
7

High-Performance General Solver
for Extremely Large-Scale Semidefinite
Programming Problems

The multiple GPU calculation
for the classical spin model

Knowledge Acquisition from
a Large Web Corpus and its Applications

TSUBAME_vol7_E.indd 1 12.12.12 7:19:41 PM

02

Semidef inite programming (SDP) is one of the most impor tant problems among optimization problems at
present. It is relevant to a wide range of f ields such as combinatorial optimization, structural optimization,
control theory, economics, quantum chemistry, sensor network location and data mining. The capability to solve
extremely large-scale SDP problems will have a significant effect on the current and future applications of SDP. In
1995, Fujisawa et al. started the SDPA (Semidefinite programming algorithm) Project aimed at solving large-scale
SDP problems with high numerical stability and accuracy. SDPA is one of the main codes to solve general SDPs.
SDPARA is a parallel version of SDPA on multiple processors with distributed memory, and it replaces two major
bottleneck parts (the generation of the Schur complement matrix and its Cholesky factorization) of SDPA by their
parallel implementation. In particular, it has been successfully applied to combinatorial optimization and truss
topology optimization. The new version of SDPARA (7.5.0-G) on a large-scale supercomputer called TSUBAME 2.0 [12]
at the Tokyo Institute of Technology has successfully been used to solve the largest SDP problem (which has over 1.48
million constraints), and created a new world record. Our implementation has also achieved 533 TFlops in double
precision for large-scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs. [1]

Katsuki Fujisawa* Toshio Endo**
*Chuo University & JST CREST　**Tokyo Institute of Technology & JST CREST

Semidefinite Programming (SDP) is a subfield of mathematical

programming and is used to optimize an objective function over

positive semidefinite matrices. SDP has been regarded as one of

the most important optimization problems for several reasons.

Solving extremely large-scale SDP problems is considered to

be important and challenging. For example, it would be useful

to obtain the optimal solution of the quadratic assignment

problem (QAP), one of the most difficult NP-hard problems. If we

could solve an SDP problem with more than 106 constraints, we

could obtain a strong lower bound of the QAP with a problem

size greater than or equal to 40.

	 For solving SDP problems in polynomial time, the

primal-dual interior-point method (PDIPM) [11] is well known as

a powerful and stable method. In 1995, Fujisawa et al. started

the SDPA Project [4] aimed at solving large-scale SDP problems

with high numerical stabil i t y and accurac y. Semidef inite

programming algorithm (SDPA) [4] is one of the main libraries

for so lv ing genera l SDP problems that have no sp e cia l

structures such as a rank-1 condition, and an optimization

software package is used along with the PDIPM for solving

the standard SDP problem (formulation (1) in Section 2). SDPA

incorporates special data structures for handling block diagonal

data matrices, and efficient techniques for computing search

directions when problems become large scale and/or sparse
[3]. SDPA achieves good performance on a single processor [4];

however, when the size of an SDP problem increases, the use

of the PDIPM introduces two major performance bottlenecks

in each iteration, even if we exploit the sparsity of the data

matrices: the computation of the Schur complement matrix

(SCM) and the Cholesky factorization of the SCM.

	 The semidefinite programming algorithm parallel

version (SDPARA) [5], [6] is a parallel implementation of the SDPA

library for multiple processor systems with distributed memory.

In this implementation, performance bottlenecks are relaxed

by parallelization techniques using MPI, OpenMP, ScaLAPACK

[7], BLACS, optimized BLAS, and MUMPS [8]. Each process reads

the input data and stores them and all variables in the process

memor y space, while the SCM data are divided between

processes. Thus, SDPARA can compute each row of the SCM in

parallel, and apply the parallel Cholesky factorization provided

by ScaLAPACK to the SCM. We have reported that SDPARA

achieves high scalability for large-scale SDP problems [2], [5], [6]

on supercomputers and have confirmed that SDPARA is much

faster than other parallel implementations such as PCSDP [9] and

PDSDP [10] when solving large-scale sparse SDP problems [5], [6].

By using existing SDPARA (version 7.4.0), we have successfully

solved large-scale SDP problems with a sparse SCM and a size of

about 300,000, and created a world record in 2011 [2].

	 The target of this study is highly challenging: in

order to accommodate problems related to the QAP and truss

topology optimization, our objective is to solve SDP problems

with a dense SCM and a size larger than 106 . Aside from an

increase in problem sizes, changes in the characteristics of

problems (the density of the SCM) also pose new challenges. Let

m be the SCM size (which equals the number of constraints) and

n be the size of the data matrix. For the first bottleneck part

(computation of the SCM), we have previously developed an

algorithm that decreases its time complexity O(mn3+m2n2) to

O(m2) by exploiting the sparsity of the data matrix [5]. However,

if the SCM is large and dense, the second bottleneck part

(Cholesky factorization of the SCM), whose complexity is O(m3) ,

Introduction 1

High-Performance General Solver for Extremely
Large-Scale Semidefinite Programming Problems

Keywords : GPGPU, Dense Matrix Algebra, Semidefinite Programming, General Optimization Solver

TSUBAME_vol7_E.indd 2 12.12.12 7:19:41 PM

03

The standard form SDP is the following primal-dual form.

In this section, we explain the basic framework of the PDIPM

on which SDPA and SDPARA are based. The most important

theoretical aspects of the PDIPM is that it solves both primal and

dual forms simultaneously and finds their optimal solution in

polynomial time.

	 The Karush-Kuhn-Tucker (KKT) conditions theoretically

guarantee that a point (*, *, *�) satisfying the system in (2)

below is an optimal solution of (1) when the so-called Slater’s

condition is satisfied.

dominates the entire execution time. In this study, we accelerate

this part by using massively parallel GPUs with computational

performance much higher than that of CPUs. In order to achieve

scalable performance with thousands of GPUs, we utilize a high-

performance BLAS kernel along with optimization techniques

to overlap computation, PCI-Express communication, and MPI

communication.

	 This paper describes the design and implementation

of a new version of SDPARA (version 7.5.0-G). We have selected

three types of large-scale SDP instances associated with recent

applications of SDP in truss topology design, combinatorial

optimization, and quantum chemistr y ; however, SDPARA

can also achieve high performance when solving large-scale

SDP problems in other important application areas. We have

conducted the per formance evaluation of SDPARA 7.5.0-G

on TSUBAME 2.0, which is a peta-scale GPU-accelerated

supercomputer at the Tokyo Institute of Technology. In the

evaluation, we solved the largest SDP problem (which has over

1.48 million constraints), and created a new world record in 2012.

Our implementation also achieved 533 TFlops in double precision

for large-scale Cholesky factorization using 4,080 GPUs.

Semidefinete programming 2

Basic framework of the primal-dual
interior-point method 3

Figure 1 Largest SDP problem and its block
	 diagonal structure

We use n for the space of n×n symmetric matrices. The notation

 indicates that n is a positive semidefinite

(positive definite) matrix. The innerproduct between n

and n is defined by

	 In most SDP applications, it is common for the input

data matr ices 0 , . . . , m to share the same diagonal block

structure (n1,..., nh). Each input data matrix K (k = 1,...,m) consists

of sub-matrices in the diagonal positions, as follows:

Note that and the variable matrices and

share the same block structure. We define nmax as max ｛ n1,..., nh ｝.

For the blocks where , the constraints of positive

semidef initeness are equivalent to the constraints of the

nonnegative orthant. Such blocks are sometimes called LP

blocks.

The size of given SDP problems can be roughly measured in

terms of five numbers:

　(1) m : the number of equality constraints in the dual form

	 (which equals the size of the SCM)

　(2) n : the size of the variable matrices and

　(3) nmax : the size of the largest block of input data matrices

　(4) nnz : the total number of nonzero elements in all data

	 matrices

	 Figure 1 shows the largest SDP problem, which is solved

in Section 6, and its block diagonal structure. The parameters m, n,

nmax , and nnz in this SDP problem are 1,484,406, 1,779,204, 1,682,

and 23,476,376, respectively.

TSUBAME_vol7_E.indd 3 12.12.12 7:19:42 PM

04

High-Performance General Solver for Extremely
Large-Scale Semidefinite Programming Problems

As we have shown in Figure 2, in the PDIPM, the algorithm

starts from a feasible or infeasible point. In each iteration, it

computes the search direction (d , d , d) from the current

point towards the optimal solution, decides the step size, and

advances by the step size in the search direction. If the current

point reaches a small neighborhood of the optimal solution,

the PDIPM terminates the iteration and returns the approximate

optimal solution. The PDIPM is described in many papers (See [11]).

The framework we use relies on the HRVW/KSH/M approach [11], and

we will use the appropriate norms ||・|| for matrices and vectors.

Algorithmic Framework of PDIPM
　Step 0 : Choose a feasible or infeasible initial point

	 such that

	 Set the centering parameter , the boundary

	 parameter , the threshold parameter ,

	 and the iteration number s = 0 .

　Step 1 : Compute the residuals of the primal feasibility , the

	 dual feasibility , and the primal-dual gap g :

　Step 3 : Maximize the step sizes (lengths) such that the

	 following positive definiteness conditions are satisf ied.

　Step 4 : Update the current point as follows:

	 If (namely, all residuals above

	 are sufficiently small), stop the iteration and output

	 (s , s , s �) as an approximate optimal solution.

　Step 2 : Compute the the search direction (d , d , d).

　Step 2a : Compute the SCM by the formula

　Step 2b : Apply the Cholesky factorization to and obtain

	 a lower triangular matrix such that .

　Step 2c : Obtain a component of the search direction d by

	 solving the equations

	 for the right-hand-side vector r computed as

	 where with

　Step 2d : Compute the remaining components of the search

	 direction (d , d) as follows:

	 Set , and return to Step 1.

	 Steps 2a and 2b correspond to the first and second

bottleneck parts defined in Section 1, respectively. We shall define

the computation in Steps 2a and 2b as ELEMENTS and CHOLESKY,

respectively. As indicated in [5], ELEMENTS (O (mn 3+ m 2n 2)) and

CHOLESKY (O (m3)) have often accounted for 80% to 90% of the

total execution time of the PDIPM. Therefore, researchers have

focused on reducing the time taken for these steps [4]. We have

reduced the time complexity of ELEMENTS from (O (mn 3+ m 2n 2)) to

O (m2) when solving the sparse SDP problem [3].

Figure 2 Primal-dual interior-point method

A. Challenges

	 A s d e s c r i b e d a b ove, t h e tot a l e xe c u t i o n t im e

of SDPARA is dominated by that of CHOLESK Y (Cholesk y

factorization of SCM) when is sufficiently large and dense.

Accelerating cholesky Factorization 4

TSUBAME_vol7_E.indd 4 12.12.12 7:19:43 PM

05

Generally, dense matrix computation can be signif icantly

accelerated by harnessing GPGPU computing; for example,

Endo et al. have shown that the performance of the Linpack

benchmark (LU factorization with pivoting) can be scalably

increased by using more than 1200 accelerators [13]. The keys to

scalability include

 ・ Overlapping computation on GPUs and PCI-Express (PCIe)

	 communication between GPUs and CPUs.

 ・ Configuring the block size nb so that data reuse is promoted

	 and the amount of PCIe communication is reduced. In this

	 paper, nb = 1024 .

	 While the parallel Cholesky factorization algorithm and

Linpack have many common points, the former poses new

challenges because of the following differences.

 ・ In each computation step, the part of the matrix to be

	 updated is the lower-triangle part, rather than a rectangle.

	 Upon two-dimensional block-cyclic distribution, the shape 	

	 of the updated part in each process becomes more complex.

 ・ (Related to the abaove difference) The computation amount

	 per step is halved compared to LU factorization. This makes 	

	 the computation / communication ratio even worse.

 ・ Cholesky factorization requires additional work called

	 ”panel transposition.”

B. Implementation and Optimization

	 Hereafter, we call SDPARA whose CHOLESKY component

is acce ler ate d by GPUs “ SDPAR A (ver s ion 7. 5.0 - G).” O ur

accelerated CHOLESKY component has properties similar to

the pdpotrf function of ScaLAPACK. The dense matrix , with

a size of m × m , is distributed among MPI processes in the two-

dimensional block-cyclic distribution with block size n b . When

we let mb =⎡m /nb ⎤be the number of blocks that are aligned

in a row or a column, the CHOLESKY algorithm consists of mb

steps. A single (k -th) step proceeds as follows:

 ・ Diagonal block factorization: The k - th diagonal block is

	 Cholesky-factorized locally. Then, the result block is

	 broadcast to processes in the k - th process column.

 ・ Panel factorization: The k - th block columns are called

	 “panel” , and the panel is factorized by using the dtrsm

	 BLAS kernel.

 ・ Panel broadcast and transposition: We need to broadcast

	 row-wise, obtain the transposition of , and broadcast

	 t column-wise.

 ・ Update: This is the most computation-intensive part. Each

	 process updates its own part of the rest matrix, taking the

	 corresponding part of and t. Let ' be the rest matrix.

	 Then '= '- × t is computed. Thus, the DGEMM BLAS

	 kernel dominates the execution time. Note that updating

	 the lower-triangular part is sufficient; thus, we can omit the

	 computation of the unused upper part.

	 The basic approaches we applied to accelerate this

algorithm are as follows.

　1) We invoke one MPI process per GPU to drive it, and thus,

	 three processes per node are invoked on TSUBAME 2.0 nodes.

　2) It is important to use the fast DTRSM and DGEMM BLAS

	 kernels on GPUs. We used highly tuned kernels developed

	 by NVIDIA, which are faster than those in the official CUBLAS

	 library. The DGEMM kernel achieves about 350 GFlops (on-

	 board speed) on a M2050 GPU, while CUBLAS DGEMM

	 achieves about 300 GFlops 1.

　3) On GPU clusters, we have to decide where the datastructure

	 is located since the GPU device memory is separated from

	 the host memory. In order to accommodate larger sizes of

	 , we store it on the host memory.

	 Approaches 2) and 3) indicate that we need to divide the

matrices into parts smaller than the device memory capacity

and send the input matrices to the GPU via PCIe in order to

perform partial computation. Of course, without overlapping

computation and communication (as in “version 1” in Figure 3),

the performance is strictly restricted. To ensure high performance,

the following optimization and configuration are adopted.

 ・ When the size of the partial matrix to be updated by a single

	 GPU is r × s , the computation cost in the “update” phase is

	 O(r・s・nb) , while the communication cost is O(r・s +r・nb+s・nb).

	 To reduce the relative communication cost, the block size

	 nb should be sufficiently large. Here there is a trade-off since

	 very large nb degrades load balancing. After a preliminary

	 evaluation, we set nb to be 1024.

 ・ In order to reduce and hide the PCIe communication cost,

	 we overlap GPU computation and PCIe communication.

	 With these methods (“version 2” in the figure) we can enjoy

the accelerated performance. However, we have noticed that

inter-node MPI communication costs still restrict the scalability.

Although each node in TSUBAME 2.0 has a wide injection

bandwidth (8 GB/s), the communication costs increase relatively

when the computation is accelerated. Here, we further promote the

overlapping policy described above; we overlap all computations,

PCIe communication, and MPI communication (“version 3” in

the figure). For this, the “Panel broadcast and transposition”

and “Update” phases are reorganized; the transposed panel t

is divided into pieces before broadcasting, and each process

transfers them to the GPU just after partial broadcast is completed.

	 As future improvement, we could overlap MPI communication

for and computation by using an optimization technique

1 Unfortunately, the speed of 350 GFlops is still far from the theoretical peak of 515 GFlops. NVIDIA staff mention that this is because of the limitation of the architecture
 of Fermi generation GPUs and that the speed will increase in next-generation GPUs.

TSUBAME_vol7_E.indd 5 12.12.12 7:19:43 PM

06

High-Performance General Solver for Extremely
Large-Scale Semidefinite Programming Problems

We have conducted the performance evaluation of SDPARA

7.5.0-G with GPU-accelerated Cholesky factorization on the

TSUBAME 2.0 supercomputer. Table I shows the problems

considered in the evaluation; the problems have characteristics

that lead to the SCM being dense. We used NVIDIA CUDA 4.0,

MVAPICH2 1.5.1, and Intel compiler 11.1 as the underlying system

software. We used BLAS kernels from NVIDIA for use on GPUs, as

mentioned in SectionIV-B.

	 We use different MPI processes for the different GPUs;

thus, three processes run on a TSUBAME 2.0 node. A single

process is configured to drive a GPU and three CPU cores, by

considering the CPU affinity by using cudaSetDevice CUDA API

and sched_setaffinity systemcall; for example, a process that

uses GPU 0 in each node is bound to the cores in CPU 0. Three

CPU cores are used in INIT, ELEMENTS, and so on, while they

are unused in the DGEMM or DTRSM kernels in CHOLESKY. For

these kernels, only GPUs are used 2 .

A. Performance of Accelerated Cholesky Factorization

	 First, the measured performance for a moderate number

of nodes is shown in Figure 4. The graph shows the speed of the

CHOLESKY component in TeraFlops. We see that its speed for

the QAP5 problem reaches 46.5 TFlops for 64 nodes (192 GPUs).

This high performance is obviously impossible without GPUs

since the theoretical peak performance of CPUs on 64 nodes is

64 × 0.1408 = 9.01 TFlops. Compared to the peak performance

of CPUs and GPUs (64 × 1.686 = 107.9 Tf lops), the relative

performance is 43.1%. This gap results from several factors, and

the most important one is the limited performance of on-board

DGEMM (only 68% of peak), which will be improved in next-

generation Kepler GPUs. A comparison between QAP5 and QAP4

shows that the former shows better Flop performance since

a larger matrix size is advantageous in CHOLESKY with O(m 3)

computation and O(m 2) communication.

	 The graph also shows the ef fect of overlapping MPI

communication by presenting a comparison between two

CHOLESKY implementations: Version 3 and Version 2 described

in Section 4 - B. By comparing QAP4/v3 and QAP4/v2 , we can see

that the effect of overlapping increases with the larger number

Performance evaluation 5

of nodes; the difference is 10% for 64 nodes.

	 Figure 5 shows the performance of CHOLESKY on almost

all nodes of TSUBAME 2.0 (1,360 nodes with 4,080 GPUs). For the

QAP8 problem, where the SCM size m is 1,484,406, we achieve

533TFlops, which is the maximum speed achieved to date for a

mathematical optimization problem. As in the previous graph,

we see that a larger problem corresponds to a higher speed.

	 Since the peak performance of 1,360 nodes is 2,293 TFlops,

the relative performance with QAP8 is 24%. This is lower than

results shown in the previous graph. However, we note that there

is plenty of space in the node memory owing to the optimization

for memory usage reduction. In the case of QAP8 on 1,360 nodes,

only 21 GB of the 54 GB memory is used per node. Thus, we can

accommodate larger a problem with m 〜 2, 000, 000 , which

would further increase the speed.

Version 1 No overlapping

Version 2 GPU computation and PCIe
	 communication are overlapped

Version 3 GPU computation, PCIe communication,
	 and MPI communication are overlapped

Figure 3 Several versions of the Cholesky
	 factorization algorithm

2 We made this decision on the basis of the preliminary evaluation, which showed that using both GPUs and CPUs slightly degraded the total performance.
 We consider this to be a result of the increased use of the CPU bus and memory bandwidth, which will be investigated in detail later.

cal led “ lookahead,” which has been introduced in High-

Performance Linpack [14].

TSUBAME_vol7_E.indd 6 12.12.12 7:19:44 PM

07

This paper described a high-performance solver, SDPARA 7.5.0-G,

for large-scale, SDP problems. The key for high performance is

the acceleration of Cholesky factorization by using thousands

of GPUs. With 4,080 NVIDIA M2050 GPUs on the TSUBAME 2.0

supercomputer, our implementation achieved 533 TFlops in

double precision for a large-scale problem with m = 1,484,406.

Since SDPARA is a general solver for real problems, we not only

improved the dense matrix computation component but also

reviewed the entire software package to eliminate bottleneck

parts that have previously been hidden. In the review, we

also made the following improvements: parallelization of

the solver initialization phase (INIT) and modification of the

data structure used for the generation of Schur complement

matrix (ELEMENTS). With all these improvements, we have

demonstrated that solving SDP problems with m > 106 is now

possible on modern accelerated supercomputers.

Acknowledgements

T his research was supp or te d by the Japan Science and

Technology Agency (JST), the Core Research of Evolutionary

Science and Technology (CREST) research project, and the

TSUBAME 2.0 Supercomputer Grand Challenge Program at the

Tokyo Institute of Technology. The authors would like to thank

Prof. Hayato Waki for providing us with SDP problems for QAP.

References

[1]	 K. Fujisawa, T. Endo, H. Sato, M. Yamashita, S. Matsuoka and

M. Nakata: High-Performance General Solver for Extremely

L arg e -S c a l e S emi d e f in i te Pro gr ammin g Pro b l ems ,

The proceedings of the 2012 ACM/IEEE conference on

Supercomputing, SC12 (2012)

[2]	 M. Yamashita, K . Fujisawa, M. Fukuda, K . Kobayashi, K .

Nakata, M. Nakata: Latest Developments in the SDPA

Family for Solving Large-Scale SDPs, M.F. Anjos and J.B.

Lasserre (eds.), Handbook on Semidefinite, Cone and

Polynomial Optimization: Theory, Algorithms, Software and

Applications, Springer Press, Chapter 24, 687–713 (2011)

[3]	 K . Fujisawa, M. Kojima, K . Nakata: Exploiting sparsity

in primal-dual interior-point methods for semidefinite

programming. Math. Prog., 79, 235–253 (1997)

Conclusion 6
TABLE 1 PROBLEMS CONSIDERED IN THE EVALUATION

Figure 4 Performance of GPU Cholesky factorization
	 obtained by using up to 64 nodes (192 GPUs).
	 Version 3 and Version 2 of CHOLESKY
	 are compared

Figure 5 Performance of GPU Cholesky factorization
	 on the full TSUBAME 2.0 system (up to 1,360
	 nodes and 4,080 GPUs)

TSUBAME_vol7_E.indd 7 12.12.12 7:19:44 PM

08

High-Performance General Solver for Extremely
Large-Scale Semidefinite Programming Problems

[4]	 K . Fujisawa, K . Nakata, M. Yamashita, M. Fukuda: SDPA

Project: Solving large-scale semidefinite programs. J. Oper.

Res. Soc. Japan, 50, 278–298 (2007)

[5]	 M. Yamashita, K. Fujisawa, M. Kojima: SDPARA: SemiDefinite

Programming Algorithm paRAllel version. Parallel Comput.,

29, 1053–1067 (2003)

[6]	 M. Yamashita, K. Fujisawa, M. Fukuda, K. Nakata and M.

Nakata, Parallel solver for semidefinite programming

problem having sparse Schur complement matrix, To appear

in ACM Transactions on Mathematical Software (2012)

[7]	 L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,

I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,

K . Stanley, D. Walker, R .C. Whaley: ScaLAPACK Users’

Guide. Society for Industrial and Applied Mathematics,

Philadelphia (1997)

[8]	 P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent: Multifrontal parallel

distributed symmetric and unsymmetric solvers. Comput.

Methods in Appl. Mech. Eng., 184, 501–520 (2000)

[9]	 I . D. Ivanov, E. de Klerk : Parallel implementation of a

semidefinite programming solver based on CSDP in a

distributed memory cluster. Optim. Meth. Softw., 25(3),

405–420 (2010)

[10]	 S. J. Benson: Parallel computing on semidefinite programs

Preprint ANL/MCS-P939-0302 (2002)

[11]	 M. Kojima, S. Shindoh, S. Hara: Interior-point methods

for the monotone semidefinite linear complementarity

problems. SIAM J. Optim., 7, 86–125 (1997)

[12]	 S. Matsuoka, T. Endo, N. Maruyama, H. Sato, S. Takizawa: The

Total Picture of TSUBAME2.0. TSUBAME e-Science Journal,

GSIC, Tokyo Institute of Technology, Vol. 1, 2–4 (2010)

[13]	 T. Endo, A. Nukada, S. Matsuoka, N. Maruyama: Linpack

Evaluation on a Supercomputer with Heterogeneous

Accelerators. Proceedings of IEEE IPDPS10, 1–8 (2010)

[14]	 A . Petitet , R .C. Whaley, J. Dongarra, A . Clear y: HPL A

Portable Implementation of the High-Performance Linpack

Benchmark for Distributed-Memory Computers,

	 http://www.netlib.org/benchmark/hpl/

TSUBAME_vol7_E.indd 8 12.12.12 7:19:44 PM

09

With the advance of computers, large-scale and high-speed computations have become possible. In recent
years, the application of GPU to scientif ic computations is a hot topic in computer science. We can investigate
the phenomena such as phase transitions starting from the microscopic models in the framework of statistical
mechanics. As a numerical approach to deal with many-body problems, the Monte Carlo simulation is widely used.
Among the algorithms of Monte Carlo methods, the cluster-flip Monte Carlo method is a very efficient one, but the
parallelization of the cluster-flip Monte Carlo method is not straightforward. In this paper, we describe the massive
and fast GPU computation of Swendsen-Wang multi-cluster algorithm for classical spin systems. Especially, we
implement the algorithm for multiple GPUs on the system of TSUBAME 2.0, and we realize the fast and large-scale
computations.

Yukihiro Komura* Yutaka Okabe*
*Department of Physics, Tokyo Metropolitan University

When we see the materials surrounding us from the microscopic

viewpoint (atomic level), they are composed of atoms or

molecules of the order of Avogadro’s number (6×1023). It is well

known that water, for example, takes three states of matter,

gases, liquids, and solids. The phenomenon that the state

transforms with the change of macroscopic variables, such as

temperature and pressure, is called phase transition. Statistical

mechanics is a probabilistic approach to describe the laws

of physics among macroscopic variables, such as pressure,

volume, temperature, and so on, starting from the microscopic

world. We can discuss the phase transition from the microscopic

level. When we consider the phase transition in statistical

mechanics , i t is rather easy to treat the magnetic phase

transition. Magnetic materials such as iron lose the properties of

magnets when the temperature increases.

	 The simplest model of classical spin systems to deal

with the magnetic phase transition is the Ising model (Fig.1). On

the lattice sites, the spin (microscopic magnet) Si is placed, and

the spin takes up or down direction. As a variable, Si takes ±1.

The Hamiltonian (energy) of the Ising model is given by

Here, kb is the Boltzmann constant, and the summation of {Si}

is taken over all the configurations. To take all the possible spin

configurations means that when dealing with the Ising system

of only 2500 spins, the computational amount reaches 22500

= 10752; the direct calculation needs an enormous amount of

time. In the case of systems with no interaction such calculation

of Boltzmann average may become simple, but systems with

interaction cannot be simplified except for special cases.

	 Thus, the probabilistic Markov Chain Monte Carlo

simulation has developed as a numerical technique in the

field of statistical mechanics. In the Markov Chain Monte Carlo

algorithm, the method to generate states with the probability

of the Boltzmann distribution, Eq. (2), is called Metropolis

method [1]. If such states are generated, we can calculate the

thermal average of a physical quantity at a certain temperature

Introduction 1

The multiple GPU calculation
for the classical spin model

Here, J (>0) is the coupling constant, and the summation is taken

over the nearest neighbor pairs <i,j>. The energy is equal to -J

if the spin on the lattice site i and the nearest neighbor spin are

parallel, and the energy becomes +J if the two spins are anti-

parallel. The important thing is that the local energy depends

on the values of the two spins, which means that there is an

interaction.

	 When the temperature dependence of physical

quant i t ies is considered in the f ramework of s tat is t ica l

mechanics, we take an average that depends on temperature

(Boltzmann average). For example, the total energy of the

system at a certain temperature T can be calculated through

Figure 1 The Ising model on the two-dimensional
	 square lattice

TSUBAME_vol7_E.indd 9 12.12.12 7:19:44 PM

10

Let us star t with explaining the cluster- f l ip Monte Car lo

method. This algorithm is an algorithm that the clusters of

the spins are generated and then the spins in each cluster

are updated at once. The cluster-f lip algorithm successfully

reduced the problem of slow dynamics. In this paper, we deal

with the multi-cluster-f lip algorithm proposed by Swendsen

and Wang (SW) [2]; they applied the Fortuin and Kasteleyn [6]

representation to identify clusters of spins.

Cluster-flip Monte Carlo algorithm 2

by taking a simple average. But the Metropolis method suffers

from the problem of slow dynamics that it takes a long time

to equilibrate, for example, at the temperature range near

the phase transition point. To overcome this difficulty, several

algorithms, such as the cluster spin-flip algorithm [2,3] and multi-

canonical algorithm [4], have been proposed.

	 It goes without saying that the simulation is performed

on the computer; the development of computer has changed

the role of simulation. The drastic progress of the computational

speed has made possible to treat larger system sizes, and

more realistic and more complex systems become subjects of

simulation. At the same time, the development of numerical

techniques ranging from the computational algorithm to the

analysis method has been the matter of research all the time.

	 In recent years , the application of GPU (graphic

processing unit) to scientific computations has been a hot topic

in computer science. If we can efficiently use the system of

TSUMABE 2.0, a drastic advance in the field of simulation can be

expected.

	 As a Monte Carlo simulation of spin systems using

GPUs, Preis et a l . [5] repor ted the GPU calculat ion of the

Metropolis method, and the drastic speed-up of the calculation

over the CPU calculation was realized. The Metropolis simulation

for systems with short-range interaction is a problem of local

computation, and the parallelization is rather simple. Instead,

the cluster-f lip method is a non-local computation, and the

parallelization is not straightforward. We have succeeded in

realizing the GPU-based calculation for cluster-f lip method;

fast and large-scale computations of the cluster-f lip Monte

Carlo method are highly desired. In this paper, we explain the

calculation of cluster-flip Monte Carlo method using a single

GPU and that using multiple GPUs, and the performance of our

algorithm on the TSUBAME 2.0 is reported.

Figure 2 The procedure of the SW multi-cluster algorithm

	 The procedure of the SW multi-cluster algorithm

consists of three steps, which is shown in Fig. 2. One spin locates

in one mesh in Fig. 2, and the spin variables Si are expressed as Si

= 0, 1. There are three main steps in the SW algorithm:

　(1) Construct a bond lattice of active or non-active bonds

	 depending upon the temperature.

　(2) The active bonds partition the spins into clusters which are

	 identified and labeled using a cluster-labeling algorithm.

　(3) All spins in each cluster are set randomly to 0 or 1.

The procedure from the step (1) to the step (3) is repeated, which

is regarded as one Monte Carlo Step. The Hoshen-Kopelman

algorithm [7], which is a special version of the class of union-and-

find algorithms [8], is often used for an efficient cluster-labeling

algorithm. Integer labels are assigned to each spin in a cluster.

Each cluster has its own distinct set of labels. The proper label

of a cluster, which is defined to be the smallest label of any spin

in the cluster, is found by the following function. The array label

is used, and if label is a label belonging to a cluster, label[label]

is the index of another label in the same cluster which has a

smaller value if such a smaller value exists. The proper label for

the cluster is found by evaluating label[label] repeatedly until

the label[label] is unchanged.

The multiple GPU calculation
for the classical spin model

TSUBAME_vol7_E.indd 10 12.12.12 7:19:45 PM

Table 1 The computational times per one Monte Carlo
	 Step (millisecond) for the two-dimensional Ising
	 model at the critical temperature with a CPU and
	 a single GPU.

11

When we extend the CPU calculation to the GPU calculation, we

should keep in mind to change the algorithm from a sequential

computation to a parallel computation. This shift is very important

to realize the GPU calculation. In the SW multi-cluster algorithm

with GPU, the procedure from the step (1) to the step (3) remains

unchanged. Thus, we check whether the SW multi-cluster

algorithm with CPU is directly applicable to that with GPU. In the

step (1), each bond can be generated independently. In the step

(2), the method of cluster labeling with CPU cannot directly be

applied to the single GPU calculation since the HK algorithm is a

sequential computation. In the step (3), each spin can be updated

independently if the new spin states are given in advance. From

the above, the procedure with CPU in the steps (1) and (3) are

directly applicable to that with GPU. However, we should modify

the algorithm of cluster labeling in the step (2) so as not to use

the sequential computation.

	 The cluster labeling algorithm with a single GPU

was proposed by Hawick et. al.[9] and the refinement of that by

Kalentev et al.[10] Those cluster algorithms are named the label

equivalence algorithm. We employ the two label equivalence

algorithms for the method of cluster labeling with a single

GPU [11]. The concept of the label equivalence algorithm is

basically equal to the HK algorithm; that is, each thread updates

the label[label] until the label[label] is unchanged. However,

the label equivalence algorithm repeats the kernel call with

the label updates, which is dif ferent from the case of the HK

algorithm. We note that the label equivalence algorithms are

explained in Ref. [11] in detail.

The system size we can treat is limited for a single GPU. If we use

a multiple GPU system such as TSBAME 2.0, a very large system

can be treated directly, and the fast computation becomes

possible. The GPU calculation itself is a parallel calculation, but

there are several problems that we should bear in mind when

performing multiple GPU calculation. First, the communication

between multiple GPUs should be considered. Second, the

calculation with a single GPU is the shared memory calculation,

whereas the calculation with multiple GPUs is the distributed

memory calculation. The difference of memory type becomes a

serious problem in the extension of SW multi-cluster algorithm

from a single GPU to multiple GPUs.

	 As a model, we take the two-dimensional Ising model

again. The data transfers on three levels are needed, that is, the

data transfer from GPU to CPU, that between CPUs and that

from CPU to GPU. We use API of CUDA for the communication

between CPU and GPU, and MPI library for the communication

between CPUs. We arrange the total lattice with a super-lattice

structure using multiple GPUs. Each GPU has the information

of spins on a sub-lattice together with the arrays to preserve

the data of surrounding boundary layers and to transfer the

data of boundary layers. We illustrate the case of a 2 × 2 super-

lattice structure using 4 GPUs in Fig. 3. To arrange the data of

surrounding boundary layers in each GPU, the calculation in

the step (1) can be executed without the data transfer with

The calculation with a single GPU 3

The calculation with multiple GPUs 4

	 Now, we compare the per formance on the two-

dimensional Ising model with CPU to that with a single GPU. We

have tested the performance of our code on NVIDIA GeForce

GTX580. For comparison, we run the code on a current CPU,

Intel(R) Xeon(R) CPU W3680 @ 3.33 GHz; we use only one core of

the CPU. For compiler, we have used gcc 4.1.2 with option -O3.

We employ the HK algorithm as the method of cluster labeling

with CPU. Since the cluster size depends on the temperature,

we compare the performance at the critical temperature of the

two-dimensional Ising model kbTc/J= 2.269...[12]. We show the

computational time per one Monte Carlo Step (millisecond) in

Table 1. There, the linear system sizes L are L = 256, 1024 and

4096. We can see from Table 1 that the computational times with

GPU are highly accelerated compared to that with CPU. We also

confirm that the computational speed using the algorithm of

Kalentev et al. is superior to that of Hawick et al. for all system sizes.

TSUBAME_vol7_E.indd 11 12.12.12 7:19:45 PM

12

its neighbors. In the step (2), we employ a two-stage process

of cluster labeling. After the cluster labeling within each GPU

is finished, we check the bond between the sites of ‘‘nearest-

neighbor ’ ’ GPU. In the inter-GPU labeling step, we should

consider the distributed memory, which will be discussed next.

The treatment for distributed memory should be considered

also in the step (3).

	 If we directly apply the SW multi-cluster algorithm

with a single GPU to that with multiple GPUs, the problems

occur in the steps (2) and (3). In the step (2) of cluster labeling

with a single GPU, each thread updates the label[label] until

the label[label] is unchanged. On the other hand, in the step

(2) with multiple GPUs, each thread has a possibility to access

the array on different GPU memory. And, this access to different

GPU memory generates errors in the step (2) because each GPU

cannot get access to the different GPU memory. If we directly

apply the step (3) of spin f lip with a single GPU to that with

multiple GPUs, each GPU should check the label number in each

GPU after the step (2) and make a decision about the targets

of communication in all GPUs; then the new spin states are

transferred from those targets to each GPU. But, that calculation

with multiple GPUs needs an enormous amount of costs.

	 Some attempts for the cluster labeling algorithm

with multiple CPUs have been proposed: the master-slaves

method [13], the method to prepare a global label array [14], and

the method to exchange the boundary information with its

neighbors until the all labels are unchanged (named a relaxation

method) [15]. In a relaxation method, there are some versions; the

method to set up the local root [15] and the method to generate

the area of overlap [16]. In this paper, we employ the relaxation

method since the amount of memory on a single GPU is not so

much.

Figure 3 The 2 × 2 super-lattice structure for 4 GPUs
	 and the information on a single GPU.

Figure 4 Plot of spin flips per a nano second with
	 changing the number of GPUs for the two-
	 dimensional Ising model at the critical
	 temperature on the TSUBAME 2.0.

	 The cluster labeling algorithm with multiple CPUs is

realized by using one label variable. On the other hand, we use

two label variables, that is, the local label and the global label,

to realize the cluster labeling algorithm with multiple GPUs. To

resolve the problem in the step (3), we store the new spin state

in the label variable by using the bit manipulation.

	 We have tested the performance of the multiple GPU

calculation of the SW cluster-flip algorithm on TSUBAME 2.0 with

NVIDIA Tesla M2050 GPUs using CUDA 4.0 and openMPI 1.4.2.

As a model, we use the two-dimensional Ising model at the

critical temperature. We give the double logarithmic plot of the

average amount of spin flips per nano second as a function of

the number of GPUs in Fig. 4. For the size of sub-lattice of each

GPU, not only the data for 4096 × 4096 but also those for 2048

× 2048 and 1024 × 1024 are plotted. The dependences on the

number of GPUs with fixing the total linear system size as L =

4096, 8192, 16384, 32768 and 65536 are shown. In the inset, the

dependence on the number of GPUs with fixing the sub-lattice

size as 4096 × 4096 is shown. We see that the performance

of our code increases as a power of the number of GPUs. The

coefficient of the power is estimated as 0.91 by the best-fitted

curve shown in the inset. Since it takes extra time to dif fuse

the label number from one GPU to all GPUs, the perfect weak

scalability, that is, the power of 1.0, is not achieved, but we can

say that the weak scalability is well satisfied for our code.

The multiple GPU calculation
for the classical spin model

TSUBAME_vol7_E.indd 12 12.12.12 7:19:46 PM

13

References

[1]	 N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth and A.H. Teller, E. Teller:

Equation of State Calculations by Fast Computing Machines, J. Chem. Phys.

Vol. 21, pp. 1087-1092 (1953)

[2]	 R.H. Swendsen and J.S. Wang: Nonuniversal critical dynamics in Monte Carlo

simulations, Phys. Rev. Lett. Vol. 58, pp. 86-88 (1987)

[3]	 U. Wolff: Collective Monte Carlo Updating for Spin Systems, Phys. Rev. Lett.

Vol. 62, pp.361-364 (1989)

[4]	 F. Wang and D.P. Landau: Phys. Rev. Lett. Vol. 86 pp. 2050-2053 (2001).

[5]	 T. Preis, P. Virnau, W. Paul and J.J. Schneider: GPU accelerated Monte Carlo

simulation of the 2D and 3D Ising model, J. Comp. Phys. 228 pp. 4468-

4477(2009).

[6]	 C. M. For tuin and P. W. Kasteleyn: On the random-cluster model: I .

Introduction and relation to other models, Physica Vol 57, pp. 536-564 (1972)

[7]	 J. Hoshen, and R. Kopelman: Percolation and cluster distribution. I. Cluster

multiple labeling technique and critical concentration algorithm, Phys. Rev.

B. Vol. 14, pp.3438-3445 (1976).

[8]	 T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein: Introduction to

Algorithms, MIT Press, third edition, 2009.

[9]	 K.A. Hawick, A. Leist and D. P. Playne:　Parallel Graph Component Labelling

with GPUs and CUDA, Parallel Computing Vol. 36, pp. 655-678 (2010)

[10]	O. Kalentev, A. Rai, S. Kemnitzb and R. Schneider: Connected component

labeling on a 2D grid using CUDA, J. Parallel Distrib. Comput. Vol. 71, pp.

615-620 (2011)

[11]	Y. Komura and Y. Okabe: GPU-based　Swendsen-Wang multi-cluster

algorithm for the simulation of two-dimensional classical spin systems,

Comp. Phys. Comm. Vol. 183, pp. 1155-1161 (2012)

[12]	L. Onsager: Crystal Statistics. I. A Two-Dimensional Model with an Order-

Disorder Transition, Phys. Rev. Vol. 65, pp. 117-149 (1944)

[13]	M. Bauerfeind, R. Hackl, H.G. Matuttis, J. Singer, I. Morgenstern, 3D Ising

model with Swendsen–Wang dynamics: a parallel approach, Physica A Vol.

212, pp. 277–298 (1994)

[14]	J.M. Constantin, M.W. Berry, B.T. Vander Zanden, Parallelization of the

Hoshen–Kopelman algorithm using a finite state machine,Internat. J.

Supercomput. Appl. High Perform. Comput. Vol. 11, pp. 34–48 (1997)

[15]	M. Flanigan, P. Tamayo, Parallel cluster labeling for large-scale Monte Carlo

simulations, Physica A Vol. 215, pp. 461–480 (1995)

[16]	J.M. Teuler and J.C. Gimel :A direct parallel implementation of the Hoshen–

Kopelman algorithm for distributed memory rchitectures Comp. Phys.

Comm. Vol. 130, pp. 118-129 (2000)

[17]	Y. Komura and Y. Okabe: Multi-GPU-based Swendsen–Wang multi-cluster

algorithm for the simulation of two-dimensional q-state Potts model, Comp.

Phys. Comm. Vol. 184, pp. 40-44 (2012)

[18]	Y. Komura and Y. Okabe: Large-Scale Monte Carlo Simulation of Two-

Dimensional Classical XY Model Using Multiple GPUs, J. Phys. Soc. Jpn., Vol.81,

113001 (2012).-

We proposed the GPU-based calculation of the SW multi-

cluster algorithm, which is one of the Markov Chain Monte Carlo

algorithms in statistical mechanics, with a single GPU [11] and

multiple GPUs [17]. The cluster labeling algorithm with a CPU is not

directly applicable to that with GPU. However, we have realized

the SW cluster algorithm by using the two label equivalence

algorithms proposed by Hawick et al. [9] and that by Kalentev et al. [10].

	 Moreover, we have extended the SW cluster algorithm

with a single GPU to that with multiple GPUs. We cannot directly

apply the cluster labeling algorithm with a single GPU to that with

multiple GPUs because the memory types of a single GPU and

multiple GPUs are different. By using the relaxation method and

two label variables, we have realized the cluster labeling algorithm

with multiple GPUs in the SW multi-cluster algorithm. In the step

of cluster labeling with multiple GPUs, we employ a two-stage

process; that is, we first make the cluster labeling within each

GPU, and then the inter-GPU labeling is performed with reference

to the label on the first-stage. We use some tricks for the step of

spin update; we include the information on new spin state in the

process of cluster labeling. We have tested the performance of the

SW multi-cluster algorithm with multiple GPUs on TSUBAME 2.0 for

the two-dimensional Ising model at the critical temperature. We

have shown a performance with good scalability for multiple GPU

computations although the cluster-flip algorithm is a nonlocal

problem which is not so easy for parallelization.

	 The SW cluster-flip algorithm using multiple GPUs can

be applied to a wide range of spin problems. As an example,

we have already studied the large-scale calculation for the

two-dimensional classical XY model [18]. Moreover, the cluster

labeling using multiple GPUs can be applied to several problems

including the percolation, the image processing, and so on.

We are now attempting to refine the cluster labeling algorithm

with multiple GPUs and to develop the implementation of the

algorithms on the problems in various fields.

Acknowledgements

We thank Takayuki Aoki, Yusuke Tomita, and Wolfhard Janke for

valuable discussions. This work was supported by a Grant-in-Aid

for Scientific Research from the Japan Society for the Promotion

of Science. The computations have been performed on the

TSUBAME 2.0 system of the Tokyo Institute of Technology.

Conclusion 5

TSUBAME_vol7_E.indd 13 12.12.12 7:19:46 PM

14

In Science fiction novels and movies, robots communicate naturally with humans. In order to realize such robots,
it is necessary to make them understand language and also to provide them with knowledge that is common to
humans. However, it is very difficult to express such knowledge manually, owing to the vastness thereof. As such,
the development of robots has been affected by this deadlock for a long time. Owing to the recent progress in
computer networks, and the web in particular, a large number of texts has been accumulated and it becomes
possible to acquire knowledge from such texts. This article introduces automatic knowledge acquisition from a large
web text collection and linguistic analysis based on the acquired knowledge.

Daisuke Kawahara* Sadao Kurohashi*
*Graduate School of Informatics, Kyoto University

Recently, we have become accustomed to using speech

interfaces for smart phones, whitch facilitate the execution of

certain specific tasks in practice. However, it is still not possible

for computers to communicate naturally with humans. To realize

such computers, it is necessary to develop computer systems that

can understand and use natural language at the same level as

humans.

	 The following two sentences are classical examples of

syntactic ambiguities in Japanese sentences.

　（1） a. クロールで泳ぐ少女を見た

	 b. 望遠鏡で泳ぐ少女を見た

These two sentences have the same style, but "クロールで"

(crawl) and "望遠鏡で" (telescope) have different modifying

heads (the underlined part modies the doubly-underlined part).

This kind of syntactic ambiguity cannot be resolved by Japanese

grammar, but by precisely considering the relations between

words. To do that, linguistic knowledge of words such as "クロー

ルで泳ぐ" (swim crawl) and "望遠鏡で見る" (see with telescope) is

required. However, the amount of knowledge required is too vast

to be expressed manually.

	 In recent years, a massive number of texts can be

obtained from the web, and studies that automatically acquire

linguistic knowledge from such a large text collection have

arisen. We automatically acquire the linguistic knowledge from

a huge text collection crawled from the web, and develop

an analyzer based on the acquired knowledge. This article

introduces that this knowledge acquisition process was carried

out in an extremely short period using the large computational

resources of TSUBAME.

Introduction 1

Knowledge Acquisition from
a Large Web Corpus and
its Applications

	 As the acquired linguistic knowledge, this ar ticle

describes case frames, which represent aggregated predicate-

argument structures, namely "who does what." This is one of basic

linguistic knowledge known by humans. We compile case frames

in the following way[1]:

 1. Extraction of Japanese sentences from a web page

collection (corpus creation)

 2. Syntactic parsing of the corpus

 3. Filtering and clustering of syntactic parses to produce

	 case frames

This time, we transmitted the corpus that had been created on

other clusters to TSUBAME, and performed the processes of

syntactic analysis of the corpus and case frame compilation on

TSUBAME.

	 In the remainder of this article, we first describe the

method of case frame compilation. Then, we explain linguistic

analysis based on acquired case frames. Finally, we report the

experimental results on TSUBAME.

A case frame represents the relations between a predicate and

its arguments for each usage of the predicate. For example, the

following is a case frame for the predicate " 焼く " :

　（2） { 私、人、… ｝ が 　{ オーブン、フライパン、… ｝ で

	 { パン、肉、… ｝ を　焼く

	 Such case f r ames are automat ica l ly acquire d by

app l y ing s y nt ac t ic p ar s ing to a huge cor pus , e x t r ac t in g

syntactically unambiguous relations between a predicate and

Automatic Compilation of
Case Frames 2

TSUBAME_vol7_E.indd 14 12.12.12 7:19:47 PM

15

its arguments from the resulting parses and clustering them.

Syntactically unambiguous relations consist of those arguments

that have only one modif ying candidate head based on the

grammatical rules of the syntac tic parser. In the fol lowing

examples, the underlined arguments demarcated with a ○ are

extracted as unambiguous ones:

　（3） a. 今日は石窯で ○ パンを ○ 焼いています。

	 b. 80 種類ものパンを ○ 焼いていますが、…

	 c. その後、パンを × 焼いた余熱を利用し…

	 d. 直径が × 15センチのケーキを焼きます

In (3 a) and (3b), since the sentence end and the subordinate

clause " ～ が " are considered to be strong boundaries, the

arguments " 石 窯でパンを" (masonry oven, bread) and "パンを"

(bread), which unambiguously modify "焼く" (bake), are extracted

from these sentences, respectively.

	 O n t h e o t h e r h a n d , t h e u n d e r l i n e d a r g u m e n t s

demarcated with a × in (3c) and (3d) are not extracted due to the

ambiguity of modifying heads. In (3c), the head of the underlined

argument "パンを" (bread) is correctly analyzed as "焼いた" (baked),

but this argument is not extracted because it has two candidate

heads "焼いた" (baked) and " 利用し" (use). In (3d), the underlined

argument "直径が" (diameter) is not extracted either, because it

has two candidate heads " 15センチ" (15cm) and "焼きます" (bake).

Since the syntactic parser incorrectly analyzes the head of "直径

が" (diameter) as " 焼きます" (bake), extracting such ambiguous

relations would produce erroneous case frames. This filtering can

be done on the basis of the grammatical rules in the syntactic

parser, which handle such exceptional phrases.

	 T h e b i g g e s t p r o b l e m i n a u t o m a t i c c a s e f r a m e

compilation is sense ambiguity of predicates. In case of "焼く," it

is necessary to distinguish expressions with different meanings

and usages such as "パン を 焼 く" (bake bread) and " 手 を 焼 く"

(have difficulty). To deal with this problem, predicate-argument

structures are distinguished by coupling a verb and its closest

argument. This is because the closest argument is thought to

strongly influence the meaning and usage of the predicate. For

" 焼く," by making a couple of "パン を 焼く" (bake bread), " 肉 を

焼く" (broil meat) and "手 を焼く" (have difficulty), it is possible

to separate predicate-argument structures according to their

meanings and usages and to acquire a case frame for each of

them. Further, by applying clustering based on word similarities,

similar case frames such as "パンを焼く" (bake bread) , and " 肉を

焼く" (broil meat) can be merged to produce final case frames as

given in Table 1. The word similarities are measured on the basis

of distributional similarities calculated from the huge corpus[3].

By integrating the automatically compiled case frames into

syntactic parsing, we can now resolve the syntactic ambiguities

in examples (1a) and (1b)[2]. For example, it is difficult to acquire

the relation " クロールで 泳ぐ " (swim crawl), which is required to

correctly analyze example (1a), from a newswire corpus comprising

tens of thousands of sentences. However, it is included in the

case frames compiled from a large corpus. That is to say, wide-

coverage knowledge on relations between content words is

successfully captured in the case frames. These case frames enable

to disambiguate syntactic ambiguities as in example (1).

	 Further, it is possible to detect the hidden cases of topic-

marked phrases and clausal modifiees. For example, in the two

sentences in (1), "少女 " (girl) has a "が" (nominative) relation to "泳

ぐ" (swim). This relation can be analyzed by predicate-argument

structure analysis based on the case frames.

	 This kind of method, which learns relations between

words from a large corpus and exploits them in analysis, has been

applied to other languages [4, 7].

Predicate-argument Structure Analysis
based on Case Frames 3

Table 1 Acquired case frames for yaku. Example
	 words are expressed only in English due
	 to space limitation. The number following
	 each word denotes its frequency. `CS'
	 indicates a case slot.

TSUBAME_vol7_E.indd 15 12.12.12 7:19:47 PM

16

First, we extracted Japanese sentences from three billion web

pages, eliminated duplicated sentences and obtained a corpus

comprising approximately 15 billion sentences. This extraction

had been conducted on other PC clusters and the extracted

corpus was transmitted to TSUBAME. We then applied syntactic

parsing to this corpus using TSUBAME. To carry out this process,

we needed computational power of approximately 200,000 CPU

core hours. The smallest unit in this process is a sentence, and

thus we were able to implement it in an embarrassingly parallel

way by split ting the corpus into small processing units each

cousisting of approximately 10,000 sentences.

	 Secondly, we acquired case frames from the parses of

15 billion sentences using the method of case frame compilation

described in section 2.1 As a result, we acquired case frames for

approximately 40,000 predicates. To perform this process, we

needed computational power of approximately 10 0,0 0 0 CPU

core hours. By integrating the acquired case frames into our base

syntactic parser, we developed a predicate-argument structure

analyzer.

	 Thirdly, to investigate the relationship between corpus

size and the accuracy of the analyzers, we created a corpus of 1.5

million, 6 million, 25 million, 100 million, 400 million, 1.6 billion

and 6.4 billion sentences by sampling the above corpus consisting

of 15 billion sentences. We conducted case frame compilation

from each corpus and developed analyzers based on these case

frames. Figure 1 shows the changes in accuracy and coverage

for the varying sizes of corpora. In this figure, "coverage of case

frames" represents how many predicate-argument structures

in the test sentences are included in the case frames, "synonym

recognition" means the recognition of synonymous phrases such

as "景気が悪化する" (economy gets worse) and "景気が冷え込む"

(economy gets cold), and "anaphora resolution" means an analysis

of detecting omitted nouns such as the subject of a verb[5].

From this figure, we can see the improvements in accuracy and

coverage as the size of corpus increases.

	 To conduct the above computation on TSUBAME, we

used the grid shell, GXP2, which has been developed at the Taura

laboratory at the University of Tokyo. As the queue for TSUBAME,

we mainly used the reservation queue (H queue) with at most 300

nodes (3,600 CPU cores) in parallel.

Experimental Results 4

Figure 1 Changes in accuracy and coverage
	 for varying sizes of corpora

1 The acquired case frames can be searched from http://nlp.ist.i.kyoto-u.ac.jp/index.php? 京都大学格フレーム.
2 http://www.logos.ic.i.u-tokyo.ac.jp/gxp/

Knowledge Acquisition from
a Large Web Corpus and its Applications

TSUBAME_vol7_E.indd 16 12.12.12 7:19:48 PM

17

References

[1]	 Daisuke Kawahara and Sadao Kurohashi . Case f rame

compi lat ion f rom the web using highp er formance

computing. In Proceedings of LREC2006, 2006.

[2]	 Daisuke Kawahara and Sadao Kurohashi. A fullylexicalized

probabil ist ic model for Japanese syntactic and case

structure analysis. In Proceedings of HLT-NAACL2006, pp.

176-183, 2006.

[3]	 Dekang Lin. Automatic retrieval and clustering of similar

words. In Proceedings of COLINGACL98, pp. 768-774, 1998.

[4]	 David McClosky, Eugene Charniak, and Mark Johnson.

Effective self-training for parsing. In Proceedings of HLT-

NAACL2006, pp. 152-159, 2006.

[5]	 Ryohei Sasano and Sadao Kurohashi. A discriminative

approach to japanese zero anaphora resolution with large-

scale lexicalized case frames. In Proceedings of IJCNLP2011,

pp. 758-766, 2011.

[6]	 Keij i Shinzato, Tomohide Shibata, Daisuke Kawahara,

and Sadao Kurohashi. Tsubaki: An open search engine

i n f r a s t r u c t u r e f o r d e v e l o p i n g i n f o r m a t i o n a cce s s

methodology. Journal of Information Processing, Vol. 20, No.

1, pp. 216-227, 2012.

[7]	 Jun Suzuki, Hideki Isozaki, Xavier Carreras, and Michael

Collins. An empirical study of semi-supervised structured

conditional models for dependency parsing. In Proceedings

of EMNLP2009, pp. 551-560, 2009.

Figure 2 A search result of search engine TSUBAKI

In this article, we have described case frame compilation from

a huge text collection collected from the web and syntactic

and pre dicate -argument s t ruc ture analys is based on the

acquired case frames. The process of case frame compilation

was per formed in an extremely short period using the large

computational resources of TSUBAME.

	 A s an appl icat ion of the automat ica l ly acquire d

linguistic knowledge and the analyzer based on this knowledge,

we have been developing the search engine infrastructure,

TSUBAKI[6]. The biggest characteristic of TSUBAKI is the precise

search exploiting synonym knowledge and linguistic structure

(as in Figure 2). In this way, the automatically acquired linguistic

knowledge and deep analysis can be exploited in practical

applications effectively.

	 The accuracy of the analyses and the coverage of case

frames are expected to be improved with an increasing corpus

size. In future, we will try to increase the size of the corpus to

acquire more knowledge. For this purpose, we will use TSUBAME

on a larger scale.

Conclusion 5

● TSUBAME e-Science Journal No.7
Published 26/12/2012 by GSIC, Tokyo Institute of Technology ©
ISSN 2185-6028
Design & Layout: Kick and Punch
Editor:	 TSUBAME e-Science Journal - Editorial room
	 Takayuki AOKI, Thirapong PIPATPONGSA,
	 Toshio WATANABE, Atsushi SASAKI, Eri Nakagawa
Address: 	2-12-1-E2-1 O-okayama, Meguro-ku, Tokyo 152-8550
Tel: 	 +81-3-5734-2087　Fax: +81-3-5734-3198
E-mail: 	 tsubame_j@sim.gsic.titech.ac.jp
URL: 	 http://www.gsic.titech.ac.jp/

TSUBAME_vol7_E.indd 17 12.12.12 7:19:48 PM

International Research Collaboration

Application Guidance

Inquiry

Please see the following website for more details.
http://www.gsic.titech.ac.jp/en/InternationalCollaboration

The high performance of supercomputer TSUBAME has been extended to the
international arena. We promote international research collaborations using
TSUBAME between researchers of Tokyo Institute of Technology and overseas
research institutions as well as research groups worldwide.

Recent research collaborations using TSUBAME

1. Simulation of Tsunamis Generated by Earthquakes using Parallel
　Computing Technique

2. Numerical Simulation of Energy Conversion with MHD Plasma-fluid Flow

3. GPU computing for Computational Fluid Dynamics

Candidates to initiate research collaborations are expected to conclude
MOU (Memorandum of Understanding) with the partner organizations/
departments. Committee reviews the “Agreement for Collaboration” for joint
research to ensure that the proposed research meet academic qualifications
and contributions to international society. Overseas users must observe
rules and regulations on using TSUBAME. User fees are paid by Tokyo Tech’s
researcher as part of research collaboration. The results of joint research are
expected to be released for academic publication.

TSUBAME_vol7_E.indd 18 12.12.12 7:19:48 PM

