
http://www.gsic.titech.ac.jp/sc18

Extreme Big Data and
Deep Learning Algorithm Platform

Fast SpGEMM on GPU
We have devised new Sparse General Matrix-Matrix Multiplication
algorithm on GPU, which achieves further speedups and reduces
memory usage so that various matrix data can be applied by
utilizing GPU’ s on-chip shared memory and appropriate assigning
of GPU resources.
Two Phases Algorithm : 1st phase
counts the number of non-zero
elements of output matrix, and 2nd
phase calculates the output matrix
→ Reduce memory usage
Grouping rows (1, 2, 6)
→ Better utilization of GPU resources
Two ways threads assignments
→ Improve the load-balance
Hash table on fast shared memory
→ Accelerate counting part (3) and
 calculation part (7)

[1] Dalton et al., “CUSP: Generic parallel algorithms for sparse
matrix and graph computations ver.0.5.1”
[2] NVIDIA, “Nvidia cuda sparse matrix library (cuSPARSE)”
[3] Liu et al., “An Efficient GPU General Sparse Matrix-Matrix
Multiplication for Irregular Data” , IPDPS2014

These Researches are Supported by JST CREST Grant Numbers JPMJCR1303 and JPMJCR1687

(2) Divide the rows into groups by
#intermediate products

(1) Count #intermediate products

(3) Count #non-zero elements

(6) Divide the rows into groups by
#non-zero elements

(4) Set row pointers of output matrix

(7) Compute the output matrix
a. Calculate values and column

indices on hash table
b. Shrink the hash table
c. Store to the memory with sorting

(5) Memory allocation of output matrix

Code available at:
 https://github.com/EBD-CREST/nsparse

Reference: Yusuke Nagasaka, Akira Nukada, Satoshi Matsuoka, "High-performance and Memory-saving Sparse General
Matrix-Matrix Multiplication for NVIDIA Pascal GPU", ICPP 2017.

0

5

10

15

20

25

30

35

G
FL

O
PS

CUSP cuSPARSE BHSPARSE nsparse

0

1

2

3

4

5

6

Economics Circuit Epidemiology webbase

G
FL

O
PS

CUSP cuSPARSE BHSPARSE nsparse

Speedup is up
to x4.1

Double Precision Performance

0

500

1000

1500

2000

2500

Protein FEM/Spheres webbase Protein FEM/Spheres webbase

single double

M
B

yt
e

CUSP cuSPARSE BHSPARSE nsparse

10.9% reduction on
average from cuSPARSE

Memory Usage

Unlimited GPU Memory with DRAGON
Collaborative work with Oak Ridge National Laboratory

Problem sizes grow larger than GPU and even host memory capacity.
We proposed DRAGON, a framework that seamlessly enables all
classes of GPU applications to directly access terabytes of data on
storage with user-oblivious addressing. DRAGON leverages GPU
hardware page-faulting mechanism and two-level prefetching with
direct page-cache access to achieve this functionality while bestowing
up to 2.3x speedup compared with using Unified Memory + POSIX IO.

libdragon

libcudart

vfs

GPU

nvidia-uvm

GPU Application

NVM Device

revir
D

yrarbi
L

dragon-ext

page-cache

df cudaMemcpy + IO

hr cudaHostRegister + mmap

um Unified Memory + IO

dg DRAGON

Data transfer methods

2.
3x

(up to 12GB) (up to 64GB)

Architecture Operation

Performance Evaluation

Out-of-core was faster than
the extrapolated baseline (um)

DRAGON is the only
existing out-of-core
solution with user-

oblivious addressing

Reference: Pak Markthub, Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Satoshi Matsuoka,
“DRAGON: Breaking GPU Memory Capacity Limits with Direct NVM Access” , SC18

Presentation at SC18 Technical Program:
 11:00-11:30, Wednesday, Room C141/143/149

Evaluating Apps on FPGAsPredicting Statistics of ASGD
Collaborative work with DENSO CORPORATION and DENSO IT LABORATORY, INC

In large-scale Asynchronous
Stochastic Gradient Descent
(ASGD), mini-batch size and
gradient staleness tend to be large
and unpredictable, which increase
the error of trained DNN

Objective function E

W(t)
-ηΣi ∇ Ei

W(t+1)
W(t+1)

-ηΣi ∇ Ei

W(t+3)

W(t+2)

Two asynchronous
updates within one

gradient computation

Staleness=0

Staleness=2
DNN parameters space

Mini-batch size

Reference: Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting Statistics
of Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU Supercomputers", IEEE BigData 2016

We propose a empirical performance model for an ASGD deep
learning system SPRINT which considers probability distribution of
mini-batch size and staleness

Nowadays, FPGA can rival CPU/GPU performance and energy
efficiency, but also known for its hardness for programming.
We compared three high-level programming approaches for FPGAs
● 30-core many-core system (reps. for programmability)
● LegUp High-Level Synthesis (reps for multiple custom accelerators)
● Intel OpenCL for FPGA (reps for Deep-pipeline designs)
We evaluated using Rodinia Benchmark Suite on Stratix V FPGA.
We improved memory hierarchy for many-core and multi-accelerator
designs through cache multi-banking.

● Intel OpenCL for FPGA shown highest average performance
● LegUp can remain competitive for good performance and
 spatial/temporal locality, even without improvement.
● Many-core system offers good programmability, but often does not
 perform well compared to other approaches

Reference: "Evaluating High-Level Design Strategies on FPGAs for High-Performance Computing", A. Podobas, H.R. Zohouri, N.
Maruyama, S. Matsuoka, IEEE FPL 2017

