
The TSUBAME2.5 Evolution

Molecular Dynamics Simulation Accelerated
by GPU for GPCR with a non-Ewald Algorithm

Large-scale Parallel Iterated Local Search
Algorithm for Traveling Salesman Problem

10

02

TSUBAME 2 . 0 , was designed, instal led, and operated at the Global Scientif ic Information and Computing
Center (GSIC), Tokyo Institute of Technology, in collaboration with our partner vendors, commissioned on Nov.
1st, 2010. In Sept. 2013, it was upgraded to TSUBAME2.5, by which the theoretical peak precision in double
precision floating point (DFP) arithmetic was improved from 2.4 Petaflops to 5 .7 Petaflops. More impressive
is the improvement in single precision floating point (SFP), in which the boost was from 4.8 Petaflops to 17.1
Petaflops, becoming the fastest supercomputer in Japan under that metric. Despite the massive increase in
performance, average power consumption was reduced by about 20% , while upwards software compatibility
was fu l ly preserved. TSUBAME 2 . 5 wi l l serve i ts ro le as a leading machine in the Japanese HPCI (High
Performance Computing Infrastructure). This article will describe the upgrade of TSUBAME 2 . 0 to 2 . 5 , and
technological directions towards 3.0 in late fiscal year 2015.

Satoshi Matsuoka
Global Scientific Information and Computing Center (GSIC) Tokyo Institute of Technology

The TSUBAME2.5 Evolution

The TSUBAME2.0 Supercomputer has been in active use since

its deployment in 2010 for early 3 years as Japan’s first petascale

supercomputer at Tokyo Institute of Technology, and one of

the leading machines in the Japanese HPCI (High Performance

Computing Infrastructure). In September 2013, it was upgraded

to TSUBAME2.5, by which the theoretical peak precision in

double precision floating point (DFP) arithmetic was improved

from 2.4 Petaflops to 5.7 Petaflops, single precision floating

point (SFP), performance accordingly from 4.8 Petaflops to 17.1

Petaflops, becoming the fastest supercomputer in Japan under

that metric. However, the upgrade was by no means effortless,

and rather was met with various challenges. This article covers

the upgrade from various angles, the rationale for its planning,

the challenges met, how they were resolved， and the resulting

performance gains.

Introduction 1

Fig. 1 TSUBAME2.5 Commissioned on Sept. 10th, 2013

Fig. 2 Compute node of TSUBAME2.5 embodying
 the new NVIDIA Kepler K20X GPU

TSUBAME2.0 was developed by GSIC in collaboration with an

industry consortium consisting of major HPC vendors such as

NEC/HP/NVIDIA, and became operational on Nov. 1st, 2010. It

was the first ever Japanese supercomputer to surpass a petaflop,

and became No. 4 in the world on the Nov. 2010 edition of the

Top500 List and No.2 on the Green 500 list, and moreover was

designated the “Greenest Supercomputer in the World” award

as it was the only large-scale production supercomputer high

on the latter list. Also, in Nov. 2011, it won the ACM Gordon Bell

Award, which is the most esteemed award in supercomputing

regarding the execution of a real large-scale application, sharing

the honor with the Riken AICS K Computer. By the end of July

2013, there are approximately 10,000 registered users, of which

2,000 were bona-fide supercomputer users, and at any time 50-

100 users were logged onto the machine. Aside from periodic

maintenance every several months, and emergency situation

imposed by the Tohoku earthquake in March 2011, TSUBAME2.0

Overview of the Predecessor
--- TSUBAME2.0 2

03

TSUBAME2.0 saw extremely high utilization rate thanks to

its advanced features, but recently it was reaching capacity

limit. In particular, in the busy seasons of the latter half of

the fiscal year, the utilization rate easily sustained 90 % , and

at extreme times it reached 100 % ; so despite being number

two fastest supercomputer in Japan, the overall capacity was

becoming obviously insufficient. Also, the overall international

competitiveness of the TSUBAME2.0 was obviously degrading

steadily. Since supercomputer performance progresses by a

factor of 1,000 over every 10 years, such decline was imminent,

but nonetheless TSUBAME2.0 global ranking on the Top 500

had degraded being 3rd in Japan and outside the top 20 in the

world.

 S ince TSUBAME 2.0 was planned to have a four

Upgrade Plans from
TSUBAME2.0 to TSUBAME2.5 3

has been in operation 24/7 throughout the year, helping to

produce various important scientific results.

 TSUBAME2.0 is serving as one of the primary resources

for the nationwide supercomputing infrastructure, along with

other major university supercomputing centers and the K

computer at Riken AICS (Advanced Institute for Computational

Sciences) and the Earth Simulator 2 at JAMSTEC ES Center,

altogether forming a consortium of centers called HPCI (High

Performance Computing Infrastructure). A part of the resource

of TSUBAME2.0 is allocated through a national HPCI allocation

process. Moreover, there are many industrial users that utilize

TSUBAME2.0 under various industrial usage programs, ranging

to over 100 companies to date.

 T S U B A M E 2 . 0 w a s d e v e l o p e d a s a n a d v a n c e d

supercomputer leading the technology fronts in many aspects,

in collaboration with the top HPC companies of the world,

such as NEC HP, NVIDIA and DDN. Some of the salient technical

elements are as follows:

High Performance, High Bandwidth Compute Nodes:

The primary compute nodes of TSUBAME2.0 are called “thin

nodes”. There are 1408 thin nodes, that have been productized

as HP Proliant SL390s G7, each consisting of 2 Intel Xeon multi-

core CPUs (6 cores 2.93Ghz Westmere-EP), and 3 NVIDIA M2050

GPUs (448 CUDA cores, 515GigaFlops), with 54 or 96 GigaBytes

of CPU memory, and 3 GigaBytes of fast DDR5 memory for each

GPU, each with 150 GigaByte/s of bandwidth. The aggregated

compute and memory bandwidth capabil ity of the “thin

nodes” are 1.6 TeraFlops and over 500 GigaByte/s, respectively.

There are additional 40 nodes of “medium” and “fat” nodes

that utilized standard servers and host 128-512 GigaBytes of

memory.

Hierarchical Large-Scale Storage:

In order to meet a variety of diverse and massive I/O demands,

TSUBAME2.0 storage is composed of three h ierarchica l

elements, namely (1) node-local SSDs, (2) shared parallel file

systems using HDDs, and (3) archival tape library.

(1) Each compute node is equipped with 120-240 GigaBytes

of SSDs (solid state drives) configured as Raid-0. By utilizing

SSDs for temporary file I/O of each node such as scratch I/

O and checkpoints, we greatly reduce the I/O demands

of the parallel file system below in the hierarchy. The I/O

bandwidth of the SSDs are over 300 MegaByte/s, or over a

1/2 TeraByte/s for the entire machine.

(2) The shared parallel file system has 7.2 Petabytes of raw

capacity comprised of nearly 4000 HDDs controlled by the

DDN SFA 10000 storage controller and a farm of storage

servers. The storage is divided into 6 partitions, one as

a home directory and 5 as parallel filesystems, 3 being

Lustre and 2 as GPFS parallel filesystems. The bandwidth of

each partition is approximately 10 GigaByte/s, for over 50

GigaByte/s aggregated I/O bandwidth.

(3) Finally, as a backup and archival storage, there are 8 PetaBytes

(compressed) tapes managed by the SL8500 tape system.

The GPFS fi lesystem region works automatically with

SL8500 to implement a Hierarchical File System using IBM

Tivoli software.

Full Bisection Infiniband Network:

Over 1400 compute nodes, the storage nodes and their servers

are interconnected with QDR Infiniband network. Each node

has two rails (links) of Infiniband, each with 40 Gigabit/s of

bandwidth, totaling 80 Gigabit/s of injection bandwidth into

the network. The actual measured bandwidth is approximately

7.5 GigaByte/s, and less than 2 microsecond latency. The entire

fabric consists of 12 core switches with 324 ports each, and 179

edge switches with 36 ports each, comprising a full bisection

fat-tree network, mutually connected with advanced silicon

photonics optical network with 3500 optical fibers totaling

100 kilometers in length. The bisection bandwidth of the

entire network is 220 Terabit/s, which is exceeds the combined

average of all the global Internet traffic in 2012.

04

By replacing the NVIDIA Fermi M2050 GPU entirely with the

latest generation NVIDIA Kepler K20X GPU, TSUBAME2.5 peak

performance was boosted to 5.76 PetaFlops DFP and 17.1

PetaFlops SFP respectively; also, the peak memory bandwidth

became 1.16 PetaByte/s, and approximately 0.8 PetaByte/s

measured. Figure 3 shows the overview of the node upgrade,

and Table 1 i s the compar ison of the spec i f icat ion for

TSUBAME2.0 and 2.5. However, such upgrade of GPUs was not

automatic, and many possibilities had to be considered, as well

as technical challenges be met and resolved.

 Although thanks to the supplementary budget

substantial upgrade was possible, adding new nodes was

quickly ruled out, due to the limitations in power and space.

Other upgrade paths were also considered, but the upgrade of

the accelerators was judged to be the most technically viable.

However, since TSUBAME2.0 was an production machine with

24/7 operational responsibilities with thousands of users,

various technical problems arose:

Technical Details of the
TSUBAME2.5 Upgrade 4

year lifetime, such degradation would not have been a major

problem if TSUBAME3.0 could be deployed in November

2014. This interval was planned assuming that processor

vendors would make generational progress every two years;

as such, TSUBAME3.0 was planned to employ processors

two generations forward. However, due to the slowdown of

advances in semiconductor processing, in discussion with the

processor vendors it became apparent that such two-year

interval would be somewhat extended with minor time-slips,

and it was turning out that two-generation process advance in

four years was becoming infeasible.

 Moreover, the Tohoku earthquake that occurred on

March 3, 2011 rejuvenated the general public awareness for

disaster prevention; as such, there are now much stronger

emphasis for supercomputers to be utilized towards matters of

high social interest, such as disaster prevention, environment,

m e d i c a l a p p l i c a t i o n s , a n d a d v a n c e d m a n u f a c t u r i n g .

TSUBAME2.0 had already hosted numerous applications of such

categories, e.g., various seismic applications on TSUBAME2.0

had contributed significantly to the creation of a national

hazard map. However, as described earlier in busy times the

utilization of TSUBAME2.0 approaching 100 % had prevented

timely allocations of resources for such applications of urgent

needs; thus, not only capacity increase was deemed important,

but also, prioritized resource scheduling for such applications

was also required.

 Finally, TSUBAME2.0 as being one of the leading HPCI

resources, such application of significant social demands need

to be accommodated smoothly across the supercomputers

in the overall HPCI. HPCI as an infrastructure already hosts a

nationwide production infrastructure such as unified HPCI

account and its associated authentication and authorization

services, but the most important is common and unif ied

nationwide archival storage. In fiscal year 2012 such storage

system was deployed at two locations, the East one being at

the supercomputer center of the University of Tokyo, and the

West one being co-located with the K-Computer at Riken-AICS

in Kobe, totaling to approximately 22 petabytes of nationwide

shared storage. It then became clear that TSUBAME2 would also

require near-line storage that would coordinate with those two

centers in order to alleviate burst remote I/O traffic through our

national academic network backbone SINET 4.

 Given the above status quo, we as GISC planned to

extend the operational lifetime of TSUBAME2.0 by at least one

year, and to plan for a partial upgrade utilizing the excess funds

due to contractual extensions, but at the same time proposed

the full-system upgrade to the Informatics Division of MEXT

(The Japanese Ministry of Education, Culture, Sports, Science

and Technology), and commenced the official acquisition

process for supercomputers as required by law.

 During the acquisition process, a new regime came

into office of the Japanese government in the latter half of

2012. The Prime Minister instituted a large-scale supplementary

fiscal budget plan as economic stimulus and also to accelerate

the recovery from the Tohoku Earthquake, and the HPCI

infrastructure became one of the subjects of the budget

allocation. We in turn re-submitted the earlier proposal to

enhance the coverage of applications of high societal needs,

and subsequently was accepted, and allowed us to commence

with full upgrade from TSUBAME2.0 to 2.5. Although there were

a few different proposals, in the end NEC along with NVIDIA and

HPC won the upgrade bid on July 12, 2013, and immediately

c o m m e n c e d t h e u p g r a d e , f o r T S U B A M E 2 . 5 t o b e c o m e

operational on September 10, 2013.

The TSUBAME2.5 Evolution

05

(1) Which many-core accelerator to upgrade to? Not only

performance increase important, can we maintain upward

software compatibility with the existing software stack and

the applications? Since upgrade was initially not publically

planned or budgeted for TSUBAME2.0, users might not

accept drastic changes to the system in its mid-life.

(2) Will the new accelerator work on the TSUBAME2, especially

on its thin nodes? Will it have hardware compatibility?

Will there be power increase, and if so, will the power and

cooling system for the node, rack, as well as the entire

machine be able to tolerate the increase? Upgrading a

large supercomputer is very different from upgrading your

personal PC, where the change might be an instant parts-

swap; rather, for large machines long-duration operational

capabilities and reliability over many years with 24/7

high load are essential, and as such the machine must be

shown to operate properly at that level even with the parts

upgrade.

(3) Will it be efficient, in particular, will new bottlenecks manifest

themselves due to performance increase? The candidate

accelerators all exhibited 2 to 3 times speedup, and thus

PCI-e, Infiniband network, as well as storage I/O could

potentially become bottlenecks, negating the effect of the

upgrade.

(4) Related to above, some of the candidate accelerators such

as the K20X, offered higher boost in SFP (Single-Precision

Floating Point) compared to M2050, as the ratio of SFP:DFP

would increase from 2:1 on M2050 and Westmere CPUs,

to 3:1 or 4:1. The question is, however will such boost

performance further, or is there no return on the increase?

In particular, Intel Xeon CPU also sports the same 2:1 factor,

while CPUs dedicated to supercomputers often have

1:1 ratio. We have shown on TSUBAME2.0 that multiple

applications benefit signif icantly from this boost, by

computing in single only or mixed single/double precision,

however it was not obvious whether higher ratio would

benefit the real applications.

(5) Would upgrade be possible minimally affecting the operations,

especially for the users? There are 4224 M2050 GPUs in

TSUBAME2.0 in its 1408 thin nodes, and upgrading each

one involves stopping of the node, exchanging the GPU,

and stress testing the nodes for some duration, such

that it would take weeks to conduct the replacement.

Moreover, if we maintain TSUBAME2 in operation during

the upgrade, there will be rather random mixture of old

and new nodes. As such it was an operational challenge

to conduct the upgrade essentially in the background

without compromising the user perception of the system,

e.g., avoiding extended and/or unscheduled down time,

given these constraints.

Fig. 3 TSUBAME Compute “Thin” Node Upgrade

Table 1 TSUBAME2.0 and TSUBAME2.5
 Thin Node Specifications

06

 Such technical problems were resolved with careful

planning and engineering, then reflected onto the TSUBAME2.5

acquisition specifications. By all means the partner vendors

that won the bid contributed significantly in the resolution.

Although we cannot go into every detail due to the lack of

space, we outline the specifics of the problems, and how they

were resolved.

(1) Which Many-Core Accelerator to Upgrade to:
The only practical many-core processor that could be

usable for large-scale, general purpose supercomputers in

the TSUBAME2.0’s development and acquisition timeframe

in 2008-2010 were NVIDIA (GP)GPUs, and both TSUBAME1.2

and 2.0 were equipped with the Tesla variant which

was dedicated to HPC. In practice, during the 3 years of

operations, the 4224 GPUs performed reliability as many-

core processors sans some minor glitches, and recent

utilization rate has been 30~50% and improving steadily, as

well as allowed for whole-system stable execution of GPU-

based petascale grand-challenge problems. Due to the

successes of NVIDIA, other processor companies followed

suite, such as AMD FireStream, and in particular Intel Xeon

Phi which facilitated x86 instruction set compatibility and

could execute most program with simple re-compile.

However, upon various tests we conducted, with the first

generation Xeon Phi, it took considerable tuning effort

to match the performance of applications running on

the Fermi GPUs, and difficult to match those of Kepler.

As a result, we partitioned the upgrade into two systems,

one requiring direct compatibility and immediate higher

performance of existing applications on Fermi GPU, and

the other requiring only software compatibility with either

GPU or CPU multithreaded code, possibly accommodating

Xeon Phi as well as other many-core processors. In the end,

both system became K20x upgrades as already noted as a

result of the public bidding process.

(2) Will the new accelerator work on the TSUBAME2.5
 thin nodes?

According to the specification supplied by the vendors,

power consumption figures for the candidate accelerators

such as K20x and Xeon Phi were 235-300 Watts TDP,

significantly exceeding that of M2050 which had 225W

TDP; as a result, the thin nodes had to be modified to

strengthen its power and cooling of the accelerator

bay. Moreover, the thin node that was developed for

TSUBAME2.0 by HP, namely SL390s G7, did not support

the new power and cooling interface protocol that was

revised for Kepler GPUs, and as a result, mere plugging in

of the new GPUs would be totally inoperative. By all means

this could be resolved by engineering the server control

plane software to recognize the new protocols, but would

require significant collaborations between NVIDIA and HP-

-- a non-trivial effort. Fortunately, after long discussions

and negotiations on all sides, custom modifications were

engineered for SL390 to fully accommodate the Kepler

GPUs, with appropriate vendor certif ication for long-

duration operations.

(3) Will it be efficient, in particular, will other parts
of the system such as PCI-e and Infiniband
network become new bottlenecks?

The key to the design of a supercomputer architecture

utilizing many-core processors is that, compared to using

standard multi-core CPUs, both compute and memory

bandwidth are several- fold greater, and thus would

require significant improvement in the underlying intra-

node I/O switches, in the node-to-node interconnect, and

likewise in the storage I/O. TSUBAME2.0 was specifically

designed to accommodate the massive bandwidth of 3

GPUs hosted by the SL390 nodes, with multi I/O hubs and

multi-rail QDR Infiniband network, as well as intra-node

SSDs. However, with 2-3 times boost in both compute

and memory bandwidth capabilities, it quickly became an

issue whether the node I/O capabilities were sufficient. For

example, in the initial node-wise Linpack measurements,

the SL390 generation Intel Westmere Xeon + Tylersberg

IOH combination exhibited sufficient bandwidth for M2050;

however, for Kepler K20x, in comparison to the newer

The TSUBAME2.5 Evolution

07

generation Intel Sandy Bridge Xeon with CPU-integrated

and improved IOH as facilitated in the HP SL250 (successor

to SL390), the PCI-e bandwidth proved to be insufficient,

and as a result, we could only attain half the performance

in Linpack by comparison (Figure 4).

 Similar problem also manifested itself in the network;

for TSUBAME2.0 the dual - ra i l QDR Inf in iband exhibi ted

approximately 7 Gigabyte/s of node-to-node bandwidth,

sufficient for TSUBAME2.0, but is significantly inferior to the

new dual rail FDR Infiniband which would have achieved 12~13

Gigabyte/s of bandwidth to have matched the speed of Kepler.

 In order to resolve the problem, we conducted R&D

on various fronts. For Linpack, we developed as well as tested

and employed alternative algorithms that were more oblivious

to relative lack of node I/O bandwidth. For the network itself, we

conducted and continued our research effort on alternative and

more efficient routing algorithms that would achieve higher

network utilizations, as well as bandwidth-reducing algorithms

on the compute side to cope with the reduced bandwidth.

Altogether, we were largely able to recover the performance

lost due to I/O bandwidth degradation.

 Such efforts are not only specific to TSUBAME2.5,

but we also believe that for future systems the bandwidth

balance may become even worsen; as such our research efforts

will continue to pay-off for future systems leading towards

TSUBAME3.0 and exascale.

(4) Is Single Precision FP Enhanced Acceleration Useful ?

A s m e n t i o n e d m a n y H P C a p p l i c a t i o n s u t i l i z e D F P

arithmetic and not SFP, one of the primary reasons being

that, in classic supercomputers DFP and SFP compute

performances were the same, and with sufficient memory

bandwidth for both in classical vector supercomputers,

SFP provided very little performance advantage except for

storage space, and application programmers used DFP “by

default” to “play it safe” in numerical precision. However,

due to the decreasing memory bandwidth relative to

compute, and “boosting” of SFP in modern processors

in order to accommodate multimedia applications that

exhibit high data locality, the use of SFP arithmetic now

provides significant potential performance advantages

for both compute bound and memory bound codes, and

various research are ongoing to utilize SFP, either alone

or as “mixed precision” where SFP will dominate but DFP

will be occasionally used to enhance precision. Many

applications today can make good use of SFP, such as

seismic wave propagation, tsunami simulation, as well

as climate/weather prediction. Most such applications

with explicit PDE solvers could directly utilize SFP. Also,

var ious manufacturing applicat ions such as electro-

magnetic analysis , computational f luid dynamics for

automotive and aerospace, as well as molecular dynamics

for pharmaceutical drug design, are all subject to SFP or

SFP-dominated mixed-precision. Such applications have

been demonstrated to obtain significant speedup on

TSUBAME2.0. The question is, what if we had higher peak

beyond the 2:1 ratio. We know that in general there are

several classes of algorithms and applications that can

benefit, such as the (gravitational) N-Body problems, or

Fast Multipole Methods (FMM), and various apps based on

dense linear algebra; we will continue our efforts to widen

the applicability of such boost.

(5) Can the upgrade be performed
 without affecting the users ?

Since the Tohoku Earthquake, TSUBAME2.0 has been

operating in “peak-shift” mode during the hottest summer

months from July until September, in which we turn off

some of the nodes automatically to reduce the daytime

power consumption as requested by the government.

Such a scheduling mechanism had been developed as part

of the “Green Supercomputer” project sponsored by MEXT.

By coinciding our 2.5 upgrade with this mechanism, we

were able to round-robin through the nodes by capturing

the ones that are being turned off, and upgrading them

during the day and re-commissioning them after the

upgrade. This plus utilizing the mandatory power down of

the machine due to campus-wide electrical maintenance,

Fig. 4 Comparing HP SL390 and SL250 I/O
 Architecture

08

Table2 TSUBAME2.0 to TSUBAME2.5 Performance Boost

As mentioned earlier, upgrade to TSUBAME2.5 resulted in

factor 2~3 boost in performance, which allows the extension of

TSUBAME2’s operational life by 1~1.5 years by supercomputer

yearly performance improvement standards. Currently, we are

actively researching and developing various technologies for

TSUBAME3.0 as well as its doing its overall design. However, the

detailed schedule does get affected by changes in the plans of

the processor vendors. Currently, TSUBAME3.0 is slated to be

coming into production by the end of the Japanese fiscal year

2015 (end of March 2016 calendar year), which will mean that

TSUBAME2.5 lifetime will be more than 2.5 years, and TSUBAME2

overall would be nearly 5.5 years, despite initially planned with a

4 year lifespan. The upgrade performance boost and the lifetime

extension strongly correlate, but such a long operational lifetime

is largely due to the solid design and the flexibility subject to

upgrades, a property not actually seen often even for cluster-

based supercomputers.

 The peak performance of TSUBAME3.0 is projected to

be approximately 25-30 Petaflops, while being about the same

size and power consumption as TSUBAME2.0. Such tremendous

boost in power performance ratio will only be possible with

various advances including more advanced and efficient cooling

than TSUABME2.0/2.5. Moreover, in order to cope with massive

data in the big data era, TSUBAME3.0’s I/O as well as resiliency

will be greatly enhanced. The details of various technologies

as well as the TSUBAME3.0 design will be published in the

forthcoming issues of this journal and elsewhere.

Final Words
--- Towards TSUBAME3.0 5

The TSUBAME2.5 Evolution

we were able to prceed with the upgrade for almost two

months without being “noticed” by the users. Since the old

and new accelerators co-existed randomly, we devised an

operational procedure by which the users could ask purely

for old- or new GPUs if such purity would be required, and

reflect them in batch scheduling. Altogether, the entire

upgrade was largely complete by the end of August, two

weeks ahead of schedule.

Thus, the upgrade from TSUBAME2.0 to TSUBAME2.5 was

achieved, with significant boost in performance, compensating

for the lack of capac i ty and a l lowing the extens ion of

TSUBAME2 operation by at least one year, to adjust the timing

of TSUBAME3.0 deployment. Current GPU-based benchmarks

are demonstrating that the speedup is largely as expected

despite the technical concerns described above, with 2~3

times improvements in performance metric. More concretely,

Table 2 are some the major full-system metrics that have been

observed:

We observe that Green500 metric in part icular has seen

considerable improvement. This is largely due to the improved

power efficiency of the Kepler GPU despite the significant

performance boost, plus that other parts of TSUBAME2.0 is more

power efficient under lower thermal load. On the other hand,

we are observing the network becoming a bottleneck despite

our efforts as described above, and we hope that our ongoing

research will alleviate some of the limits to further improve

performance. By all means we will conduct further comparative

benchmarks, and will publish the results publically.

09

Structural analysis of a protein as a drug target is now essential in pharmaceutical science, where molecular
dynamics (MD) s imulat ion of a protein is st i l l t ime consuming. A major bott leneck in MD s imulat ion is
calculation of electrostatic interactions between atom pairs. We recently developed the zero-dipole summation
(ZD) algorithm that can make MD simulation rapidly and precisely. We implemented the ZD algorithm into our
MD software code, myPresto/Psygene, with the space decomposition algorithm, and we also developed its GPU
version, myPresto/Psygene-G, for the TSUBAME supercomputer system. We examined the simulation quality and
performance of myPresto/Psygene-G with the MD simulations for three protein systems. The GPU version was 30
times faster than the original CPU version, and it was applied to a G-protein coupled receptor (GPCR), indicating
that the simulations are useful to understand the dynamics of GPCR.

Molecular Dynamics Simulation Accelerated
by GPU for GPCR with a non-Ewald Algorithm

Since drug development i s h ighly r i sky and expensive ,

computer-aided drug discovery is now essential to reduce the

cost and time. Nearly 50 % of drug molecules bind G-protein

coupled receptors (GPCRs) as their target proteins, which are

known to be very flexible. Thus, computer simulation to reveal

the dynamic features of the complex of a drug and its target

GPCR is one of the major issues in pharmaceutical science. The

GPCR protein family consists of several hundreds GPCRs, and

the three-dimensional structures of several GPCRs have been

revealed recently. It is now known that GPCRs show specific

structural changes, called as the induce fit, when they bind their

ligands and drugs, and that such structural changes depend

on the ligand functions. To observe the structural changes like

the induced fit, molecular dynamics (MD) simulation is a useful

approach. In general, the all-atom MD simulations of GPCRs

are time consuming, when lots of membrane and solvent

molecules are included in a realistic manner. Thus, acceleration

of MD simulation is a key technology for drug discovery.

 One of the most time-consuming processes in MD

simulation is calculation of electrostatic interactions between

atom pairs, because of its long-ranged nature. We have so far

developed the zero-dipole summation (ZD) method, which

drastically reduces the amount of computations for calculations

of the Coulombic electrostat ic interact ions keeping the

accuracy in several different kinds of MD simulations [1-5]. Here,

we developed a program for GPU-accelerated MD simulation,

myPresto/Psygene-G, using the ZD method for TSUBAME

supercomputer system. In the ZD method, the long-range

The evaluation of the Coulombic interactions does not allow

the s imple cutoff t runcation, f rom the viewpoint of the

accuracy and the stability of the MD simulation. For their

suitable evaluation, we aimed at constructing a method to

fulfill the following requirements: (i) high accuracy and low

computational cost; (ii) freedom from artifacts; and (iii) ease of

the implementation, which enhances the availability for use in

high-performance parallel computational architectures.

 For this purpose, we switch from the conventional

v iew such that the value of the pair potent ia l funct ion

is decreas ing with increas ing the distance between

two particles, and . Instead, we take into account the

electrostatic feature, i.e., the individual charge and a certain

structure. In the vivo environment, many molecules and ions

crowd over individual particles. Each positively or negatively

Coulombic interaction is cut off within a short range as long as

12 Å, and the effect of the long-range electrostatic interactions

are compensated by the image charges that are located on the

cut-off sphere, so as to neutralize the monopole (charge) and

dipole moment in the cut-off sphere. The ZD method is useful

for parallel computation by reducing the numbers of long-

range interactions, which would increase communications

between the nodes.

 In the current study, we appl ied the myPresto/

Psygene-G to the complex structure of GPCR with its ligands,

and we analyzed the dynamic features of the complexes.

Introduction 1

Zero-dipole summation method 2

Tadaaki Mashimo*† Takayuki Kochi* Yoshifumi Fukunishi** Narutoshi Kamiya***
Yu Takano*** Ikuo Fukuda*** Haruki Nakamura***
*The Japan Biological Informatics Consortium (JBIC)
** Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST),
***Institute for Protein Research, Osaka University

＊† Current position: IMSBIO (Information and Mathematical Science and Bioinformatics) Co. Ltd.

10

TSUBAME supercomputer is composed of a distributed memory

system of a few hundred of GPU accelerators. Thus, the MD

program for TSUBAME supercomputer should combine the

implementation of CPUs and accelerators, which execute

processes in parallel while being accelerated by an accelerator

and exchanging the data through high-speed network

communication.

 myPresto/Psygene-G i s an MP I/GPU-combined

parallel program with an NVIDIA GPU as its accelerator, which

was developed for massively parallel computers. This program

divides many atoms that construct a system in a coordinate

space. The MD simulation of the atoms belonging to the

subspaces is assigned to the components (MPI processes) of

the parallel computer. Among the assigned MD calculations,

the pair-wise interact ions of the non-bonded terms are

computed on GPUs. Along with the data transfer required for

the migration of atoms that extend across subspaces and the

control of temperature and pressure, the mutual transfer of

the atomic data between neighboring subspaces, which is

necessary for calculations of the pair-wise interaction, uses

the MPI communication. The parallel execution of myPresto/

Psygene-G with more than a hundred CPUs accelerated by GPU

nodes could allow it to handle a system consisting of over a few

million atoms (Fig 2).

 In the ZD method, the long-range electrostat ic

interaction is cut off within a short range, and so the most of the

charged particle assembles in such a way that the electrostatic

interactions cancel each other well, unless very high energy

phenomena occur. Thus, actual interactions in biological

systems are essentially screened, as compared with the bare

Coulombic form . These considerations provide a positive

motivation for employing the cut-off based methods.

 Based on these considerations, we have developed a

novel idea, the ZD method. This method prevents the nonzero-

charge and nonzero-dipole states artificially generated by a

simple cutoff truncation, but the resulting energy formula is

nevertheless represented by a pair-wise summation form. The

method is due to the following two strategies: (A: ideal) For

each particle , the summation with respect to the all particles

is replaced by the one with respect to the neutralized subset ,

whose existence is assumed; (B: specific) Pair potential function is

redefined in order that we can handle the summation defined in

(A) using a simple pair-wise-sum form.

 Here, () is the complementary error function

of , with being a damping parameter. For general molecular

system, some modifications are required [2]. The resulting energy

formula is represented by a simple pair-wise function sum along

with a constant term, enabling the simple implementation and

facile applications to high-performance computation. The ZD

method does not assume the exact periodic boundary condition

as used in the lattice sum method, which often causes artifacts

in an application to an inherently non-periodic system [3]. In

addition, the ZD method conserves the total energy and the

center of mass of the physical system in the MD simulation, for

which these conservations are not trivial in the particle mesh

Ewald method and the fast multipole method even if they are

good at the energy accuracy. The accuracy of the ZD method

has been examined in several systems [1,2,4,5] and high efficiencies

were confirmed. For example, in the GPCR system [4], which will

be also discussed later, the energy accuracy of the ZD method

was about 0.04 % at 12Å cutoff length. Thus, the reaming task is

to attain its efficient parallelization, which is the main theme of

this article.

MD simulation with the space
decomposition algorithm 3

 We then have the total electrostatic energy in the

following form [1,2]

Fig. 1 The current ZD method conceptually deals
 with the particles only in the shaded region,
 which schematically represent the zero-dipole
 subset .

Molecular Dynamics Simulation Accelerated
by GPU for GPCR with a non-Ewald Algorithm

11

computations are performed within each cell. The ZD method is

useful for parallel computation by reducing the communication

among the cells, thus, the ZD method was applied in myPresto/

Psygene-G.

Fig.2 Schematic representation of the space decomposition in myPresto/Psygene-G

In the MD simulation, most of the inter-atomic energy potentials

are pair-wise interactions. For computing those interactions,

which consist of the electrostatic and the van der Waals

interactions, the forces between the atom pairs are individually

calculated. Thus, the calculation time is almost proportional to

the square of the number of atoms. The space decomposition

method reduces the number of calculations by performing pair-

wise interaction calculations for only the atom pairs included in

the relevant and neighboring decomposed regions.

 In myPresto/Psygene-G, the components of the

decomposed system are called cells. The cells are obtained

by decomposition of the cuboid system along three axes

by an arbitrary number. Each cell manages its respective

region boundaries, constituent atom quantity, and data of

each constituent atom. Then, the entire system is formed

by integrating all of the cells. Each cell is the smallest unit of

the calculated regions, handled by a CPU core of the parallel

computer. One CPU core as an MPI process is assigned to one

cell.

 In General, one step in the MD calculation is divided

into calculations of force and integral of the equations of motion,

where the force calculations are further divided into calculations

For calculations of the pair-wise interactions performed in each

cell, it is necessary to calculate the interactions between the

atoms in the relevant cell and the atoms in its neighboring

cells. Thus, in the three-dimensional space decomposition, we

need to send and receive the atom information in a cell to its

surrounding 26 cells.

 In myPresto/Psygene-G, the communication between

the processors is conducted for exchanging atom information

between the neighboring cells, as well as for actualizing the

migration of atoms that straddle the cells. This communication

is performed using the Message Passing Interface (MPI)

communication. Here, we applied the asynchronous one-to-

one communication, in order to reduce the communication

overhead.

of bonded terms and non-bonded terms. The calculation of non-

bonded terms is further partitioned in three ways: calculations

of the forces due to the van der Waals interactions, the short

range Coulombic electrostatic interactions, and the long range

one. Whereas the former two force terms are directly computed

by pair-wise interaction calculations, and the last long range

electrostatic forces are calculated by the ZD method.
Computation in each cell 4

Communication between processes 5

12

Fig.3
Cartoon graphics of GPCR
(β2 - adrenargic receptor).
Each helix is shown in
different color.
The membrane and solvent
molecules are not shown.

Fig.4 Molecular dynamics simulation of β2- adrenargic
receptor system. Final coordinate (after 20 nsec) at
room temperature.

There are mainly two types of GPCR-targeting drugs: agonists

and inverse agonists. Partial agonist has the aspects of both

agonists and inverse agonists. In the current study, we studied

the structures of the agonist bound and the inverse agonist

bound β2 adrenergic receptors.

In biological system, GPCR is located in the membrane and the

system consists of approximately 56,000 atoms. The dynamics

of GPCR is slow process and the MD simulation should be

performed at least several-tens nsec to observe the structural

change of GPCR.

 GPCRs are mainly composed of seven trans-membrane

helices embedded in the membrane (Fig. 3). In Fig 3, the up-

side and down-side are the extra-cellar and intra-cellar regions.

Ligands (agonist, inverse agonist and partial agonist) bound to

the almost middle of the trans-membrane helices. The structural

change due to the induce fit is small around the bound ligand,

but the structural change in the intra-cellar part is large enough

for signal transduction.

 We applied myPresto/Psygene-G to the GPCR system,

in which one GPCR, its bound ligand, membrane, and solvent

atoms were included (total about 56,000 atoms), and we

performed 20-50 nsec simulations to analyze the structural

change of the GPCR induced by the agonists and the inverse

agonists. MD simulation by myPresto/Psygene-G on TSUBAME

supercomputer system was 30 times faster than that by the

usual CPU version.

 The ligand (agonist or inverse agonist) was placed into

the ligand-binding site of the GPCR by docking calculation, and

then the protein-ligand complex structure was embedded into

the membrane. Finally, solvent water and counter ions (Na+/

Cl-) were added to complete the system. We performed the

MD simulation at room temperature with 1 atm pressure. After

relaxing the system, we started observation of the system (Fig 4).

 While we performed many MD simulations with

various drugs, we showed the MD simulation results for

carazolol (an inverse agonist) and formoterol (an agonist) with

β2- adrenargic receptor.

 Figs 5 and 6 show the root-mean square deviations

(RMSD) of the seven trans-membrane helix structures along the

simulation time. The structural change induced by the inverse

agonist (Fig 5) was larger than that by the agonist (Fig 6). These

results show that the binding of small ligands could induce the

larger structure change of the whole GPCR.

Application to GPCR 6

Table1 myPresto/Psygene-G benchmark results

Molecular Dynamics Simulation Accelerated
by GPU for GPCR with a non-Ewald Algorithm

13

Fig.5 RMSD of seven trans-membrane helix (TMH1-TMH7)
structures obtained by the MD simulation of β2 -
adrenargic receptor with an inverse-agonist
Carazolol. Light yellow: RMSD of all atoms of GPCR
including loops. Dark green: TMH1,
Green: TMH2, Blue: TMH3, Dark orange: THM4,
Cyan: TMH5, Yellow: TMH6, Red: TMH7,
Black: all atoms of TMH1-TMH7.

Fig.6 RMSD of seven trans-membrane helix (TMH1-TMH7)
structures obtained by the MD simulation of β2 -
adrenargic receptor with an agonist Formoterol.
Light yellow: RMSD of all atoms of GPCR including
loops. Dark green: TMH1, Green: TMH2,
Blue: TMH3, Dark orange: THM4, Cyan: TMH5,
Yellow: TMH6, Red: TMH7,
Black: all atoms of TMH1-TMH7.

We developed an MD simulation software myPresto/Psygene-G

for TSUBAME supercomputer system and the ZD method

realized the rapid and precise calculations of electrostatic

interactions. In this software, non-bonded pair-wise interactions

were calculated on multi GPUs and the software was 30 times

faster than the CPU version for conventional PC clusters. The

myPresto/Psygene-G showed a scalable acceleration by the

space-decomposition method, according to the number of

computer nodes.

 myPresto/Psygene-G was applied to the simulations

of GPCR systems, which includes the GPCR molecule, its bound

ligand (agonist or inverse agonist), membrane, and solvent

molecules. We observed that the agonist-bound GPCR showed

the different dynamics from the inverse agonist bound GPCR.

Our study showed that the long-time large-scale MD simulations

of drug-target proteins should be important to understand the

mechanism of the drug effect and drug design.

Acknowledgements

These computations were executed as the TSUBAME Grand

Challenge Program in 2012 and we thank to have an opportunity

to use the TSUBAME resources. This work was supported

by grants from the New Energy and Industrial Technology

Development Organization of Japan (NEDO).

References

[1] I . Fukuda, Y. Yonezawa, and H. Nakamura: Molecular

Dynamics Scheme for Precise Estimation of Electrostatic

Interaction via Zero-Dipole Summation Principle, J. Chem.

Phys., Vol. 134, 164107 (2011)

[2] I. Fukuda, N. Kamiya, Y. Yonezawa, and H. Nakamura: Simple

and Accurate Scheme to Compute Electrostatic Interaction:

Zero-dipole Summation Technique for Molecular System

and Application to Bulk Water, J. Chem. Phys., Vol. 137,

054314 (2012)

[3] I. Fukuda and H. Nakamura: Non-Ewald methods: Theory

and Applications to Molecular Systems, Biophys. Rev., Vol.

4, pp.161-170 (2012)

[4] N. Kamiya, I. Fukuda, and H. Nakamura: Application of

Zero-dipole summation method to molecular dynamics

simulations of a membrane protein system, Chemical

Physics Letters, Vols. 568–569, pp.26–32 (2013)

[5] T. Arakawa, N. Kamiya, H. Nakamura, and I . Fukuda:

Molecular Dynamics Simulations of Double-Stranded

DNA in an Explicit Solvent Model with the Zero-Dipole

Summation Method, PLoS One, Vol. 8, e76606 (2013)

Conclusion 7

14

The importance of high performance parallel algorithms for tackling difficult combinatorial optimization problems
cannot be understated. With the advent of computer systems equipped with millions of heterogeneous compute
cores, it is especially important to develop algorithms which can be well suited for future machines. Currently,
the most successful methods of solving such problems are meta-heuristic algorithms providing an approximate
solution. One of the most successful and general algorithms is called Iterated Local Search (ILS), where the solution
is gradually refined and its quality depends on the time available. We demonstrate that this can also depend on
available parallelism, i.e. number of cores without losing the generality and requiring problem-specific knowledge,
thus keeping the same assumptions as the original ILS. In this article, we are showing the Parallel Iterated Local
Search (Parallel ILS) algorithm, a very efficient method of performing distributed combinatorial optimization. Due
to its simplicity and abstraction it can be applied to any problem that can be solved using traditional ILS method
requiring only slight modification of the sequential code. Our experimental results based on Traveling Salesman
Problem (TSP) solving indicate that this algorithm is also more efficient than careful and time-consuming local
search parallelization. We achieve over 9 0 x speedup compared to sequential algorithm using our Parallel ILS
method with MPI inter-node communication scheme on TSUBAME 2.0 supercomputer using 256 nodes.

Large-scale Parallel Iterated Local Search
Algorithm for Traveling Salesman Problem

Combinatorial problems are present in many areas of computer

science and other fields in which computational methods are

applied, such as artificial intelligence, operations research or

bioinformatics. The best known examples of such problems

include optimal scheduling, finding models of propositional

formulae (SAT), graph traversal (Traveling Salesman Problem -

TSP[4]) or Quadratic Assignment problem (QAP). These problems

typically involve finding groupings, orderings, or assignments

of a discrete set of objects which satisfy certain conditions or

constraints. Those where solutions are encoded with discrete

variables contain a class of problems called Combinatorial

Optimization (CO) problems. Therefore a solution is an object

composed of a finite, or possibly countably infinite, set of

integer numbers, a subset, a permutation, or a graph structure.

For most combinatorial optimization problems, the space of

potential solutions for a given problem instance is exponential

in the size of that instance[1]. As a result of the practical

importance of CO problems, many algorithms to approach them

have been developed. These algorithms can be categorized as

either complete (exact) or heuristic (approximate) algorithms.

Complete algorithms are guaranteed to find for every finite size

instance of a CO problem an optimal solution in bounded time

[1][2][3]. Within the approximate algorithms we can distinguish

between constructive methods and local search methods.

Constructive algorithms generate solutions from scratch by

adding - to an initially empty partial solution - components, until

a solution is complete. Local search algorithms start from some

initial solution and iteratively try to refine the current solution

Iterated Local Search (ILS) is a Stochastic Local Search (SLS)

method that generates a sequence of solutions generated

by an embedded heuristic, leading to far better results than

if one were to use repeated random trials of that heuristic[5].

The implicit assumption is that of a clustered distribution of

local minima. When minimizing a function, determining good

local minima is easier when starting from a local minimum

with a low value than when starting from a random point. The

iterative algorithm is based on building a sequence of locally

optimal solutions by: 1. perturbing the current local minimum; 2.

by a better one in an appropriately defined neighborhood of

the current solution[3][5]. However, Local search methods can get

stuck in a local minimum, where the solution is unsatisfactory

and improvement not possible. Therefore they are not suited

for searching the whole state-space as the number of such

local searches would be enormous. However, they can quickly

converge to a local minimum, which means that a large number

of local minima can be explored. In order to improve this

process, a new type of algorithms called metaheuristics[7][8] has

emerged. This class of methods tries to combine basic heuristic

methods in higher level frameworks aimed at efficiently and

effectively exploring a search space. It includes algorithms such

as Ant Colony Optimization[11] (ACO), Genetic Algorithms[10] (GA),

Iterated Local Search[6] (ILS), Simulated Annealing[9] (SA), or Tabu

Search[7] (TS). This paper focuses on the ILS algorithm (Figs. 1 and

2), it is a simple but powerful metaheuristic algorithm [12][13][16][17].

Introduction 1

Iterated Local Search 2

Kamil Rocki Reiji Suda
Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo

15

It is important to mention, that in the previously presented

Mult i -start Local Search a lgor i thm does not have st r ict

synchronization point, therefore the threads or processes can

run on different machines at different speeds or even using

different algorithms. This is the key point of the modified

algorithm that is using active communication: Parallel Iterated

Local Search (or Multi-start Local Search with Communication).

The sequential code remains basically unchanged except for the

thread encapsulation, added memory synchronization (critical

section) as well as storing and reading the best global solution.

Due to the required communication between the threads -

both the cost and the solution itself have to be shared - the

implementation differs depending on the system. The whole

algorithm is explained in Listing 1.

applying local search after starting from the modified solution.

The perturbation strength has to be sufficient to lead the

trajectory to a different attraction basin leading to a different

local optimum. However it cannot be to strong as it would

lead to a random restart strategy. There are many strategies of

choosing the right perturbation technique as well as there are

many local search algorithms for every problem. Our algorithm

uses a local search method called 2-opt exchange.

2.1 2-opt Local Search

The 2-opt algorithm basically removes two edges from the tour,

and reconnects the two paths created. This is often referred to

as a 2-opt move. There is only one way to reconnect the two

paths so that the tour remains valid (Fig. 3). It improves tour by

reconnecting and reversing order of sub-tour. The procedure

is repeated until no further improvement can be done. It is

good for finding a local, but it is not guaranteed to find the

best possible solution (the global optimum) out of all plausible

solutions. A method allowing escaping from local optima has

to be provided, which usually means that a local solution needs

to be worsened is some way, keeping it within a certain search-

space.

Parallel Iterated Local Search 3

Fig.1 Iterated Local Search – solution space

Fig.2 Iterated Local Search – algorithm

Fig.3 2-opt exchange

16

 First, each process starts with a random solution which

stands for a different point in the state-space. Further, the first,

initial descend is being performed. Afterwards, each process

executes the search-perturb ILS cycle until at least one of them

has an acceptable solution. During this procedure, once a better

solution is found by one of the processes, it is propaged to

other ones. Lines 7 and 12 show the steps where the data is

being exchanged. This can be done using shared memory or MPI

in case of distributed processes.

3.1 Shared Memory Implementation

A single node comprising homogenous or heterogeneous,

but shared memory can use global variables and threads to

exchange the data (Fig. 4). This method is the simplest and

probably the most effective way of implementing the algorithm.

3.2 Distributed Memory Implementation

When we consider multiple processes instead of multiple

threads, the code becomes simpler on one hand as it does

not have to be contained in a function that runs as a thread.

On the other hand, it requires inter-process communication

which makes it more complicated and typically slower. We

have successfully implemented and tested the algorithm using

MPI (Message Passing Interface). The fastest implementation

uses shared memory based communication within a node to

minimize the data turnaround and only one of the threads may

be responsible for the inter-process communication (Fig. 5).

Listing 1 Multi-start Local Search
with Comminication Pseudo-code

Fig.4 Shared-memory Parallelization Scheme Fig.5 Distributed-memory Parallelization Scheme

Large-scale Parallel Iterated Local Search
Algorithm for Traveling Salesman Problem

17

Fig.6 Results of Parallel ILS using TSUBAME 2.0

We tested the shared version of our algorithm on a GeForce GTX

680 GPU. When we tested the distributed version, we used up

to 256 nodes of TSUBAME 2.0 with three NVIDIA Tesla M2050s

per node. The performances of the computations are plotted in

Fig. 6. In this figure, time is plotted on the x-axis and the quality

of the solution on the y-axis. The lower the result, the better the

quality. As expected, the solution gradually improves over time

with the ILS algorithm. Two distinct results can be compared by

measuring the time needed to reach an equally good solution.

In this way we per formed the speedup measurement. We

observed that the algorithm runs approximately 90 times faster

when all 768 GPUs are utilized. In our opinion, the imperfect

scalabil it y of the algorithm is due to the communication

between the nodes as well as time which is required to copy

the data to and from the GPU.

Results 4
In this article we have presented a high-performance Multi-

GPU implementation of 2-opt local search in Traveling Salesman

Problem. However, the main contribution of our work is the

Parallel Iterated Local Search algorithm which can be used with

other local search methods. It can be used to solve arbitrarily

big problem instances using distributed GPU systems such

as TSUBAME 2.0. We believe that it is a good base for more

sophisticated approaches. Our algorithm solves the problem

in a brute-force way, but due to the very high parallelism, the

overall speed allows to tackle large TSP instances. The results

show that the time needed to perform a single search operation

can be decreased up to 90 times compared to sequential GPU

implementation using a single TSUBAME 2.0 node. We believe

that the algorithm presents strong-scaling features, but it is

limited by network and CPU-GPU communication.

Summary 5

18

[12] Karp, R. Reducibility among combinatorial problems: In

Complexity of Computer Computations. Plenum Press, pp.

85- 103. New York, 1972

[13] Tsai , H. ; Yang, J . Kao, C. Solving travel ing salesman

p r o b l e m s b y c o m b i n i n g g l o b a l a n d l o c a l s e a r c h

mechanisms, Pro- ceedings of the 2002 Congress on

Evolutionary Computation (CEC’02), Vol.2, pp. 1290-1295.

[14] Pepper J . ; Golden, B. Wasil , E . Solving the travell ing

sales- man problem with annealing-based heuristics:

a computational study. IEEE Transactions on Man and

Cybernetics Systems, Part A, Vol. 32, No.1, pp. 72-77, 2002

[15] NVIDIA CUDA Programming Guide http://docs.nvidia.com/

cuda/index.html

[16] Helsgaun, K.; An Effective Implementation of the Lin-

Kernighan Traveling Salesman Heuristic, European Journal

of Operational Research, 2000, vol 126, pages 106-130

[17] Nilsson, Ch.; Heuristics for the Traveling Salesman Problem,

Linkoping University, pages 1-6

Large-scale Parallel Iterated Local Search
Algorithm for Traveling Salesman Problem

Acknowledgements

This work was supported by Core Research of Evolutional

Science and Technology (CREST) project of Japan Science and

Technology Agency (JST) and Grant-in-Aid for Scientific Research

of MEXT Japan.

References

[1] Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The

Traveling Salesman Problem: A Computational Study.

Princeton University Press, Princeton (2007)

[2] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys,

D.B.: The Traveling Salesman Problem: A Guided Tour of

Combinatorial Optimization. Wiley, Chichester (1985)

[3] Johnson, D. and McGeoch, L.: The Traveling Salesman Prob-

lem: A Case Study in Local Optimization. Local Search in

Combinatorial Optimization, by E. Aarts and J. Lenstra

(Eds.), pp. 215-310. London: John Wiley and Sons, 1997.

[4] Garey,M.R.andJohnson,D.S.ComputersandIntractability:A

Guide to the Theory of NP-Completeness. San Francisco:

W.H. Freeman, 1979.

[5] Croes G. A.;A Method for Solving Traveling-Salesman Prob-

lems, Operations Research November/December 1958

6:791- 812;

[6] M. A. O’Nei l , D. Tamir , and M. Burtscher. : A Paral le l

GPU Version of the Traveling Salesman Problem. 2011

International Conference on Parallel and Distributed

Processing Techniques and Applications, pp. 348-353. July

2011.

[7] Dorigo, M. and Gambardella, L.M.: Ant Colony System: A

Cooperative Learning Approach to the Traveling Salesman

Problem. IEEE Transactions on Evolutionary Computation,

Vol. 1, No. 1, pp. 53-66. April 1997.

[8] Fujimoto, N. and Tsutsui, S.: A Highly-Parallel TSP Solver for

a GPU Computing Platform. Lecture Notes in Computer

Science, Vol. 6046, pp. 264-271. 2011.

[9] Reinelt, G.: TSPLIB - A Traveling Salesman Problem Library.

ORSA Journal on Computing, Vol. 3, No. 4, pp. 376-384. Fall

1991.

[10] Rego,C.and Glover,F.: Local Searchand Metaheuristics. The

Traveling Salesman Problem and its Variations, by G. Gutin

and A.P. Punnen (Eds.), pp. 309-368. Dordrecht: Kluwer

Academic Publishers, 2002.

[11] Lourenco, H. R. Martin, O. C. Stutzle, T.: Iterated Local

Search, International series in operations research and

management science, 2003, ISSU 57, pages 321-354

19

● TSUBAME e-Science Journal vol.10
Published 11/18/2013 by GSIC, Tokyo Institute of Technology ©
ISSN 2185-6028
Design & Layout: Kick and Punch
Editor: TSUBAME e-Science Journal - Editorial room
 Takayuki AOKI, Thirapong PIPATPONGSA,
 Toshio WATANABE, Atsushi SASAKI, Eri Nakagawa
Address: 2-12-1-E2-6 O-okayama, Meguro-ku, Tokyo 152-8550
Tel: +81-3-5734-2085　Fax: +81-3-5734-3198
E-mail: tsubame_j@sim.gsic.titech.ac.jp
URL: http://www.gsic.titech.ac.jp/

vol. 10

International Research Collaboration

Application Guidance

Inquiry

Please see the following website for more details.
http://www.gsic.titech.ac.jp/en/InternationalCollaboration

The high performance of supercomputer TSUBAME has been extended to the
international arena. We promote international research collaborations using
TSUBAME between researchers of Tokyo Institute of Technology and overseas
research institutions as well as research groups worldwide.

Recent research collaborations using TSUBAME

1. Simulation of Tsunamis Generated by Earthquakes using Parallel
　Computing Technique

2. Numerical Simulation of Energy Conversion with MHD Plasma-fluid Flow

3. GPU computing for Computational Fluid Dynamics

Candidates to initiate research collaborations are expected to conclude
MOU (Memorandum of Understanding) with the partner organizations/
departments. Committee reviews the “Agreement for Collaboration” for joint
research to ensure that the proposed research meet academic qualifications
and contributions to international society. Overseas users must observe
rules and regulations on using TSUBAME. User fees are paid by Tokyo Tech’s
researcher as part of research collaboration. The results of joint research are
expected to be released for academic publication.

