
memory” and “texture memory”, which can provide higher
effective bandwidth in some situations.

3 THE CHARACTERISTICS OF THE KERNELS

Let us describe the kernels targeted in this work. The first
one is the Semi-Lagrangian kernel extracted from GYSELA
code, and the other is the Finite-Difference kernel extracted
from GT5D code. Both codes solve the same equation with
different numerical schemes. The most time-consuming part
is the 4D advection part solved with the Semi-Lagrangian
scheme and Finite-Difference scheme, respectively. Since
these two codes are highly parallelized and based on a hy-
brid MPI/OpenMP programming model, appropriate par-
allel distribution of memory accesses and computations is
the key issue.

 

表１ ベンチマークで用いたハードウェアの仕様。 

 
 GPU 版のセミラグランジアン法カーネルは、最速とな

っており、差分法カーネルは FX100 についで速い。セミ

ラグランジアン法カーネルでは、演算密度が高い上、テ

クスチャメモリによるリストアクセスの高速化が有効で

あったため、GPU で高い性能が得られたと考えられる。

一方、差分法カーネルは、演算密度が低くメモリバンド

幅がボトルネックとなる上、FX100 において有効であっ

た容量の大きい共有キャッシュを活用した最適化[2,3]
が GPU では有効ではないため、GPU より大きなメモリ

バンド幅を有する FX100 で高い性能が得られたと考え

られる。 
このベンチマークで得られた成果については、世界

最大のスーパーコンピュータ関連学会である SC15 で

ポスター発表を行い[2]、また IEEE Transactions on 

Parallel and Distributed Systems 紙へ論文投稿を

行った[3]。 
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6 CROSS-PLATFORM BENCHMARKS

In the previous sections, we described several optimizations
on each architecture and showed the achieved speed-up.
In this section, we present the absolute performance in
Flops and summarize the acceleration with respect to the
multi-core CPUs. For the performance comparison, the total
elapsed time for kernel execution is used as a metric.

6.1 Obtained performance with respect to Sandy
We present the obtained performances and summarize the
acceleration against Sandy Bridge (one socket). Although
it is an established way, comparisons with Sandy-Bridge
would be sometimes misleading, since the peak perfor-
mance of the architectures are different. To better under-
stand the algorithm affinity to a specific architecture, we
added a latest multi-core CPU, Fujitsu FX100, as a reference.
Except for the higher peak performance of about 1 TFlops,
FX100 has several similar features compared to Sandy
Bridge as shown in Table. 1. Detailed performance could be
found in Ref. [21]. As FX100 has a peak performance com-
parable to accelerators, we can focus more on the impacts
of memory access patterns. Figure 10 illustrates the speed-
up relative to Sandy Bridge. The performance is estimated
by the total flop divided by the elapsed time, where the
total flop is measured by profilers on each environment.
Acceleration ratio is evaluated by the elapsed time on Sandy
Bridge divided by the elapsed time on each architecture.
Although the speed-up is achieved on all architectures, the
obtained performances are so different on each architecture
as shown in Table 7. Here, the total flop turned out to
be the same on all the environments, except that the total
flop of the Semi-Lagrangian kernel on FX100 is reduced by
about 10%.Since the FX100 has common features as Sandy
Bridge (large shared cache and SIMD width equals to 4),
a similar optimization strategy as in Secs. 4.1 and 5.1 was
effective. Both kernels attain reasonably good performances
with minimum optimization. This is especially true for the
Finite-Difference kernel, where the memory access pattern
is well suited for multi-core CPUs. We will discuss the
performance on the accelerators.

Fig. 10. The obtained performance of the Semi-Lagrangian and Finite-
Difference kernels on Sandy Bridge, Xeon Phi, GPGPU and FX100. The
left plot shows the speed-up relative to Sandy Bridge, and the right plot
shows the achieved percentage of the theoretical peak performance.

6.1.1 Xeon Phi
Firstly, it turned out that the high cache locality is essential
for good performance on Xeon Phi. The performance is
improved by effective cache usage with appropriate thread
allocation in the Finite-Difference kernel, and the high

SL Elapsed time [s] GFlops Acceleration Peak ratio
Sandy 25.29 46.4 - 26.8 %
Xeon Phi 6.577 178.4 3.85 17.7 %
GPGPU 3.348 350.4 7.55 26.7 %
FX100 3.494 301.3 7.24 29.7 %
FD Elapsed time [s] GFlops Acceleration Peak ratio
Sandy 0.453 28.96 - 16.8 %
Xeon Phi 0.331 39.75 1.37 3.93 %
GPGPU 0.112 111.4 4.03 8.50 %
FX100 0.091 141.3 4.98 13.97 %

TABLE 7
Acceleration of the Semi-Lagrangian (SL) and Finite-Difference (FD)

kernels relative to Sandy Bridge. The elapsed time is the kernel
execution time with 140 (162) iterations for SL (FD) kernel.

performance is obtained in the Semi-Lagrangian kernel as
long as the spline coefficients are on the local L2 cache.
Considering the relatively low performance on Xeon Phi,
the indirect memory access in the Semi-Lagrangian scheme
imposes a big penalty on Xeon Phi, since it prevents the
vectorization. Secondly, the memory layout has some impact
on the performance. Because of the large SIMD width (= 8
in double precision), the Array of structure of array (AoSoA)
style is preferable for load instructions. The changes in the
array style improved the processing speed of the Semi-
Lagrangian kernel. In the Finite-Difference case, the arrays
can be aligned except for the derivative in the inner-most
direction. Although we have some speed-up in the Finite-
Difference case, the obtained absolute performance was
poor, which may stem from the memory bound feature of
the kernel (b/f = 1.94). Thirdly, we investigated the impact
of scheduling. In the Semi-Lagrangian case, the dynamic
scheduling gives better performance than static scheduling
due to the better load balancing.

6.1.2 GPGPU
As well as Xeon Phi, the AoSoA style allows vectorized (co-
alesced) load operation so as to improve the performance.
The most important finding would be the texture cache
usage for preventing the penalty from the indirect access
in the Semi-Lagrangian kernel. On the contrary, the strided
access to the 4D array can be hard to optimize on GPUs.
The shared cache usage strategy as in multi-core CPUs may
be hard to apply, since the GPU L2 cache is very limited.
Despite the additional memory access compared to the
kernel on Sandy Bridge, we found a large speed-up of 4.03×
with respect to Sandy Bridge. It turned out that avoiding
the divergent branch with effective thread mapping has a
large impact on the performance, which is classified as an
effective usage of physical symmetry.

6.2 Future issues on real applications
For accelerators, the remaining parts of the codes have to be
ported as well. Porting is especially problematic for GPUs
because we have to re-write the code in a different language
(e. g. F90 to CUDA Fortran in this case). In Ref. [40], the
GT5D code was ported to GPU clusters. As expected, a naive
porting to GPU clusters accompanies several problems such
as host-to-device communications and inefficient data lay-
out for GPUs. By computation-communication overlapping,
it was succeeded to hide some of the communication costs
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about 10%.Since the FX100 has common features as Sandy
Bridge (large shared cache and SIMD width equals to 4),
a similar optimization strategy as in Secs. 4.1 and 5.1 was
effective. Both kernels attain reasonably good performances
with minimum optimization. This is especially true for the
Finite-Difference kernel, where the memory access pattern
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6.1.1 Xeon Phi
Firstly, it turned out that the high cache locality is essential
for good performance on Xeon Phi. The performance is
improved by effective cache usage with appropriate thread
allocation in the Finite-Difference kernel, and the high
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performance is obtained in the Semi-Lagrangian kernel as
long as the spline coefficients are on the local L2 cache.
Considering the relatively low performance on Xeon Phi,
the indirect memory access in the Semi-Lagrangian scheme
imposes a big penalty on Xeon Phi, since it prevents the
vectorization. Secondly, the memory layout has some impact
on the performance. Because of the large SIMD width (= 8
in double precision), the Array of structure of array (AoSoA)
style is preferable for load instructions. The changes in the
array style improved the processing speed of the Semi-
Lagrangian kernel. In the Finite-Difference case, the arrays
can be aligned except for the derivative in the inner-most
direction. Although we have some speed-up in the Finite-
Difference case, the obtained absolute performance was
poor, which may stem from the memory bound feature of
the kernel (b/f = 1.94). Thirdly, we investigated the impact
of scheduling. In the Semi-Lagrangian case, the dynamic
scheduling gives better performance than static scheduling
due to the better load balancing.

6.1.2 GPGPU
As well as Xeon Phi, the AoSoA style allows vectorized (co-
alesced) load operation so as to improve the performance.
The most important finding would be the texture cache
usage for preventing the penalty from the indirect access
in the Semi-Lagrangian kernel. On the contrary, the strided
access to the 4D array can be hard to optimize on GPUs.
The shared cache usage strategy as in multi-core CPUs may
be hard to apply, since the GPU L2 cache is very limited.
Despite the additional memory access compared to the
kernel on Sandy Bridge, we found a large speed-up of 4.03×
with respect to Sandy Bridge. It turned out that avoiding
the divergent branch with effective thread mapping has a
large impact on the performance, which is classified as an
effective usage of physical symmetry.

6.2 Future issues on real applications
For accelerators, the remaining parts of the codes have to be
ported as well. Porting is especially problematic for GPUs
because we have to re-write the code in a different language
(e. g. F90 to CUDA Fortran in this case). In Ref. [40], the
GT5D code was ported to GPU clusters. As expected, a naive
porting to GPU clusters accompanies several problems such
as host-to-device communications and inefficient data lay-
out for GPUs. By computation-communication overlapping,
it was succeeded to hide some of the communication costs
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up relative to Sandy Bridge. The performance is estimated
by the total flop divided by the elapsed time, where the
total flop is measured by profilers on each environment.
Acceleration ratio is evaluated by the elapsed time on Sandy
Bridge divided by the elapsed time on each architecture.
Although the speed-up is achieved on all architectures, the
obtained performances are so different on each architecture
as shown in Table 7. Here, the total flop turned out to
be the same on all the environments, except that the total
flop of the Semi-Lagrangian kernel on FX100 is reduced by
about 10%.Since the FX100 has common features as Sandy
Bridge (large shared cache and SIMD width equals to 4),
a similar optimization strategy as in Secs. 4.1 and 5.1 was
effective. Both kernels attain reasonably good performances
with minimum optimization. This is especially true for the
Finite-Difference kernel, where the memory access pattern
is well suited for multi-core CPUs. We will discuss the
performance on the accelerators.

Fig. 10. The obtained performance of the Semi-Lagrangian and Finite-
Difference kernels on Sandy Bridge, Xeon Phi, GPGPU and FX100. The
left plot shows the speed-up relative to Sandy Bridge, and the right plot
shows the achieved percentage of the theoretical peak performance.

6.1.1 Xeon Phi
Firstly, it turned out that the high cache locality is essential
for good performance on Xeon Phi. The performance is
improved by effective cache usage with appropriate thread
allocation in the Finite-Difference kernel, and the high

SL Elapsed time [s] GFlops Acceleration Peak ratio
Sandy 25.29 46.4 - 26.8 %
Xeon Phi 6.577 178.4 3.85 17.7 %
GPGPU 3.348 350.4 7.55 26.7 %
FX100 3.494 301.3 7.24 29.7 %
FD Elapsed time [s] GFlops Acceleration Peak ratio
Sandy 0.453 28.96 - 16.8 %
Xeon Phi 0.331 39.75 1.37 3.93 %
GPGPU 0.112 111.4 4.03 8.50 %
FX100 0.091 141.3 4.98 13.97 %

TABLE 7
Acceleration of the Semi-Lagrangian (SL) and Finite-Difference (FD)

kernels relative to Sandy Bridge. The elapsed time is the kernel
execution time with 140 (162) iterations for SL (FD) kernel.

performance is obtained in the Semi-Lagrangian kernel as
long as the spline coefficients are on the local L2 cache.
Considering the relatively low performance on Xeon Phi,
the indirect memory access in the Semi-Lagrangian scheme
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on the performance. Because of the large SIMD width (= 8
in double precision), the Array of structure of array (AoSoA)
style is preferable for load instructions. The changes in the
array style improved the processing speed of the Semi-
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can be aligned except for the derivative in the inner-most
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poor, which may stem from the memory bound feature of
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be hard to apply, since the GPU L2 cache is very limited.
Despite the additional memory access compared to the
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the divergent branch with effective thread mapping has a
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porting to GPU clusters accompanies several problems such
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imposes a big penalty on Xeon Phi, since it prevents the
vectorization. Secondly, the memory layout has some impact
on the performance. Because of the large SIMD width (= 8
in double precision), the Array of structure of array (AoSoA)
style is preferable for load instructions. The changes in the
array style improved the processing speed of the Semi-
Lagrangian kernel. In the Finite-Difference case, the arrays
can be aligned except for the derivative in the inner-most
direction. Although we have some speed-up in the Finite-
Difference case, the obtained absolute performance was
poor, which may stem from the memory bound feature of
the kernel (b/f = 1.94). Thirdly, we investigated the impact
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due to the better load balancing.
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alesced) load operation so as to improve the performance.
The most important finding would be the texture cache
usage for preventing the penalty from the indirect access
in the Semi-Lagrangian kernel. On the contrary, the strided
access to the 4D array can be hard to optimize on GPUs.
The shared cache usage strategy as in multi-core CPUs may
be hard to apply, since the GPU L2 cache is very limited.
Despite the additional memory access compared to the
kernel on Sandy Bridge, we found a large speed-up of 4.03×
with respect to Sandy Bridge. It turned out that avoiding
the divergent branch with effective thread mapping has a
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poor, which may stem from the memory bound feature of
the kernel (b/f = 1.94). Thirdly, we investigated the impact
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be hard to apply, since the GPU L2 cache is very limited.
Despite the additional memory access compared to the
kernel on Sandy Bridge, we found a large speed-up of 4.03×
with respect to Sandy Bridge. It turned out that avoiding
the divergent branch with effective thread mapping has a
large impact on the performance, which is classified as an
effective usage of physical symmetry.

6.2 Future issues on real applications
For accelerators, the remaining parts of the codes have to be
ported as well. Porting is especially problematic for GPUs
because we have to re-write the code in a different language
(e. g. F90 to CUDA Fortran in this case). In Ref. [40], the
GT5D code was ported to GPU clusters. As expected, a naive
porting to GPU clusters accompanies several problems such
as host-to-device communications and inefficient data lay-
out for GPUs. By computation-communication overlapping,
it was succeeded to hide some of the communication costs

 
図３ セミラグランジアン法カーネルと差分法カーネル

のベンチマーク結果。性能向上比（上）および演算性能

の対ピーク比（下）。 

 
まとめ、今後の課題 

本課題では、核融合プラズマ乱流シミュレーションコ

ード GT5D および GYSELA からホットスポットに対応

するカーネルコード（それぞれ差分法カーネルおよびセ

ミラグランジアン法カーネル）を抽出し、GPU 上で最適

化技術の開発を行った。本課題では特に差分法カーネ

ルに存在するストライドアクセス、セミラグランジアン法

カーネルにおけるリストアクセスといった複雑なメモリア

クセスパターンに着目し、それぞれレジスタの有効活用、

テクスチャメモリの活用といった最適化を行った。開発

した最適化技術により、GT5D の差分法カーネルおよ

び GYSELA コードのセミラグランジアン法カーネルは、

Sandy Bridge において最適化されたものと比べそれ

ぞれ 7.55 倍、4.03 倍という高い性能向上を得た。 
今後の課題としては、残るコード全体の移植、メモリ

アクセスの削減、およびエクサスケール計算に向けた

通信コストの削減などが挙げられる。コードの移植につ

いては、まず OpenACC による移植を行って、性能測

定を行ったのち、ボトルネックについては改めて CUDA
で移植する予定である。メモリアクセスの削減について

は、今まで演算結果を高次元配列へ格納しメモリアク
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セスで演算を行っていた箇所を低次元配列への演算で

置き換えるなどの対応を行う。通信コストの削減につい

ては、アルゴリズムレベルでの変更を検討する必要が

ある。以下に、GT5D に関する具体例を述べる。GT5D
ではクリロフ部分空間解法によって差分・陰解法行列

演算を行うが、そこで発生する通信は、縮約演算を含

む。縮約演算については、通信と演算のオーバーラッ

プによる通信コストの削減は困難である。そのため、先

行研究によって提案されている省通信クリロフ部分空

間解法の適用により、通信回数自体を削減し、通信コ

ストを削減するといったアプローチの検討を開始した。 
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