Real Time Weather Recognition

based on Deep Learning

Collaborative work with Y. Yatsu, T. Yoshii, N. Kawai, J. Sakuma, N. Inoue, K. Shinoda (Tokyo Institute of Technology)
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Astrophysics Pattern recognition

Overview

In astronomy, the study of time-critical phenomena such as gravitational wave
events, supernovae and gamma-ray bursts is becoming more important. In order to
perform optical follow-up observations of these events with ground-based telescope
immediately after the events occur, these observation systems need to be highly
automated. However, observatories especially in Japan often suffer from clouds.
Visibility and sensitivity toward the particular field in the sky must be considered
when the follow-up observations are arranged. To improve observation efficiency,
we are developing a weather recognition system that is capable of automatically _ praas @ on T —
recognizing the open sky, clouds and the moon in all-sky images by utilizing the Ty (D Akeno vy 1okvo Tech
deep learning technology. We employ the images obtained by the all-sky camera SET o

located at MITSUME Akeno observatory in Yamanashi, Japan for this development.

Weather Recognition System

Weather recognition system for small
observatories

- Ultra-low cost

- Recognition Iin real time

- High portability

- Using the deep learning

- Using commercially available devices
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Algorithm & Training

Preparing Training Data Algorithm Training

The algorithm proposed in “Condition Random - Using a pre-trained model with MS COCO and
Fields as Recurrent Neural Networks Pascal VOC

Background

(CRF-RNN)” is used. It consists of two stages: - Fine tuning with the sky camera images
Fully convolutional network (FCN) and - Resized from 2762x2762 pixels to 500x500
Shdow CRF-RNN. A FCN predicts pixel-level labels pixels to reduce the memory usage of a GPU
\ without considering structure. A CRF-RNN - Randomly sampled 900 images for training and
e stage performs CRF-based probabilistic other 100 images for testing.
e graphical modeling for structured prediction. - Training the network for 130 epochs

- Using the customized Caffe for CRF-RNN with
cuDNN running on NVIDIA GeForce GTX TITAN X
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- Sampling 1,000 images s

- Defining 7 classes
Clear sky, Moon, Thin cloud,
Thick cloud, Shadow, Water drop,

Number of training images and test images that include

CRF-RNN trainable the classes.
network. Figure adapted
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Result Images Evaluation
| Recognized Recognized Intersection over Union (loU) is used for
Input image by human

Inputimage by human bredicted __ this evaluation. It is the standard metric

Fine gt Zﬁﬁ'&'}%ight used in the Pascal VOC challenge.
with the moon _ 1P
IoU =
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