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- 11.5 TFlops with 120 GPU on TSUBAME 1.2 -

Fast Fourier Transform using GPU



the lowest mutual common denominator between the end 

points, so that communication can be established.  However, 

when some glitch occurs that compromises a connection, 

and due to some reason the established communication is of 

much lower specs, it would be more difficult to detect such 

anomalies. Automated means of detecting and compensating 

for such performance anomalies are strongly required.

(3) In addition, large-scale supercomputers require constant 

monitoring by tens to hundreds of thousands of sensors, 

as well as proactive means for allocating resources to its 

numerous simultaneous users with extremely large-scale 

requests---users may submit tens of thousands of jobs at the 

same time, for example. If any portion of the job allocation 

algorithm embodies O(n2) behavior, then scaling of the 

machine would be catastrophic---a 100 times scaling would 

manifest in 10,000-fold increase in overheads.

 By all means, it is important not just for operations, but also 

from academic Computer Science perspective, to determine how 

much we would be on target with the designed performance, 

a n d /o r w h at t h e u n e x p e c te d ove r h ea d w o u l d b e.  T h e 

computational science users would only benefit from the exercise, 

as various factors including performance but also reliability and 

usability at scale would greatly affect their actual usage.

 With such a set of objectives, a series of large-scale, 

whole-machine benchmarks were conducted just before the 

operational commencement of TSUBAME2.0 on November 1, 2010, 

mostly throughout late October just after the machine was born:

(a) Linpack---the benchmark employed by the famous Top500[1] 

supercomputer performance ranking. Basically, it computes 

the LU-decomposition of a very large dense matrix. For an 

n-by-n matrix, the computational complexity can be given 

as 2/3 n3+ O(n2). This means that, the larger we can make 

the problem, up to the point where the entire matrix fits within 

the memory of the supercomputer, the more ef ficient the 
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The f irst challenges for the newborn TSUBAME2.0, as its 

installation was finishing in Oct., 2010, were large-scale benchmarks 

that would use the entire machine, such as Linpack. Such all-

machine benchmark s in the early days of supercomputer 

inception are fairly commonplace and important for the following 

technical reasons:

(1) T h e  n u m b e r  o f  c o m p o n e n t s  e m b o d i e d  i n  a  l a r g e 

supercomputer such as TSUBAME2.0 is more than several 

thousands of factors greater than a standard PC. Even if we 

count merely the number of sockets of compute elements, 

namely the GPUs and CPUs, TSUBAME embodies over 

7000, whereas a standard PCs only would have one or two. 

Memory on PCs would usually be a few gigabytes, whereas 

TSUBAME2.0 embodies nearly 100 Terabytes, several tens 

of thousands greater. For such numerous components to 

perform under prolonged stress is one of the most important 

factors in attaining stable and reliable operation, as the failure 

rates are roughly proportional to the number of components 

in the system; that is to say, a PC which only fails once in the 

years would fail over 3 times a day if enlarged to the size of 

TSUBAME2.0.

(2) At the same time, it is very important to confirm that expected 

design performance is being met in reality is especially 

important for supercomputers, as slightest deviation could 

profoundly deteriorate overall performance of the system. 

It is quite common in a supercomputer for a component 

which seemingly function but not performing up to its specs 

become the critical performance bottleneck. For example, 

the Infiniband network employed in TSUBAME has several 

speed specs, and the system automatically detunes itself to 
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TSUBAME2.0 is Japan's first muti-petascale supercomputer with multitudes of innovative in architectural and
software features such as extensive use of GPUs, highly scalable and high-bandwidth node and network design,
as well as massive utilization of advanced I/O technologies such as SSD. TSUBAME2.0 had gone into production operation
as of early Nov., 2010; the part two of the article will cover the benchmarking activities conducted just prior to
that event, characterizing the overall performance of the machine in terms of dense compute-bound applications,
power consumption, and high-bandwidth applications . TSUBAME2.0 became the fourth fastest supercomputer
in the world on the Top500, as well as being awarded the "Greenest Production Supercomputer in the World" award on
the Green 500 in Nov. 2011, and at the sametime setting world record on bandwidth intensive ASUCA weather code,
demonstrating its innovative performance and design.
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computation becomes due to the communication and other 

costs becoming relatively minimized. As a result, top-level 

supercomputers employ extremely large matrixes namely 

n=several million, and subjects the CPUs/GPUs to the ultimately 

high workload for a long duration. The solution algorithm is 

delicate with no margin of error---even a single numerical 

error for its total O(1019~20) operations would result in an error 

in the residual check, which would nullify the entire result. 

On the other hand, since the communication complexity 

being relatively low being O(n2), a reasonable supercomputer 

network would incur less than 10% network overhead. An 

extremely slow network such as the Gigabit Ethernet would 

end up having the network cost being dominant. Finally, 

memory bandwidth requirements are also fairly low.

 Although there is no "of f icial" sof t ware for LU-

decomposition, most supercomputers use the HPL(High 

Per formance Linpack)[2] which was designed for large 

parallel machines. However, on TSUBAME2.0, we employed 

a set of heavily customized versions of HPL for heterogeneous 

GPU-CPU computation. One was the Heterogeneous Linpack 

that we had been developing on Linux over many years at 

the Matsuoka Laboratory, and other was the Windows HPC 

Linpack which was the result of our collaboration with and 

developed by Microsoft, and naturally running on Windows 

HPC. The two programs took a very different approaches to 

cope with GPU/CPU heterogeneity, and it was quite interesting 

to determine which would be advantageous for the future 

advancement of GPU computing.  

 Also, we conducted precise measurement of power 

consumption of TSUBAME for being ranked high on the Green 

500[4], as the most important criteria of TSUBAME2.0 was to 

become ultimate green supercomputer of the time.

(b) GPU Version of ASUCA---ASCA is the next generation weather 

forecast code for extremely large machines, being developed 

by Japan's Meteorological Agency. In collaboration with the 

Agency, a group at Professor Aoki's laboratory succeeded 

in full porting of ASUCA on a multi-GPU heterogeneous 

supercomputing environment [5][6]. The principal computational 

kernel of ASCA is a finite difference transport code, requiring 

extremely high memor y and network bandwidth, quite 

contrasting to Linpack. Previously, such high-bandwidth 

application had been perceived to be best served by custom-

design, high-end vector supercomputers; so it was deemed 

important that such code would perform extremely well on 

TSUBAME2.0, whose chief compute element, GPU, embodies 

extremely high bandwidth as a modern-day vector processor  

Indeed we expected ASUCA on GPUs to achieve world's 

top-level performance on TSUBAME2.0, as the theoretical 

memory bandwidth of TSUBAME2.0 is approximately six 

times greater than the Earth Simulator, and ASUCA on GPU 

was demonstrating to be quite efficient and scalable on 

our preliminary tests on TSUBAME 1.2. Such tremendous 

per formance was expected to allow real-time weather 

prediction at unprecedented resolution and precision.

(c) Also, a set of benchmarks were performed as a part of 

acceptance test of TSUBAME2.0.

The whole-machine benchmarks were commenced in mid-

October 2010, immediately after the initial deployment tests of 

TSUABME2.0 were completed. We first commenced the Linpack 

efforts spearheaded by the two teams running two different 

heterogeneous Linpack programs as described above in (a). 

Due to the unprecedented load imposed on the machine not 

possible on initial tests, we found a number of minor problems as 

expected, and resolved the issues one by one to attain stability. 

The Linux team at Tokyo Tech. and the Windows HPC team sent 

from Microsoft took turns running their respective benchmarks. 

Both were very closely matched, but in the end the Linux team's 

heterogeneous edged the latter (Figure 1). It is important to note 

however that, under slightly different conditions it would have 

been be quite possible that the results could have been the 

opposite.

 As a result, TSUBAME2.0 recorded 1.192 Petaflops, achieving 

approximately 52% of the theoretical peak performance. This is 

lower than the typical 70-90% achieved by Linpack on CPU-based 

supercomputers. However, it is not technically correct in simply 

assuming that GPU-based machines are inherently less efficient 

compared to CPU-based ones. For our particular case, the lower 

efficiency is due to combination of the following performance 

degradation factors:

1. Firstly, the current NVIDIA Fermi GPU as employed in 

TUBAME2.0 embodies a set of design bottlenecks that are not 

fundamental to GPU computing but rather results of particular 

design decisions. Although sufficient for graphics as well as for 

high-bandwidth applications where the GPUs are being used 

in the similar manner as traditional vector processors, for dense 

matrix multiply (Level 3 BLAS) which is the principal kernel of 

Linpack, we only achieve 70-75% efficiency. This is substantially 
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lower than the efficiency achieved by CPUs that exhibit more 

than 90% efficiency. However, with architectural as well as 

algorithmic improvements we expect future GPUs to match 

CPU efficiency in this regard, if not greatly exceed it.

2. For our Heterogeneous Linpack on Linux, CPUs are not utilized 

for BLAS kernel computation; however, the Top500 results 

mandate us to incorporate the CPU peak performance in 

determination of the theoretical peak performance of the 

machine. For TSUBAME2.0, the two CPUs on each compute 

node (Intel Xeon Westmere 2.93Ghz) constitute approximately 

8% of the peak performance, which we lose when we compute 

measured versus theoretical performance ratio. By all means 

we could conceive an algorithm that does utilize the CPU, and 

in fact we did so for TSUBAME1.2[3], but that particular version 

proved to be less efficient due to various issues such as load 

balancing.

3. Our Heterogeneous Linpack effectively utilizes GPUs as a matrix 

multiply engine, where we send the sub-matrices of the matrix 

which is stored in CPU memory in stream pipelined fashion, 

perform the multiplication, and stream the matrix back. For 

normal applications where we typically transfer data in bulk to 

the CPU, dense computing algorithms such as matrix multiply 

where the compute overhead is O(n3) as opposed to the 

transfer overhead being O(n2), enlarging the matrix size n for 

pragmatic applications would hide most of the transfer latency. 

However, for HPL the sub-matrix size is rather small, with n 

being 100~1000, resulting in non-negligible transfer overhead.

 The combination of all the factors above results in 

approximately 30% overhead. With advances in the GPU/CPU 

architecture as well as algorithms to utilize them efficienctly we 

believe that the overhead could be effectively eliminated. By all 

means they are subject of future research.

 On the 36th edition of the Top 500 which was announced 

during IEEE/ACM Supercomputing held in New Orleans, USA 

during November, 2011, TSUBAME2.0 was ranked to be number 4 

in the world; this was higher than TSUBAME1.2's initial appearance 

in June 2006, which had been 7th in the world. The exhibited 

1.192 Petaflops was six times greater than the second ranking 

machine in Japan. Moreover, on the Green500, which ranks 

supercomputers based on their power efficiency, the average 

power consumption of 1243.80KW during the Top500 run resulted 

in 958.35 Flops/W, which ranked TSUBAME2.0 to be second in the 

world on its initial November announcement. More importantly, 

TSUBAME2.0 was recognized to be the "Greenest Production 

Supercomputer in the World" (Figure 2), as other top machines on 

the Green500 were largely prototypes in nature.
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Figure 1  TSUBAME2.0 Linpack Execution Output. 
 Here we see that the Linpack run involved the matrix of n= 2.5 million squared elements ,
 and the run was completed in 2.4 hours, resulting in 1.192 Petaflops which ranked
 TSUABME2.0 to be fourth fastest in the world on the Nov. 2011 edition of the Top500.
  Notice that the residual computation is within the proper error bounds
 which is a required property of the run.



 T h e  h i g h  r a n k i n g s  o f  T SUA B M E 2 . 0  o n  b o t h  l i s t s 

simultaneously have an important technological significance. 

According to the current rules, it is difficult for a machine to be 

high on both lists; in practice, the top supercomputers of the 

Top500 are extremely large-scale production supercomputers, 

whereas the top rank s of the Green500 are smaller-scale 

prototypes and/or special-purpose machines (Figure 3). Only 

TSUBAME2.0 is ranked within world's top five on both lists. 

Here are why such difficulty exists:

(1) Since the top supercomputers on the Top500 are large scale, 

general-purpose production machines worth 10s to 100s of 

millions of dollars; as a result they typically embody numerous 

elements that are necessary for production runs but will be 

detrimental to power efficiency. For example, such machines 

incorporate 100s of terabytes of memory which is necessary 

for practical high bandwidth/memory applications, but does 

not contribute much to increasing the performance of Linpack. 

On large machines DRAM power consumption could be as 

much as 20-30% of the entire machine. On the other hand, to 

shoot for power efficiency on Linpack the best strategy would 

be to have rather small memory, but this would limit the 

scope of the machine to a very small number of specialized 

(typically compute intensive) applications.

(2) The top rank s of Top500 of ten is of ex treme logistical 

importance for computing centers and even countries, and as a 

result, all other factors could become sacrificed just to go up a 

notch in the rankings, including power efficiency in the Linpack 

algorithm and settings. On the other hand, if one would shoot 

for top ranks of the Green 500, going down in rankings on the 

Top500 would not matter---all that matters would be that the 

machine being on the Top500. Such difference of objectives 

are difficult to coexist especially at the tops of each list.

(3) The Top500 runs of Linpack involve matrix size of n=a few 

million, with tens of thousands of processor cores. Unfortunately, 

by the nature of the algorithm Linpack is inhererently more 

efficient on smaller machines. For example, one typically sees 

5-10% drop in performance just by going multi-node, with 

increasing overhead with large to machine size [3].

 Despite such disadvantageous, TSUBAME2.0 being ranked 

highly on both lists was the reason for the award in Figure 2. By all 

means this was not achieved by simple employment of GPUs, 

as other GPU machines did not achieve similar results. Rather this 

was the result of years of basic research on low power, high 

performance computing at Tokyo Tech. GSIC, including the JST-

CREST Ultra Low Power HPC (ULP-HPC) project.

Figure 3
The top ranking machine of November 2010 Top500 and
Green500 and their corresponding rankings on the other list.
(At the very end of 2010 a revised list which ranks Japan
NAO's Grape-DR to be ranked 2+ on the Top500 at 1448.03 and
Top500 being 383; this did NOT change the status of
TSUBAME2.0 being the most power efficient production
supercomputer in the world.)
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Figure 2  November 2011 Green 500 Special Award for
 "Greenest Production Supercomputer in the World"
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Although Linpack/Top500 is a significant metric for supercomputer 

performance measurement, for numerous applications that 

are largely memory or network bandwidth bound the Top500 

numbers are not effective metrics. That is to say, for many 

important simulation applications such as computational fluid 

dynamics, structural simulations, and even modern apps such 

as Internet page rankings, how much ef fective bandwidth 

is achieved governs the overall performance, not how much 

Flops, and as a result, the baseline availability of theoretical 

peak bandwidth as well as the ease at which major fraction of 

the peak bandwidth could be achieved, become the dominant 

performance factor. Unfortunately, in recent supercomputer 

architec tural trends, the amount of available bandwidth 

relative to the machine size, as well as its ratio to compute, 

is on constant decrease due to various physical limitations. 

Vector supercomputers of the past, such as the Cray X series 

and the NEC SXes were built precisely for this purpose in 

mind, i.e., increase the memory bandwidth during the days 

where achieving high compute flops was technologically difficult, 

resulting in high computational efficiency as a result. 

 Such glory days are over, and in fact we must really re-

think our notion of efficiency for modern machines in terms 

of efficiency over the dominant performance bottlenecks, in 

this case the memory/network bandwidth, but not compute. 

So, the true "efficiency" metric is how much the application is 

utilizing the memory/network bandwidth in the system relative 

to the theoretical peak available, and has no correlations to the 

peak FLOPS of the machine.

 In fact, in this regard we must point out that high 

computational efficiency that was apparently achieved in such 

classic vector machines were rather artificial and misleading, 

the result of technological trend of the times, and is not an 

effective metric in the modern times. That is to say, for such 

ve c tor machines that under-provisione d the computing 

resources do not properly exploit the available opportunity 

presented by dense problems and the available locality (e.g., 

due to the lack of cache memory), and as a result, its efficiency 

might se em ar ti f icial ly high, but the result ing absolute 

performance being relatively low in relevance to the size/cost 

of the machine.

 Exactly the same argument applies to GPUs versus CPUs, 

but often the same mistake mistakes are made. As had been 

mentioned in part one of this article, GPUs exhibit extremely 

high memory bandwidth per socket compared to CPUs, but 

at the same time, also embody much higher (and effectively 

overprovision) compute as well . In fac t, on TSUBAME2.0, 

the per-socket peak compute capabil it y of each GPU is 

approximately 7 times that of CPU, but at the same time, 

measured effective memory bandwidth is also 6-7 times per 

socket. So if CPU-based implementation on TSUBAME2.0 would 

be obtaining 5% of peak, then it is likely that a GPU-based 

implementation would be obtaining similar computational 

efficiency, while being 6-7 times faster with the same number 

of sockets.

 This in ef fec t allows us to largely conjec ture that 

TSUBAME2.0 would be comparable to x86 CPU-based machines 

of similar peak performance, or those with socket counts that 

are 7 times greater, if no artificial bottlenecks are imposed as 

was the case for Linpack. That is to say TSUBAME2.0 with 4200 

GPU and 2800 CPU sockets would be roughly equivalent to 

a 30,000 socket / 200,000 core x86 CPU-based supercomputer, 

which would largely equal the size of ORNL Jaguar. In fact we 

can expect that Jaguar would have advantage in compute 

but might not perform as well on high bandwidth code, as 

the older-generation x86 it employs is much less efficient in 

memory but similar in FLOPs utilization.

 The ASUCA benchmark was important in this regard 

to determine if such performance estimations would hold 

for high-bandwidth applications. In par ticular, since finite 

difference solvers for transport codes are known to be mostly 

pure memor y-bandwidth limited, the issues are whether 

(1) GPUs would be able to ef ficiently utilize the available 

memory bandwidth, (2) whether we could achieve 6-7 times 

speedup per socket as discussed above, and finally (3) how the 

performance would compare as a whole machine to Jaguar in 

executing the same or at least very similar weather code.

 For details of the ASUCA code itself the readers are 

referred to [5]; the results achieved largely confirmed our 

conjec tures (1)-(3) above. The GPU version of ASUCA on 

TSUBAME2.0 scaled up to 3990 GPUs[6] almost linearly in weak 

scaling (the problem size proportionally increasing relative 

to the machine size), and achieved 145 TeraFlops in single 

precision, and 76.1 TeraFlops in double precision (Figure 4). The 

per-socket performance is approximately 6 times that of CPUs, 

confirming our conjecture in real, production-level code. 
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 Moreover, the previous world record holder was the 

WRF code, a similar weather code to ASUCA, on Jaguar at 

approximately 50 TeraFlops (double precision); so ASUCA was 

even faster, by a factor of 10 on a socket-to-socket basis, 

we might attribute this to less efficient memory bus of the 

older-generation AMD processors in Jaguar, but since the 

applications are dif ferent, this result should be taken as 

preliminary, and more rigorous benchmarking should be done 

using the same applications under a controlled environment.

T here were several other benchmark s that were run on 

TSUBAME2.0, including I/O, to confirm that the machine was 

running correctly, after which the production operation began 

in early November, 2010 as planned. At the time of this writing 

numerous users are using TSUBAME2.0 daily imposing high loads. 

Large-scale applications that utilize 5000 CPU cores or 1200 GPUs 

(that are maximally allocatable under normal operations) are 

fairly commonplace. Applications that utilize other aspects of 

the system for large-scale data processing, such as the SSD and 

the LUSTRE parallel filesystem, are also substantially increasing 

in number. Combined, the performance and scaling leap from 

TSUBAME1.2 is very apparent, and users seem to be enjoying 

the massive capability and relatively forgiving characteristics of 

TSUBAME2.0

 However, to best utilize the capability of TSUBAME2.0, one 

must utilize its most advanced features. For example, in order to 

best utilize the available memory bandwidth the use of GPUs are 

a must, but not only this involves programming in extension of C 

namely the CUDA language, but also involves fairly sophisticated 

hybrid programming involving MPI and CUDA in CPUs and 

GPUs. Also GPU performance is more sensitive to algorithms, 

programming methods, and data layouts, mandating more careful 

tuning process to optimize the performance. This also applies 

to other aspects of the system. Fortunately for TSUBAME2.0 

networking is less troublesome as the network is configured as a 

full-bisection network, allowing the compute nodes to be much 

less sensitive to its placement, but for I/O effective hybrid use of 

SSDs and LUSTRE is sometimes required.

 From a broader perspective, supercomputers composed 

from CPUs that consists of large many-core / multithread / vector 

processor, combined with a small number of low latency scalar 

cores in proximity, interconnected with multi-rail high-bandwidth 

network and I/O capabilities would be the next trend in large 

scale supercomputer as a continuum to TSUBAME2.0 architectural 

trend. By all means in the not so distant future the two types 

of cores would be bonded on the same die, sharing memory. 

Such would alleviate many of the complexities as currently being 

experienced in hybrid architectures such as TSUBAME2.0 today. 

This would allow tremendous number of applications scale to be 

petaflop-class, be it compute or memory bound, as we have seen 

for Linpack and ASUCA, but with much less effort. In effect, in the 

most advanced large-scale GPU applications we are observing 
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Figure 4 ASUCA Benchmarking  on TSUBAME2.0  (1).
 Notice that performance scales
 almost linearly to 3990 GPUs.

Figure 5 ASUCA Benchmarking on TSUBAME2.0.
 The per-socket performance difference is
 approximately factor of six,
 confirming the relative difference
 in peak achievable memory bandwidth.

Final Words : Let More Petascale 
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the future, where petascale performance is being achieved with 

substantial effort, but will be quite the norm, allowing high-end 

science and engineering to progress much faster than in the past. 

We will continue to strive in TSUBAME2.0 to demonstrate such 

possibilities, and prepare for TSUBAME3.0 to be designed and 

become operational in 2014, with possibly yet another great leap 

in performance.
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First, we would like to mention the JHPCN Program (Joint Usage 

/ Research Center for Interdisciplinary Large-Scale Information 

Infrastruc tures) through which we gained access to the 

machine located in Tokyo Institute of Technology. JHPCN is a 

network consisting of eight university-owned supercomputer 

facilities in Japan. We’ve been using TSUBAME since 2009 

through this program.

 We applied to the JHPCN program as the joint research 

between Takayuki Muranushi at The Hakubi Center, Kyoto 

Univer sit y and Tsu yoshi Hamada at Nagas ak i Adv ance d 

Computing Center, Nagasaki University. Hamada leads the 

development and operation of GPU cluster DEGIMA  (DEstination 

of GPU Intensive Machines). Also there is a small GPU cluster 

TenGU (Tenmon GPU Cluster) in Kyoto University. It was useful to 

have access to these different types of computers for different 

stages of the code development. Joint research brought helpful 

communications with the researchers of var ying fields for 

code development and research. Also we had many technical, 

administrative and clerical supports from Tokyo Institute of 

Technology and JHPCN staffs.

We have prepared several themes at the beginning of the 

JHPCN program. In this section we will describe one of the 

themes, “Numerical Simulation and Analysis of The Two-Phased 

Hydrogen Gas Turbulence in Molecular Cloud Forming Region.” 

As introduced in the first chapter, this study contributes to the 

Takayuki Muranushi *
*The Hakubi Center, Kyoto University

We have performed three-dimensional hydrodynamic simulations to study
the thermal instability of the interstellar medium. The instability is powered by phase-transition of
the atomic hydrogen gas and is one of the sources for turbulence in the interstellar atomic hydrogen gas.
We have also performed clump-detection and spectra analyses, as well as three-dimensional visualizations.
The analyses revealed multi-scale turbulent cascade connecting
the supersonic compressive turbulence at the large scale to the well-known Kolmogorov turbulence.
Such finding was enabled by the massive computational power of the GPU cluster supercomputers.

My favorite word to describe our profession is “armchair 

astronaut.” Human beings have sent astronauts to the Moon and 

unmanned probes to the end of the Solar System. But to visit 

the neighboring stars and collect the evidences will remain a 

very hard job for next generations. To overcome the limitations 

and understand the mystery of the universe, we have to collect 

the observational evidences sitting on the Earth, and carefully 

construct the reasoning based on the scientific laws. Computer 

simulations are powerful tools for us. They help us understand 

how the rich structures are formed out of the simple laws, and 

how the structures will look like to our limited eyes. The beautiful 

visualizations of today’s advanced simulations make us feel like 

travelling the universe while sitting on armchairs.

 What we have studied using TSUBAME is one of the 

processes that will determine the mass of the stars. Stars are 

born from fragmentation and condensation of the interstellar gas 

in the galaxy, which is as thin as one Hydrogen atom per cubic 

centimeter. If the typical stars are ten times lighter, the nuclear 

fusion won’t ignite and our galaxy will remain dark. If they are 

ten times heavier, they will much more rapidly burn Hydrogen 

than they do today and our galaxy will be filled with black holes. 

The mechanism that sets the adequate initial masses for the stars 

--- is the interstellar turbulence driven by the thermal instability.

 Interstellar hydrogen has two stable phases determined by 

the balance of various heating and cooling processes such as star 

irradiation and molecular line emission. Triggered by supernova 

shock waves, the interstellar medium makes phase transits from 

the warm, low density phase to numerous clumps of the cold, 

high density phase. It takes several more stories until stars and 

planetary systems are formed from these clumps. There are lots 

of detective works left to do in the universe.

Introduction 1 On the JHPCN program 2
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study of the interstellar medium, one of the various themes in 

astrophysics.

 In the galaxy compressive and anisotropic turbulences 

of the interstellar medium are obser ved. Considering the 

radiative equilibrium, the atomic interstellar hydrogen gas has 

bistable equations of state. It is much different from that of the 

ideal gas and has two stable phases, differing hundred times 

in density (Field et al, 1969[1].)  However, observed interstellar 

turbulence is described by the homogeneous, isotropic and 

incompressive Kolmogorov turbulence spectra (power law index 

of the velocity field αv =11/3.) Still, some observations report 

significant deviations from the Kolmogorov turbulence (αv=3.87

±0.11) (Chepurnov et.al, 2010[2].) Understanding this turbulence 

has been one of the grand challenges for interstellar physics, 

requiring simulations of the resolutions of the order 10003. The 

use of GPU computer lets us simulate the turbulence for time 

much longer than before keeping the high resolutions, and draw 

out more detailed information on the turbulent statistics.

 The basic equations to be simulated are the following 

Navier-Stokes equations coupled with the heating and cooling 

formulae.

For the heating term Γ and the cooling term Λ, numerous 

heating and cooling processes contribute (e.g. Koyama & Inutsuka, 

2000[3].)  Based on that, we use the following fitting formula 

proposed by Inoue & Inutsuka (2008)[4]: 

Quantities are nondimensionalized based on the following three 

scales typical to the interstellar phenomena:

 This means that the sound speed of the gas is about 

10km per second, as fast as the speed of a rocket escaping the 

Earth. Still, it takes about one hundred thousand years to cross 

a parsec (approximately 3.62 light years) with this sound speed. 

The simulation region (Figure 1) was 20 parsec each side, and we 

have simulated eight sound-crossing times to have the enough 

data to study the statistics of the turbulence. The total simulation 

corresponds to whopping sixteen million physical years. It is, still 

just an instance in the cosmological scales of time.

Figure 1
A visualization of the
14403 simulation performed
on TSUBAME GPU Cluster
at Tokyo Institute of
Technology.

GPU Computing for Interstellar
Atomic Hydrogen Turbulence
― 11.5 TFlops with 120 GPU on TSUBAME 1.2―
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 Our code can be classified like “MPI GPU Full-Godunov 

2nd order MUSCL 3- dimensional uniform mesh　Navier-

Stokes equations solver”. Godunov method is proposed by a 

Russian Mathematitian Godunov(1959) [5],  and its higher-order 

extensions are established by efforts of e.g. van Fig. The idea 

of Godunov’s method is to apply the analytic solutions of the 

Riemann problems (hydrodynamic problem starting with two 

constant initial conditions separated by a wall) to each mesh 

boundary. This is necessary treatment to sharply resolve the 

shock fronts. The second order version costs about 3000 floating 

operations per mesh update. Here, GPU’s high computation 

capability comes in handy.

 Of course this code can handle multiple GPUs via MPI 

framework. We have implemented checkponiting capabilities, 

to overcome the accidental abort of the computing devices 

and also overcome the time-limit applied to the job-queues 

on supercomputers. We have also implemented irreversibly 

compressed data outputs for movie visualizations.

 We have carried out most of our code development 

and tuning on DEGIMA. On DEGIMA about 800 NVIDIA GT200 

GPU chips are available, and 576 of them was connected via 

InfiniBand.It has 514.9Tflops single precision peak performance, 

and can handle 1769'4720 threads at most. Total amount of the 

video memory was 460GB, total bandwidth was 64.454TB/s. On 

DEGIMA we have recorded 40.91Tflops sustained performance on 

12803 resolution simulations.

 Next, we have carried out long-run cariculations using 

GPU supercomputer TSUBAME. We have reserved TSUBAME three 

times: July 6-9,　July 20-23, August 20-24. The hpc1tes2 queue 

we have used consisted of 120 NVIDIA GT200 GPU chips and had 

124.2Tflops single precision peak performance. The maximum 

number of threads available was 122’880. Total amount of the 

video memory was 480GB and its bandwidth 1.224TB/s. It costed 

132’000 yen. Thus we obtained 14403 resolution simulated data 

for about 8 sound crossing times, sufficient for the statistical 

analyses of the turbulence. Also we obtained about 200 snapshot 

data for the movie. The sustained performance was 11.5Tflops.

Because we have achieved so high resolutions, the analyses and 

visualization of the data became challenging tasks and we had to 

develop new tools for them. For example, each of the snapshot 

data was about 60GB, which is larger than the memory capacity 

of typical personal computer. So we have invented algorithms 

that consume memory only proportional to the 2-dimensional 

cross section of the data, and make minimum number of access 

and only sequential access to the disk, while performing the 

desired tasks.

 For example, in clump detection analysis we need to detect 

high density regions of the gas (Clump) and its surrounding 

media (Veil), calculate their physical properties such as density, 

sound speed, relative motion, and perform statistical analysis on 

them. A naïve implementation for connected component finding 

algorithm in three-dimensional grid will require random access on 

the 3D grid. We have developed a new algorithm that performs 

the above analysis within only (constant)×(two-dimensional cross 

section) memory and twice sequential access of the whole data. 

The algorithm enabled clump detection analysis in practical time 

on PCs while keeping the main data on the disk.

The analysis revealed that the Cold Neutral Medium (CNM) 

motion was actually faster than CNM sound speed. However, 

each CNM clump is surrounded by unstable medium. The CNM 

motion was slower than the sound speed of the surrounding 

medium. This suggests that incompressive, Kolmogorov aspect of 

the turbulence can be explained by the CNM motion subsonic in 

the unstable media.

Analyses and Visualization 4

Figure 2
The Clump Detection Analysis.
The horizontal axis is detected clump mass.
The vertical axis is the clump speed relative to
its surroundings (veil) in Mach numbers. We have found that
clump motion is supersonic in terms of its own sound speed,
but is subsonic in terms of veil sound speed.
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 To study the turbulence, we have performed spectra 

analyses of the 14403 simulation by the following algorithm. 

First, create two-dimensional projection for each of the three 

axes while scanning the snapshot once. Next, perform two-

dimensional Fourier analysis of the velocit y f ield. Finally, 

reconstruct the turbulent spectra using the same method used 

in reconstructing the astronomical observation. This algorithm 

shortened the time required in Fourier analyses to practical 

level and also meaningful in comparing the simulated data with 

observations.

 The spectra of the simulated turbulence showed the three-

stage structure that consists of supersonic turbulence regime, 

Kolmogorov-like turbulence regime, and numerical dissipation 

regime (Figure 3). Overall fit of the density and velocity power 

spectra showed significantly agreement with that of Chepurnov 

et.al. 2010’s (αv=3.87±0.11) (αε=3.0±0.1. ) Supersonic turbulence 

regime has softer, and Kolmogorov regime has harder velocity 

power spectrum. These findings indicated that non-Kolmogorov 

turbulence observed like in Chepurnov et.al. may be explained as 

superposition of the supersonic and Kolmogorov turbulences.

 To  v i s u a l i z e  t h e  s i m u l a t i o n  a s  m o v i e s ,  w e  h a v e 

implemented an renderer that can create perspective or parallel 

projection plots of various physical quantities with only one or 

several times of sequential access to the data. We can clearly see 

in the movie the violent displacement of the shock front and 

episodic penetration of streaming flows (Figure 1.)

 Also in collaboration with O yamada Lab. in Kyoto 

University, specialists of large -scale data visualization, we 

have made large and high-resolution visualization using the 

40-side tiled display (Figure 4). We have also created a movie 

of our simulation on TSUBAME with Prof. Aoki’s help for use in 

advertisement of TSUBAME.

 We are continuing the research on this theme, changing 

conditions and performing more analyses, to draw out more 

physical knowledge.

Based on the experiences earned in the development and 

operation of the hydrodynamics code on multi- GPUs, we 

begun development of magnetohydrodynamic (MHD) codes 

from August. MHD is one of the basic equations to describe 

behavior of ionized gas, plasma. Magnetic field takes the essential 

roles in many active astrophysical phenomena including accretion 

disks, jet activities, the Sun, and the Earth magnetosphere. 

MHD is also used to control plasma e.g. in nuclear fusion 

reactors studies. Use of GPGPUs in magnetohydrodynamics 

will accelerate simulations, and make more high-resolution 

simulations possible in those fields of science. It will also 

help in engineering connected to our daily lives such as solar 

activity prediction and design of spacecrafts.

 Current version of the code is second-order in space 

and time. We have adopted HLLD scheme by Miyoshi & Kusano 

2005[7] for MHD Riemann solvers. As we develop the MHD code 

we have performed various tests, and confirmed that our code 

reproduces the known test results (Figure 5).

 From the development experiences of the multi-GPU 

hydrodynamics codes, we have learned that simple C-like 

coding style will require too many repetitions of lines and 

Figure 3  The result of velocity spectrum analysis.

Figure 4  A visualization on 40-side tiled display
　　　　 in collaboration with Oyamada Lab.
　　　　 at Kyoto University.

GPU Computing for Interstellar
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inacceptable. CUDA has C++ capabilities; but we have also 

learned limitations of abstractions in C++ style. So we have 

designed Cprb (https://github.com/nushio3/cprb,) a simple code 

generator for C-like programming languages. Cprb is written in 

Haskell and one can meta-program C++ codes in ruby style. We 

are writing current version of MHD code in Cprb; it is very fluent. 

We hope that Cprb contribute a step in search for new schemes 

of parallel programming. 

 I would definitely like to solve the mysterious discharge 

phenomena in protoplanetary disks. Say, it ’s study of space 

thunderstorms that come after studying space clouds. I have in 

fact proposed a discharge mechanism powered by collisional 

charging of ice particles in protoplanetary disks (Muranushi, 

2010 [8]) --- the mechanism similar to lightning on Earth. Also 

Inutsuka-Sano (2005) [9] proposed a discharge mechanism arising 

from elementary processes of Resistive MHD. The paper above 

treated lightning in a one-zone model, but recently Okuzumi 

has predicted three-dimensional instability arising from the 

mechanism. To study how these phenomena will be active and 

saturate, we need three-dimensional Resistive MHD simulations, 

possibly coupled with dust component and chemistry. I would 

continue to develop codes, making use of the advanced 

computing techniques, to meet such goals.
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Fast Fourier Transform (FFT) is one of the most important computations used in various fields
from multimedia to large-scale simulation.
Therefore, speed-up of the FFT computation benefits many people.
TSUBAME 2.0 compute nodes equips GPUs which accelerates
many kinds of computations. In this column, latest status of GPU FFT is presented.

GPU has very high floating point operation performance as 

well as high memory bandwidth, which is a large advantage for 

memoryintensive computations. Indeed, many real applications in 

high-performance computing areas are categorized as memory-

intensive computations.

The Discrete Fourier Transform (DFT) is used in many fields 

of science and engineering. This is a transformation between 

physical or time space and frequency space. DFT is used not 

only in large-scale simulations such as Molecular Dynamics, but 

also in commodity multimedia applications like audio and video 

encoding/decoding.

 DFT calculates N outputs Y(k) from N input values X(k) as 

described below:

 X(k) and Y (k) are f loating-point complex numbers. 

The computation of all outputs requires O(N2) floating-point 

operations. However, this computation includes many redundant 

operations when N is L multiplied by M. To clarify it, the formula 

is transformed as follows.

Introduction 1

Fast Fourier Transform 2
 The first line and third line correspond to L-point DFT and 

M-point DFT, respectively. The second line is called multiplication 

by twiddle factors. Thus, an N-point DFT can be divided into L 

M-point DFTs and M L-point DFTs and some additional operations. 

This is the base of Fast Fourier Transform (FFT) algorithm to 

calculate DFT efficiently. This transformation can be applied 

recursively. If N is a highly composed number, the number of 

floating-point operations can be reduced to O(N logN). In this 

case, the computation of DFT is now memory-bound.

 Actually, FFT is well known as one of the most memory-

intensive computation in typical benchmark applications. Each 

compute nodes of TSUBAME 2.0 has two Intel Xeon X5670 

Processors (Westmere-EP 2.93GHz, six cores), which provides 

32GB/s with triple-channel DDR3-1333 memory. However, this 

bandwidth is not sufficient for the computation of FFT.

 TSUBAME 2.0 compute node has three GPUs (NVIDIA Tesla 

M2050) in addition to the CPUs. The memory bandwidth of the 

GPUs is about 150GB/s which is more than four times as much 

as that of CPUs. The GPU is a main computation resource of 

TSUBAME 2.0.

Fast Fourier Transform
using GPU
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One of the latest trends in HPC is generalpurpose computation 

using GPU (GPGPU). Current GPUs have sufficient programmability 

to implement not only graphics operations but also more generic 

computations efficiently. Thus, now GPU is recognized as a 

powerful, inexpensive, low-power computation resource.

 In 2006, one of the major GPU vendor NVIDIA introduced 

CUDA, which is a new GPU architecture and programming tools 

for GPGPU. Since it is much easier than prior conditions, many 

of compute intensive applications especially in HPC area were 

ported to GPU using CUDA and achieved drastic speed-ups.

 In general, graphics operations do not require high 

accurac y. Therefore, GPU suppor ted only single-precision 

floating-point operations. For this reason, porting applications 

to GPU is always involved with accuracy issues. But latest GPUs 

support double-precision floatingpoint operations which enables 

compatible computations with the latest CPUs.

 The advantage of GPU computing is not only the high 

performance floating-point operations. GPU has also high memory 

bandwidth to transfer the data required in the computation. The 

memory bandwidth of the Tesla M2050 GPUs is about 150GB/s, 

which corresponds to more than four times as much as CPU. This 

will be a strong advantage for FFT computations.

Figure 1 shows the performance of FFT using a CPU or a GPU 

on TSUBAME 2.0 compute nodes. Performance is calculated in 

GFLOPS, where the number of floating-point operations required 

in computing an N-point FFT is assumed to be 5N logN.

 We used Intel MKL Library 10.2.5 and FFTW 3.1.2 as FFT 

libraries using CPU. Both of them are installed on TSUBAME 2.0 

system by default. To measure the performance, all of the six cores 

of a CPU are used by multi threading. For FFT library for GPUs, we 

used NVIDIA’s CUFFT library 3.1 and our NukadaFFT library 1.0. The 

CUFFT library is provided as a part of the CUDA toolkit packages as 

well as BLAS library and so on.

 Performance of FFTW library is almost the same as that 

of MKL library. Of course, their implementation is quite different 

from each other. However, the achieved performance is basically 

limited by the memory access.

 On the other hand, the performance of NukadaFFT library 

is much higher than CUFFT library.

This means, the FFT routines in double precision is not well 

optimized yet. Actually, its performance in single precision is very 

high. Of course, the performance using GPU is much higher than 

that using CPU.

Performance of FFT
using CPU or GPU 4GPGPU 3

Figure 1
This graph shows performance (GFLOPS) of
128-point, 256-point,  and 512-point FFT
with batch=65,536, in double precision. 
Intel MKL Library 10.2.5 and FFTW library 3.1.2
use a six-core CPU (Westmere-EP, 2.93GHz),
and NVIDIA CUFFT library 3.2 and
NukadaFFT library 1.0
use a GPU (NVIDIA Tesla M2050).



 T here can be many k inds of GPU implementation 

to compute FFTs. To achieve high performance, we have to 

implement programs for each transform size.

 GPU model is another large fac tor. When we were 

developing the essential part of the NukadaFFT library, neither 

Tesla M2050 nor GeForce GTX 480 existed. The development 

was done on older-generation GPUs such as GeForce GTX 280. 

Now the library shows competitive performance even on next 

generation GPUs. This is because of the auto-tuning features of 

the library.

 The auto-tuning strategy used in this library is exhaustive. 

The library generates many kinds of FFT routines, executes them, 

and selects the best one. We employ three tuning parameters as 

follows.

Factorization The key of the FFT algorithm to reduce the number 

of floating-point operations is the factorization of the transform 

size. Factorizing to prime numbers does not always show good 

results. In case of GPU implementation, it is better that the gap 

between the largest and smallest factors is small. Otherwise, the 

SIMDization for GPU wastes many computation resources.

Number of threads It is important to exploit the high memory 

bandwidth of GPUs. It depends not only on the access patterns 

but also on the number of threads running simultaneously. We 

need to choose the best number of threads.

Shared memory access pattern CPU implementation of FFT uses 

cache memory to store temporal data which will be used again 

immediately. GPU implementation uses onchip shared memory 

to exchange the data between threads. The shared memory can 

be accessed simultaneously by multiple threads since it consists 

of multiple banks. Therefore, we have to select the access pattern 

carefully to avoid a bank conflict. To do this, the library inserts 

padding automatically in specific patterns.

 In the case of TSUBAME 2.0 compute nodes, Tesla M2050 

GPU has about 4.6 times theoretical peak memory bandwidth 

than CPU. However, the speed-up by using GPU reaches about 

seven times in FFT computation. This is because there is a large 

gap between theoretical peak and achieved memory bandwidth.

The memory bandwidth of the GPU is about 150GB/s, however 

the achieved memory bandwidth in FFT is only 82GB/s. Since the 

memory of the Tesla GPU is protected by ECC, additional data 

transfer of ECC code consumes a part of the memory bandwidth. 

Writes to the GPU memory is slower than reads from the GPU 

memory. In case of FFT computation, about 50% of memory 

access is write access. This degrades the data transfer efficiency.

This is common in the case of CPU. Simple memor y copy 

operation can achieve slightly less than 20GB/s, and the data 

transfer ratio in FFT computation is less than 12GB/s.

There are many kinds of GPU products. The number of CUDA-

capable GPU models already exceeds a hundred including 

GeForce series, Quadro series, Tesla series, ION series and mobile 

GPUs. Table 1 shows specificaions of some major GPU models 

we used. Although the performance of GPUs rapidly increase 

year by year, they vary in number of cores, performance, memory 

bandwidth, etc.

 GeForce series are designed for gaming and desktop 

use, and have high memory bandwidth. On the other hand, 

Tesla series are designed for high performance computing. Their 

doubleprecision performance is much higher than GeForce 

series. The memory capacity is also larger, and protected by 

ECC. Needless to say, the Tesla series is selected for TSUBAME 2.0 

compute nodes.

Table 1  The specifications of major CUDA-capable GPUs.

Auto-tuning 5
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 Although the time spent for the auto-tuning essentially 

depends on the transform size, GPUs, CPUs, and so on, we 

observed it completes within a minute in most cases. Generally, 

applications repeatedly calls FFT functions with the same 

transform sizes. In such a case, the length of the auto-tuning time 

is acceptable enough. By default, the results of the autotuning 

procedure, that is, the best parameters selected will be stored in 

the database file. Therefore, applications start computation using 

them immediately them, except on the first time.

 It is not true that GPU applications always require auto-

tuning features to achieve high performance. In many cases, the 

GPU model used for the GPU application are limited and the 

same kernel can achieve good performance for all of them. Auto-

tuning mechanism is important especially for libraries which will 

be publically available because these libraries should work on 

varying GPU models with acceptable performance.

We introduced the latest status of FFT computation using GPUs. 

In case of the CPUs and GPUs on TSUBAME 2.0 compute nodes, 

the use of GPU resulted in about 7 times speedup due to the 

high memory bandwidth of the GPUs. This is not only for FFT but 

also many kinds of memory-intensive computations like CFDs. 

Needless to say, GPUs also accelerate many compute-intensive 

applications. In the near future, we hope many new applications 

will be ported to GPUs.

 NukadaFFT library is still updated frequently. The latest 

version is available at the following

URL. http://matsu-www.is.titech.ac.jp/˜nukada/nufft/
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