
http://www.gsic.titech.ac.jp/sc17

Fast SpGEMM on GPU

Extreme Big Data and
Deep Learning Algorithm Platform

We have devised new Sparse General Matrix-Matrix Multiplication
algorithm on GPU, which achieves further speedups and reduces
memory usage so that various matrix data can be applied by
utilizing GPU’ s on-chip shared memory and appropriate assigning
of GPU resources.
Two Phases Algorithm : 1st phase
counts the number of non-zero
elements of output matrix, and 2nd
phase calculates the output matrix
→ Reduce memory usage
Grouping rows (1, 2, 6)
→ Better utilization of GPU resources
Two ways threads assignments
→ Improve the load-balance
Hash table on fast shared memory
→ Accelerate counting part (3) and
 calculation part (7)

[1] Dalton et al., “CUSP: Generic parallel algorithms for sparse
matrix and graph computations ver.0.5.1”
[2] NVIDIA, “Nvidia cuda sparse matrix library (cuSPARSE)”
[3] Liu et al., “An Efficient GPU General Sparse Matrix-Matrix
Multiplication for Irregular Data” , IPDPS2014

These Researches are Supported by JST CREST Grant Numbers JPMJCR1303 and JPMJCR1687

(2) Divide the rows into groups by
#intermediate products

(1) Count #intermediate products

(3) Count #non-zero elements

(6) Divide the rows into groups by
#non-zero elements

(4) Set row pointers of output matrix

(7) Compute the output matrix
a. Calculate values and column

indices on hash table
b. Shrink the hash table
c. Store to the memory with sorting

(5) Memory allocation of output matrix

Code available at:
 https://github.com/EBD-CREST/nsparse

Reference: Yusuke Nagasaka, Akira Nukada, Satoshi Matsuoka, "High-performance and Memory-saving Sparse General
Matrix-Matrix Multiplication for NVIDIA Pascal GPU", ICPP 2017.

0

5

10

15

20

25

30

35

G
FL

O
PS

CUSP cuSPARSE BHSPARSE nsparse

0

1

2

3

4

5

6

Economics Circuit Epidemiology webbase

G
FL

O
PS

CUSP cuSPARSE BHSPARSE nsparse

Speedup is up
to x4.1

Double Precision Performance

0

500

1000

1500

2000

2500

Protein FEM/Spheres webbase Protein FEM/Spheres webbase

single double

M
B

yt
e

CUSP cuSPARSE BHSPARSE nsparse

10.9% reduction on
average from cuSPARSE

Memory Usage

Increasing GPU Occupancy
Multi-GPU batch-queue systems usually experience large number

of idle GPUs due to the scattered idle-GPU problem (Fig.1). We
addressed this problem by allowing jobs to utilize remote GPUs and
migrating execution on a remote GPU back to a local GPU as soon
as one becomes available. This method enables the systems to
serve more GPU jobs concurrently while minimizing execution time
penalty caused by remote GPU communication.

Fig.1: Job 1 and Job 2 cannot run concurrently
as Job 2 wants two unoccupied GPUs on the
same node.

Fig.2: The archi tecture of mrCUDA, our
middleware for handling remote GPU migration
on top of rCUDA.

Fig.3: GPU occupancy patterns when using
FCFS (top) and our method (bottom).

m
ak

es
pa

n
is

 re
du

ce
d

by
 ~

30
%

Fig.4: Distribution of jobs’ lifetime (waiting +
execution time) decrease when using our
method compared with FCFS.

Reference: P.Markthub, A.Nomura, and S.Matsuoka, “Serving More GPU Jobs, with Low Penalty, using Remote GPU
Execution and Migration,” IEEE Cluster 2016.

Evaluating Apps on FPGAsPredicting Statistics of ASGD
Collaborative work with DENSO CORPORATION and DENSO IT LABORATORY, INC

In large-scale Asynchronous
Stochastic Gradient Descent
(ASGD), mini-batch size and
gradient staleness tend to be large
and unpredictable, which increase
the error of trained DNN

Objective function E

W(t)
-ηΣi ∇ Ei

W(t+1)
W(t+1)

-ηΣi ∇ Ei

W(t+3)

W(t+2)

Two asynchronous
updates within one

gradient computation

Staleness=0

Staleness=2
DNN parameters space

Mini-batch size

Reference: Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting Statistics
of Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU Supercomputers", IEEE BigData 2016

We propose a empirical performance model for an ASGD deep
learning system SPRINT which considers probability distribution of
mini-batch size and staleness

Nowadays, FPGA can rival CPU/GPU performance and energy
efficiency, but also known for its hardness for programming.
We compared three high-level programming approaches for FPGAs
● 30-core many-core system (reps. for programmability)
● LegUp High-Level Synthesis (reps for multiple custom accelerators)
● Intel OpenCL for FPGA (reps for Deep-pipeline designs)
We evaluated using Rodinia Benchmark Suite on Stratix V FPGA.
We improved memory hierarchy for many-core and multi-accelerator
designs through cache multi-banking.

● Intel OpenCL for FPGA shown highest average performance
● LegUp can remain competitive for good performance and
 spatial/temporal locality, even without improvement.
● Many-core system offers good programmability, but often does not
 perform well compared to other approaches

Reference: "Evaluating High-Level Design Strategies on FPGAs for High-Performance Computing", A. Podobas, H.R. Zohouri, N.
Maruyama, S. Matsuoka, IEEE FPL 2017

