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Fast SpGEMM on GPU
We have devised new Sparse General Matrix-Matrix Multiplication 
algorithm on GPU, which achieves further speedups and reduces 
memory usage so that various matrix data can be applied by 
utilizing GPU’ s on-chip shared memory and appropriate assigning 
of GPU resources.
Two Phases Algorithm : 1st phase 
counts the number of non-zero 
elements of output matrix, and 2nd 
phase calculates the output matrix
→ Reduce memory usage
Grouping rows (1, 2, 6)
→ Better utilization of GPU resources
Two ways threads assignments
→ Improve the load-balance
Hash table on fast shared memory
→ Accelerate counting part (3) and 
    calculation part (7)

[1] Dalton et al., “CUSP: Generic parallel algorithms for sparse 
matrix and graph computations ver.0.5.1”
[2] NVIDIA, “Nvidia cuda sparse matrix library (cuSPARSE)”
[3] Liu et al., “An Efficient GPU General Sparse Matrix-Matrix 
Multiplication for Irregular Data” , IPDPS2014

These Researches are Supported by JST CREST Grant Numbers JPMJCR1303 and JPMJCR1687

(2) Divide the rows into groups by 
#intermediate products

(1) Count  #intermediate products

(3) Count #non-zero elements

(6) Divide the rows into groups by 
#non-zero elements

(4) Set row pointers of output matrix

(7) Compute the output matrix
a. Calculate values and column 

indices on hash table
b. Shrink the hash table
c. Store to the memory with sorting

(5) Memory allocation of output matrix

Code available at:
    https://github.com/EBD-CREST/nsparse

Reference: Yusuke Nagasaka, Akira Nukada, Satoshi Matsuoka, "High-performance and Memory-saving Sparse General 
Matrix-Matrix Multiplication for NVIDIA Pascal GPU", ICPP 2017.
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Speedup is up 
to x4.1

Double Precision Performance
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10.9% reduction on 
average from cuSPARSE

Memory Usage

Unlimited GPU Memory with DRAGON
Collaborative work with Oak Ridge National Laboratory

Problem sizes grow larger than GPU and even host memory capacity. 
We proposed DRAGON, a framework that seamlessly enables all 
classes of GPU applications to directly access terabytes of data on 
storage with user-oblivious addressing. DRAGON leverages GPU 
hardware page-faulting mechanism and two-level prefetching with 
direct page-cache access to achieve this functionality while bestowing 
up to 2.3x speedup compared with using Unified Memory + POSIX IO. 
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Performance Evaluation

Out-of-core was faster than 
the extrapolated baseline (um)

DRAGON is the only 
existing out-of-core 
solution with user-

oblivious addressing

Reference: Pak Markthub, Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Satoshi Matsuoka, 
“DRAGON: Breaking GPU Memory Capacity Limits with Direct NVM Access” , SC18

Presentation at SC18 Technical Program: 
    11:00-11:30, Wednesday, Room C141/143/149

Evaluating Apps on FPGAsPredicting Statistics of ASGD
Collaborative work with DENSO CORPORATION and DENSO IT LABORATORY, INC

In large-scale Asynchronous 
Stochastic Gradient Descent 
(ASGD), mini-batch size and 
gradient staleness tend to be large 
and unpredictable, which increase 
the error of trained DNN

Objective function E
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Two asynchronous 
updates within one 

gradient computation

Staleness=0

Staleness=2
DNN parameters space

Mini-batch size

Reference: Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting Statistics 
of Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU Supercomputers", IEEE BigData 2016

We propose a empirical performance model for an ASGD deep 
learning system SPRINT which considers probability distribution of 
mini-batch size and staleness

Nowadays, FPGA can rival CPU/GPU performance and energy 
efficiency, but also known for its hardness for programming.
We compared three high-level programming approaches for FPGAs
● 30-core many-core system (reps. for programmability)
● LegUp High-Level Synthesis (reps for multiple custom accelerators)
● Intel OpenCL for FPGA (reps for Deep-pipeline designs)
We evaluated using Rodinia Benchmark Suite on Stratix V FPGA.
We improved memory hierarchy for many-core and multi-accelerator 
designs through cache multi-banking.

● Intel OpenCL for FPGA shown highest average performance
● LegUp can remain competitive for good performance and 
   spatial/temporal locality, even without improvement.
● Many-core system offers good programmability, but often does not 
   perform well compared to other approaches

Reference: "Evaluating High-Level Design Strategies on FPGAs for High-Performance Computing", A. Podobas, H.R. Zohouri, N. 
Maruyama, S. Matsuoka, IEEE FPL 2017




