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Scalable Hierarchical Algorithms for Scientific Computing

Large-scale Mesh-based and Particle-based Simulations

Applications on TSUBAME3.0
Fast Algorithms and Large Scale CFD

Large-scale Granular Simulation
Discrete element method 
(DEM) is often used to 
simulate granular 
dynamics and its simple 
algorithm with the contact 
interaction is suitable for 
GPU computing. 
However so many 
particles are included and 
the particle distributions 
are changing in time and 
space. A dynamic domain 

decomposition has to be introduced for multiple-node computing. In a 
bunker shot, the sand wedge does not hit to the golf ball directly and 
transferring the force through the sand to the ball in order to reduce the 
impact. In this simulation, 16.7 millions of DEM particles are used to 
represent the dynamics of the sands with 256 GPUs.

Gas/Liquid-Solid Two-Phase Flow Simulation
Direct interactions 
between fluid and 
solid particles are 
computed on the 
mesh to study 
gas/liquid-solid 
two-phase flows 
accurately for high 
Reynolds number 
flows with complex 
shaped particles. We have carried 
out a large-scale simulation of a 

fluid-particle system coupled lattice Boltzmann method (LBM) with 
discrete element method (DEM). A direct numerical simulation of 
fluidized bed with 562,500 DEM particles using 128 GPUs is shown in 
the right figure. The left figure demonstrates a result of the simulation 
for falling leaves using 2.1 billion mesh and 128 GPUs.

Dynamic Load Balancing using A Space-filling
Curve

For large-scale 
particle-based 
simulation and Adaptive 
Mesh Refinement 
(AMR), it is a critical 
issue to achieve 
computational load 
balance and equal 
memory usage on 
multiple compute 
nodes.  A domain 

partitioning in terms of a space-filling curve(SFC) is one of promising 
candidates and it is recognized that a 1-dimensional mapping of 
3-dimensional space by cutting the equal length. Due to low cost of 
SFC domain partitioning, it is suitable for frequent re-partitioning in the 
simulations of unsteady phenomena.

A Hilbert CurveA fully explicit scheme for 
incompressible gas-liquid two-phase 
flows without solving the Poisson 
equation has been developed. The 
fractional-step method and the 
directional splitting mthod are 
incorpolated to simplify the 
compressible Navior-Stokes 
equation to apply the method of 
characteristics and semi-Lagrangian 
method for efficient computations. 
The time step is determined by the 

Weak-Compressible Flow Computations for
Gas-Liquid Two-Phase Flows

sound speeds from the ideal-gas equation of state. The gas-fluid 
interface is captured by phase-field model and Allen-Cahn equations to 
reduce the volume oscillation. The results are in good agreement with 
those of semi-implicit incompressible flow computations.

Algebraic FMM
The matrix representation of the FMM 
algorithm yields algebraic variants of FMM 
such as H-matrices and hierarchical semi-
seperable (HSS) matrices. These methods 
can approximate matrix-matrix multiplications 
and LU decompositions in near-linear 
complexity. These algebraic varients of FMM 
lie on the opposite end of the Byte/Flop 
spectrum from the analytical FMM because 
they store more to compute less. When the 
cost of data movement increases faster than 

arithmetic opera- tions on future architectures, it is important to consider 
the whole spectrum of hierarchical low-rank approximation methods.

Compressing Convolutional Neural Networks
Hierarchical low-rank 
approximations can 
naturally be use in 
machine learning for 
support vector 
machines with kernel 
methods. In this work 
we take it one step 

further and use it to compress deep convolutional neural networks. The 
same principle as in FMM and H-matrices can be use to compress both 
the weights and image data. In doing so, we are able to prune the 
network to its optimal size without any loss of accuracy. This results in 
huge saving in both the memory consumption and time-to-solution. 

Performance Model for FMM Communication

each level in the tree structure. The model considers latency, bandwidth, 
hops, and multicore penalties in the network. The left 4 figures show the 
colormap of the FMM communication for different levels of the tree 
structure. The right figure shows the communication time at each level 
along with the model prediction on Shaheen2 (KAUST).

The FMM has a complex 
communication pattern, 
which results from its 
hierarchical and global 
data dependency.
We have developed a 
performance model for 
the communication in 
FMM, which accurately 
predicts the 
communication time for 2 3 4 5 6 7 8 9 10
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Fast Multipole Method Preconditioner

combined with boundary element methods to handle Dirichlet and 
Neumann boundary conditions. Comparsions against the algebraic 
multigrid code BoomerAMG and sparse direct solver MUMPS, shows 
that the FMM preconditioner becomes competitive as the degree of 
parallelization increases.
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The fast multipole method (FMM) was 
originally developed as an O(N) 
algorithm for solving N-body 
problems. However, it can be used as 
a direct solver or preconditioner for 
solving linear systems that arise from 
elliptic partial differntial equations that 
have a Green’ s function solution 
such as Poisson’ s equation. The 
FMM by itself can only handle far field 
boundary conditions, but it can be




