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TSUBAME 2 . 0 , was designed, instal led, and operated at the Global Scientif ic Information and Computing 
Center (GSIC), Tokyo Institute of Technology, in collaboration with our partner vendors, commissioned on Nov. 
1st, 2010. In Sept. 2013, it was upgraded to TSUBAME2.5, by which the theoretical peak precision in double 
precision floating point (DFP) arithmetic was improved from 2.4 Petaflops to 5 .7 Petaflops. More impressive 
is the improvement in single precision floating point (SFP), in which the boost was from 4.8 Petaflops to 17.1 
Petaflops, becoming the fastest supercomputer in Japan under that metric. Despite the massive increase in 
performance, average power consumption was reduced by about 20% , while upwards software compatibility 
was fu l ly preserved. TSUBAME 2 . 5 wi l l serve i ts ro le as a leading machine in the Japanese HPCI (High 
Performance Computing Infrastructure). This article will describe the upgrade of TSUBAME 2 . 0 to 2 . 5 , and 
technological directions towards 3.0 in late fiscal year 2015.

Satoshi Matsuoka
Global Scientific Information and Computing Center (GSIC)  Tokyo Institute of Technology

The TSUBAME2.5 Evolution

The TSUBAME2.0 Supercomputer has been in active use since 

its deployment in 2010 for early 3 years as Japan’s first petascale 

supercomputer at Tokyo Institute of Technology, and one of 

the leading machines in the Japanese HPCI (High Performance 

Computing Infrastructure). In September 2013, it was upgraded 

to TSUBAME2.5, by which the theoretical peak precision in 

double precision floating point (DFP) arithmetic was improved 

from 2.4 Petaflops to 5.7 Petaflops, single precision floating 

point (SFP), performance accordingly from 4.8 Petaflops to 17.1 

Petaflops, becoming the fastest supercomputer in Japan under 

that metric. However, the upgrade was by no means effortless, 

and rather was met with various challenges. This article covers 

the upgrade from various angles, the rationale for its planning, 

the challenges met, how they were resolved， and the resulting 

performance gains.

Introduction 1 

Fig. 1   TSUBAME2.5 Commissioned on Sept. 10th, 2013

Fig. 2   Compute node of TSUBAME2.5 embodying 
 the new NVIDIA Kepler K20X GPU

TSUBAME2.0 was developed by GSIC in collaboration with an 

industry consortium consisting of major HPC vendors such as 

NEC/HP/NVIDIA, and became operational on Nov. 1st, 2010. It 

was the first ever Japanese supercomputer to surpass a petaflop, 

and became No. 4 in the world on the Nov. 2010 edition of the 

Top500 List and No.2 on the Green 500 list, and moreover was 

designated the “Greenest Supercomputer in the World” award 

as it was the only large-scale production supercomputer high 

on the latter list. Also, in Nov. 2011, it won the ACM Gordon Bell 

Award, which is the most esteemed award in supercomputing 

regarding the execution of a real large-scale application, sharing 

the honor with the Riken AICS K Computer. By the end of July 

2013, there are approximately 10,000 registered users, of which 

2,000 were bona-fide supercomputer users, and at any time 50-

100 users were logged onto the machine. Aside from periodic 

maintenance every several months, and emergency situation 

imposed by the Tohoku earthquake in March 2011, TSUBAME2.0 

Overview of the Predecessor 
--- TSUBAME2.0 2 
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TSUBAME2.0 saw extremely high utilization rate thanks to 

its advanced features, but recently it was reaching capacity 

limit. In particular, in the busy seasons of the latter half of 

the fiscal year, the utilization rate easily sustained 90 % , and 

at extreme times it reached 100 % ; so despite being number 

two fastest supercomputer in Japan, the overall capacity was 

becoming obviously insufficient. Also, the overall international 

competitiveness of the TSUBAME2.0 was obviously degrading 

steadily. Since supercomputer performance progresses by a 

factor of 1,000 over every 10 years, such decline was imminent, 

but nonetheless TSUBAME2.0 global ranking on the Top 500 

had degraded being 3rd in Japan and outside the top 20 in the 

world.

 S ince TSUBAME 2.0 was planned to have a four 

Upgrade Plans from 
TSUBAME2.0 to TSUBAME2.5 3 

has been in operation 24/7 throughout the year, helping to 

produce various important scientific results.

 TSUBAME2.0 is serving as one of the primary resources 

for the nationwide supercomputing infrastructure, along with 

other major university supercomputing centers and the K 

computer at Riken AICS (Advanced Institute for Computational 

Sciences) and the Earth Simulator 2 at JAMSTEC ES Center, 

altogether forming a consortium of centers called HPCI (High 

Performance Computing Infrastructure). A part of the resource 

of TSUBAME2.0 is allocated through a national HPCI allocation 

process. Moreover, there are many industrial users that utilize 

TSUBAME2.0 under various industrial usage programs, ranging 

to over 100 companies to date.

 T S U B A M E 2 . 0  w a s  d e v e l o p e d  a s  a n  a d v a n c e d 

supercomputer leading the technology fronts in many aspects, 

in collaboration with the top HPC companies of the world, 

such as NEC HP, NVIDIA and DDN. Some of the salient technical 

elements are as follows:

High Performance, High Bandwidth Compute Nodes: 

The primary compute nodes of TSUBAME2.0 are called “thin 

nodes”. There are 1408 thin nodes, that have been productized 

as HP Proliant SL390s G7, each consisting of 2 Intel Xeon multi-

core CPUs (6 cores 2.93Ghz Westmere-EP), and 3 NVIDIA M2050 

GPUs (448 CUDA cores, 515GigaFlops), with 54 or 96 GigaBytes 

of CPU memory, and 3 GigaBytes of fast DDR5 memory for each 

GPU, each with 150 GigaByte/s of bandwidth. The aggregated 

compute and memory bandwidth capabil ity of  the “thin 

nodes” are 1.6 TeraFlops and over 500 GigaByte/s, respectively. 

There are additional 40 nodes of “medium” and “fat” nodes 

that utilized standard servers and host 128-512 GigaBytes of 

memory.

Hierarchical Large-Scale Storage: 

In order to meet a variety of diverse and massive I/O demands, 

TSUBAME2.0  storage is  composed of  three h ierarchica l 

elements, namely (1) node-local SSDs, (2) shared parallel file 

systems using HDDs, and (3) archival tape library.

(1)   Each compute node is equipped with 120-240 GigaBytes 

of SSDs (solid state drives) configured as Raid-0. By utilizing 

SSDs for temporary file I/O of each node such as scratch I/

O and checkpoints, we greatly reduce the I/O demands 

of the parallel file system below in the hierarchy. The I/O 

bandwidth of the SSDs are over 300 MegaByte/s, or over a 

1/2 TeraByte/s for the entire machine.

(2)   The shared parallel file system has 7.2 Petabytes of raw 

capacity comprised of nearly 4000 HDDs controlled by the 

DDN SFA 10000 storage controller and a farm of storage 

servers. The storage is divided into 6 partitions, one as 

a home directory and 5 as parallel filesystems, 3 being 

Lustre and 2 as GPFS parallel filesystems. The bandwidth of 

each partition is approximately 10 GigaByte/s, for over 50 

GigaByte/s aggregated I/O bandwidth.

(3)   Finally, as a backup and archival storage, there are 8 PetaBytes 

(compressed) tapes managed by the SL8500 tape system. 

The GPFS fi lesystem region works automatically with 

SL8500 to implement a Hierarchical File System using IBM 

Tivoli software.

Full Bisection Infiniband Network: 

Over 1400 compute nodes, the storage nodes and their servers 

are interconnected with QDR Infiniband network. Each node 

has two rails (links) of Infiniband, each with 40 Gigabit/s of 

bandwidth, totaling 80 Gigabit/s of injection bandwidth into 

the network. The actual measured bandwidth is approximately 

7.5 GigaByte/s, and less than 2 microsecond latency. The entire 

fabric consists of 12 core switches with 324 ports each, and 179 

edge switches with 36 ports each, comprising a full bisection 

fat-tree network, mutually connected with advanced silicon 

photonics optical network with 3500 optical fibers totaling 

100 kilometers in length. The bisection bandwidth of the 

entire network is 220 Terabit/s, which is exceeds the combined 

average of all the global Internet traffic in 2012.
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By replacing the NVIDIA Fermi M2050 GPU entirely with the 

latest generation NVIDIA Kepler K20X GPU, TSUBAME2.5 peak 

performance was boosted to 5.76 PetaFlops DFP and 17.1 

PetaFlops SFP respectively; also, the peak memory bandwidth 

became 1.16 PetaByte/s, and approximately 0.8 PetaByte/s 

measured. Figure 3 shows the overview of the node upgrade, 

and Table  1  i s  the  compar ison of  the  spec i f icat ion for 

TSUBAME2.0 and 2.5. However, such upgrade of GPUs was not 

automatic, and many possibilities had to be considered, as well 

as technical challenges be met and resolved.

 Although thanks to the supplementary  budget  

substantial upgrade was possible, adding new nodes was 

quickly ruled out, due to the limitations in power and space. 

Other upgrade paths were also considered, but the upgrade of 

the accelerators was judged to be the most technically viable. 

However, since TSUBAME2.0 was an production machine with 

24/7 operational responsibilities with thousands of users, 

various technical problems arose:

Technical Details of the 
TSUBAME2.5 Upgrade 4 

year lifetime, such degradation would not have been a major 

problem if  TSUBAME3.0 could be deployed in November 

2014. This interval was planned assuming that processor 

vendors would make generational progress every two years; 

as such, TSUBAME3.0 was planned to employ processors 

two generations forward. However, due to the slowdown of 

advances in semiconductor processing, in discussion with the 

processor vendors it became apparent that such two-year 

interval would be somewhat extended with minor time-slips, 

and it was turning out that two-generation process advance in 

four years was becoming infeasible.

 Moreover, the Tohoku earthquake that occurred on 

March 3, 2011 rejuvenated the general public awareness for 

disaster prevention; as such, there are now much stronger 

emphasis for supercomputers to be utilized towards matters of 

high social interest, such as disaster prevention, environment, 

m e d i c a l  a p p l i c a t i o n s ,  a n d  a d v a n c e d  m a n u f a c t u r i n g . 

TSUBAME2.0 had already hosted numerous applications of such 

categories, e.g., various seismic applications on TSUBAME2.0 

had contributed significantly to the creation of a national 

hazard map. However, as described earlier in busy times the 

utilization of TSUBAME2.0 approaching 100 % had prevented 

timely allocations of resources for such applications of urgent 

needs; thus, not only capacity increase was deemed important, 

but also, prioritized resource scheduling for such applications 

was also required.

 Finally, TSUBAME2.0 as being one of the leading HPCI 

resources, such application of significant social demands need 

to be accommodated smoothly across the supercomputers 

in the overall HPCI. HPCI as an infrastructure already hosts a 

nationwide production infrastructure such as unified HPCI 

account and its associated authentication and authorization 

services,  but the most important is common and unif ied 

nationwide archival storage. In fiscal year 2012 such storage 

system was deployed at two locations, the East one being at 

the supercomputer center of the University of Tokyo, and the 

West one being co-located with the K-Computer at Riken-AICS 

in Kobe, totaling to approximately 22 petabytes of nationwide 

shared storage. It then became clear that TSUBAME2 would also 

require near-line storage that would coordinate with those two 

centers in order to alleviate burst remote I/O traffic through our 

national academic network backbone SINET 4. 

 Given the above status quo, we as GISC planned to 

extend the operational lifetime of TSUBAME2.0 by at least one 

year, and to plan for a partial upgrade utilizing the excess funds 

due to contractual extensions, but at the same time proposed 

the full-system upgrade to the Informatics Division of MEXT 

(The Japanese Ministry of Education, Culture, Sports, Science 

and Technology), and commenced the official acquisition 

process for supercomputers as required by law.

 During the acquisition process, a new regime came 

into office of the Japanese government in the latter half of 

2012. The Prime Minister instituted a large-scale supplementary 

fiscal budget plan as economic stimulus and also to accelerate 

the recovery from the Tohoku Earthquake,  and the HPCI 

infrastructure became one of the subjects of the budget 

allocation. We in turn re-submitted the earlier proposal to 

enhance the coverage of applications of high societal needs, 

and subsequently was accepted, and allowed us to commence 

with full upgrade from TSUBAME2.0 to 2.5. Although there were 

a few different proposals, in the end NEC along with NVIDIA and 

HPC won the upgrade bid on July 12, 2013, and immediately 

c o m m e n c e d  t h e  u p g r a d e ,  f o r  T S U B A M E 2 . 5  t o  b e c o m e 

operational on September 10, 2013.

The TSUBAME2.5 Evolution
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(1)   Which many-core accelerator to upgrade to? Not only 

performance increase important, can we maintain upward 

software compatibility with the existing software stack and 

the applications? Since upgrade was initially not publically 

planned or budgeted for TSUBAME2.0, users might not 

accept drastic changes to the system in its mid-life.

(2)    Will the new accelerator work on the TSUBAME2, especially

on its thin nodes? Will it have hardware compatibility? 

Will there be power increase, and if so, will the power and 

cooling system for the node, rack, as well as the entire 

machine be able to tolerate the increase? Upgrading a 

large supercomputer is very different from upgrading your 

personal PC, where the change might be an instant parts-

swap; rather, for large machines long-duration operational 

capabilities and reliability over many years with 24/7 

high load are essential, and as such the machine must be 

shown to operate properly at that level even with the parts 

upgrade. 

(3)    Will it be efficient, in particular, will new bottlenecks manifest 

themselves due to performance increase? The candidate 

accelerators all exhibited 2 to 3 times speedup, and thus 

PCI-e, Infiniband network, as well as storage I/O could 

potentially become bottlenecks, negating the effect of the 

upgrade. 

(4)   Related to above, some of the candidate accelerators such 

as the K20X, offered higher boost in SFP (Single-Precision 

Floating Point) compared to M2050, as the ratio of SFP:DFP 

would increase from 2:1 on M2050 and Westmere CPUs, 

to 3:1 or 4:1. The question is, however will such boost 

performance further, or is there no return on the increase? 

In particular, Intel Xeon CPU also sports the same 2:1 factor, 

while CPUs dedicated to supercomputers often have 

1:1 ratio. We have shown on TSUBAME2.0 that multiple 

applications benefit  signif icantly from this boost,  by 

computing in single only or mixed single/double precision, 

however it was not obvious whether higher ratio would 

benefit the real applications.

(5)   Would upgrade be possible minimally affecting the operations, 

especially for the users? There are 4224 M2050 GPUs in 

TSUBAME2.0 in its 1408 thin nodes, and upgrading each 

one involves stopping of the node, exchanging the GPU, 

and stress testing the nodes for some duration, such 

that it would take weeks to conduct the replacement. 

Moreover, if we maintain TSUBAME2 in operation during 

the upgrade, there will be rather random mixture of old 

and new nodes. As such it was an operational challenge 

to conduct the upgrade essentially in the background 

without compromising the user perception of the system, 

e.g., avoiding extended and/or unscheduled down time, 

given these constraints.

Fig. 3    TSUBAME Compute “Thin” Node Upgrade



Table 1   TSUBAME2.0 and TSUBAME2.5 
 Thin Node Specifications
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 Such technical problems were resolved with careful 

planning and engineering, then reflected onto the TSUBAME2.5 

acquisition specifications. By all means the partner vendors 

that won the bid contributed significantly in the resolution. 

Although we cannot go into every detail due to the lack of 

space, we outline the specifics of the problems, and how they 

were resolved.

(1)   Which Many-Core Accelerator to Upgrade to: 
The only practical many-core processor that could be 

usable for large-scale, general purpose supercomputers in 

the TSUBAME2.0’s development and acquisition timeframe 

in 2008-2010 were NVIDIA (GP)GPUs, and both TSUBAME1.2 

and 2.0 were equipped with the Tesla variant which 

was dedicated to HPC. In practice, during the 3 years of 

operations, the 4224 GPUs performed reliability as many-

core processors sans some minor glitches, and recent 

utilization rate has been 30~50% and improving steadily, as 

well as allowed for whole-system stable execution of GPU-

based petascale grand-challenge problems. Due to the 

successes of NVIDIA, other processor companies followed 

suite, such as AMD FireStream, and in particular Intel Xeon 

Phi which facilitated x86 instruction set compatibility and 

could execute most program with simple re-compile. 

However, upon various tests we conducted, with the first 

generation Xeon Phi, it took considerable tuning effort 

to match the performance of applications running on 

the Fermi GPUs, and difficult to match those of Kepler. 

As a result, we partitioned the upgrade into two systems, 

one requiring direct compatibility and immediate higher 

performance of existing applications on Fermi GPU, and 

the other requiring only software compatibility with either 

GPU or CPU multithreaded code, possibly accommodating 

Xeon Phi as well as other many-core processors. In the end, 

both system became K20x upgrades as already noted as a 

result of the public bidding process.

(2)   Will the new accelerator work on the TSUBAME2.5 
 thin nodes?

According to the specification supplied by the vendors, 

power consumption figures for the candidate accelerators 

such as K20x and Xeon Phi were 235-300 Watts TDP, 

significantly exceeding that of M2050 which had 225W 

TDP; as a result, the thin nodes had to be modified to 

strengthen its  power and cooling of the accelerator 

bay. Moreover, the thin node that was developed for 

TSUBAME2.0 by HP, namely SL390s G7, did not support 

the new power and cooling interface protocol that was 

revised for Kepler GPUs, and as a result, mere plugging in 

of the new GPUs would be totally inoperative. By all means 

this could be resolved by engineering the server control 

plane software to recognize the new protocols, but would 

require significant collaborations between NVIDIA and HP-

-- a non-trivial effort. Fortunately, after long discussions 

and negotiations on all sides, custom modifications were 

engineered for SL390 to fully accommodate the Kepler 

GPUs, with appropriate vendor certif ication for long-

duration operations.

(3)   Will it be efficient, in particular, will other parts 
of the system such as PCI-e and Infiniband 
network become new bottlenecks? 

The key to the design of a supercomputer architecture 

utilizing many-core processors is that, compared to using 

standard multi-core CPUs, both compute and memory 

bandwidth are several- fold greater,  and thus would 

require significant improvement in the underlying intra-

node I/O switches, in the node-to-node interconnect, and 

likewise in the storage I/O. TSUBAME2.0 was specifically 

designed to accommodate the massive bandwidth of 3 

GPUs hosted by the SL390 nodes, with multi I/O hubs and 

multi-rail QDR Infiniband network, as well as intra-node 

SSDs. However, with 2-3 times boost in both compute 

and memory bandwidth capabilities, it quickly became an 

issue whether the node I/O capabilities were sufficient. For 

example, in the initial node-wise Linpack measurements, 

the SL390 generation Intel Westmere Xeon + Tylersberg 

IOH combination exhibited sufficient bandwidth for M2050; 

however, for Kepler K20x, in comparison to the newer 

The TSUBAME2.5 Evolution
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generation Intel Sandy Bridge Xeon with CPU-integrated 

and improved IOH as facilitated in the HP SL250 (successor 

to SL390), the PCI-e bandwidth proved to be insufficient, 

and as a result, we could only attain half the performance 

in Linpack by comparison (Figure 4).

 Similar problem also manifested itself in the network; 

for  TSUBAME2.0  the dual - ra i l  QDR Inf in iband exhibi ted 

approximately 7 Gigabyte/s of node-to-node bandwidth, 

sufficient for TSUBAME2.0, but is significantly inferior to the 

new dual rail FDR Infiniband which would have achieved 12~13 

Gigabyte/s of bandwidth to have matched the speed of Kepler.

 In order to resolve the problem, we conducted R&D 

on various fronts. For Linpack, we developed as well as tested 

and employed alternative algorithms that were more oblivious 

to relative lack of node I/O bandwidth. For the network itself, we 

conducted and continued our research effort on alternative and 

more efficient routing algorithms that would achieve higher 

network utilizations, as well as bandwidth-reducing algorithms 

on the compute side to cope with the reduced bandwidth. 

Altogether, we were largely able to recover the performance 

lost due to I/O bandwidth degradation.

 Such efforts are not only specific to TSUBAME2.5, 

but we also believe that for future systems the bandwidth 

balance may become even worsen; as such our research efforts 

will continue to pay-off for future systems leading towards 

TSUBAME3.0 and exascale.

(4)    Is Single Precision FP Enhanced Acceleration Useful ? 

A s  m e n t i o n e d  m a n y  H P C  a p p l i c a t i o n s  u t i l i z e  D F P 

arithmetic and not SFP, one of the primary reasons being 

that, in classic supercomputers DFP and SFP compute 

performances were the same, and with sufficient memory 

bandwidth for both in classical vector supercomputers, 

SFP provided very little performance advantage except for 

storage space, and application programmers used DFP “by 

default” to “play it safe” in numerical precision. However, 

due to the decreasing memory bandwidth relative to 

compute, and “boosting” of SFP in modern processors 

in order to accommodate multimedia applications that 

exhibit high data locality, the use of SFP arithmetic now 

provides significant potential performance advantages 

for both compute bound and memory bound codes, and 

various research are ongoing to utilize SFP, either alone 

or as “mixed precision” where SFP will dominate but DFP 

will  be occasionally used to enhance precision. Many 

applications today can make good use of SFP, such as 

seismic wave propagation, tsunami simulation, as well 

as climate/weather prediction. Most such applications 

with explicit PDE solvers could directly utilize SFP. Also, 

var ious manufacturing applicat ions such as electro-

magnetic analysis ,  computational f luid dynamics for 

automotive and aerospace, as well as molecular dynamics 

for pharmaceutical drug design, are all subject to SFP or 

SFP-dominated mixed-precision. Such applications have 

been demonstrated to obtain significant speedup on 

TSUBAME2.0. The question is, what if we had higher peak 

beyond the 2:1 ratio. We know that in general there are 

several classes of algorithms and applications that can 

benefit, such as the (gravitational) N-Body problems, or 

Fast Multipole Methods (FMM), and various apps based on 

dense linear algebra; we will continue our efforts to widen 

the applicability of such boost.

(5) Can the upgrade be performed 
 without affecting the users ? 

Since the Tohoku Earthquake, TSUBAME2.0 has been 

operating in “peak-shift” mode during the hottest summer 

months from July until September, in which we turn off 

some of the nodes automatically to reduce the daytime 

power consumption as requested by the government. 

Such a scheduling mechanism had been developed as part 

of the “Green Supercomputer” project sponsored by MEXT. 

By coinciding our 2.5 upgrade with this mechanism, we 

were able to round-robin through the nodes by capturing 

the ones that are being turned off, and upgrading them 

during the day and re-commissioning them after the 

upgrade. This plus utilizing the mandatory power down of 

the machine due to campus-wide electrical maintenance, 

Fig. 4    Comparing HP SL390 and SL250 I/O
 Architecture



08

Table2    TSUBAME2.0 to TSUBAME2.5 Performance Boost

As mentioned earlier, upgrade to TSUBAME2.5 resulted in 

factor 2~3 boost in performance, which allows the extension of 

TSUBAME2’s operational life by 1~1.5 years by supercomputer 

yearly performance improvement standards. Currently, we are 

actively researching and developing various technologies for 

TSUBAME3.0 as well as its doing its overall design. However, the 

detailed schedule does get affected by changes in the plans of 

the processor vendors. Currently, TSUBAME3.0 is slated to be 

coming into production by the end of the Japanese fiscal year 

2015 (end of March 2016 calendar year), which will mean that 

TSUBAME2.5 lifetime will be more than 2.5 years, and TSUBAME2 

overall would be nearly 5.5 years, despite initially planned with a 

4 year lifespan. The upgrade performance boost and the lifetime 

extension strongly correlate, but such a long operational lifetime 

is largely due to the solid design and the flexibility subject to 

upgrades, a property not actually seen often even for cluster-

based supercomputers.

 The peak performance of TSUBAME3.0 is projected to 

be approximately 25-30 Petaflops, while being about the same 

size and power consumption as TSUBAME2.0. Such tremendous 

boost in power performance ratio will only be possible with 

various advances including more advanced and efficient cooling 

than TSUABME2.0/2.5. Moreover, in order to cope with massive 

data in the big data era, TSUBAME3.0’s I/O as well as resiliency 

will be greatly enhanced. The details of various technologies 

as well as the TSUBAME3.0 design will be published in the 

forthcoming issues of this journal and elsewhere.

Final Words 
--- Towards TSUBAME3.0 5 

The TSUBAME2.5 Evolution

we were able to prceed with the upgrade for almost two 

months without being “noticed” by the users. Since the old 

and new accelerators co-existed randomly, we devised an 

operational procedure by which the users could ask purely 

for old- or new GPUs if such purity would be required, and 

reflect them in batch scheduling. Altogether, the entire 

upgrade was largely complete by the end of August, two 

weeks ahead of schedule.

Thus, the upgrade from TSUBAME2.0 to TSUBAME2.5 was 

achieved, with significant boost in performance, compensating 

for  the  lack  of  capac i ty  and a l lowing the  extens ion of 

TSUBAME2 operation by at least one year, to adjust the timing 

of TSUBAME3.0 deployment. Current GPU-based benchmarks 

are demonstrating that the speedup is largely as expected 

despite the technical concerns described above, with 2~3 

times improvements in performance metric. More concretely, 

Table 2 are some the major full-system metrics that have been 

observed:

We observe that Green500 metric in part icular  has seen 

considerable improvement. This is largely due to the improved 

power efficiency of the Kepler GPU despite the significant 

performance boost, plus that other parts of TSUBAME2.0 is more 

power efficient under lower thermal load. On the other hand, 

we are observing the network becoming a bottleneck despite 

our efforts as described above, and we hope that our ongoing 

research will alleviate some of the limits to further improve 

performance. By all means we will conduct further comparative 

benchmarks, and will publish the results publically.
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Structural analysis of a protein as a drug target is now essential in pharmaceutical science, where molecular 
dynamics (MD) s imulat ion of a protein is st i l l t ime consuming. A major bott leneck in MD s imulat ion is 
calculation of electrostatic interactions between atom pairs. We recently developed the zero-dipole summation 
(ZD) algorithm that can make MD simulation rapidly and precisely. We implemented the ZD algorithm into our 
MD software code, myPresto/Psygene, with the space decomposition algorithm, and we also developed its GPU 
version, myPresto/Psygene-G, for the TSUBAME supercomputer system. We examined the simulation quality and 
performance of myPresto/Psygene-G with the MD simulations for three protein systems. The GPU version was 30 
times faster than the original CPU version, and it was applied to a G-protein coupled receptor (GPCR), indicating 
that the simulations are useful to understand the dynamics of GPCR.

Molecular Dynamics Simulation Accelerated 
by GPU for GPCR with a non-Ewald Algorithm

Since drug development  i s  h ighly  r i sky  and expensive , 

computer-aided drug discovery is now essential to reduce the 

cost and time. Nearly 50 % of drug molecules bind G-protein 

coupled receptors (GPCRs) as their target proteins, which are 

known to be very flexible. Thus, computer simulation to reveal 

the dynamic features of the complex of a drug and its target 

GPCR is one of the major issues in pharmaceutical science. The 

GPCR protein family consists of several hundreds GPCRs, and 

the three-dimensional structures of several GPCRs have been 

revealed recently. It is now known that GPCRs show specific 

structural changes, called as the induce fit, when they bind their 

ligands and drugs, and that such structural changes depend 

on the ligand functions. To observe the structural changes like 

the induced fit, molecular dynamics (MD) simulation is a useful 

approach. In general, the all-atom MD simulations of GPCRs 

are time consuming, when lots of membrane and solvent 

molecules are included in a realistic manner. Thus, acceleration 

of MD simulation is a key technology for drug discovery.

 One of the most time-consuming processes in MD 

simulation is calculation of electrostatic interactions between 

atom pairs, because of its long-ranged nature. We have so far 

developed the zero-dipole summation (ZD) method, which 

drastically reduces the amount of computations for calculations 

of  the Coulombic electrostat ic  interact ions keeping the 

accuracy in several different kinds of MD simulations [1-5]. Here, 

we developed a program for GPU-accelerated MD simulation, 

myPresto/Psygene-G, using the ZD method for TSUBAME 

supercomputer system. In the ZD method, the long-range 

The evaluation of the Coulombic interactions does not allow 

the s imple cutoff  t runcation,  f rom the viewpoint of  the 

accuracy and the stability of the MD simulation. For their 

suitable evaluation, we aimed at constructing a method to 

fulfill the following requirements: (i) high accuracy and low 

computational cost; (ii) freedom from artifacts; and (iii) ease of 

the implementation, which enhances the availability for use in 

high-performance parallel computational architectures.

 For this purpose, we switch from the conventional 

v iew such that  the value of  the pair  potent ia l  funct ion 

is  decreas ing with increas ing the distance     between 

two particles,    and    .  Instead, we take into account the 

electrostatic feature, i.e., the individual charge      and a certain 

structure. In the vivo environment, many molecules and ions 

crowd over individual particles. Each positively or negatively 

Coulombic interaction is cut off within a short range as long as 

12 Å, and the effect of the long-range electrostatic interactions 

are compensated by the image charges that are located on the 

cut-off sphere, so as to neutralize the monopole (charge) and 

dipole moment in the cut-off sphere. The ZD method is useful 

for parallel computation by reducing the numbers of long-

range interactions, which would increase communications 

between the nodes. 

 In the current study,  we appl ied the myPresto/

Psygene-G to the complex structure of GPCR with its ligands, 

and we analyzed the dynamic features of the complexes.

Introduction 1 

Zero-dipole summation method 2 
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TSUBAME supercomputer is composed of a distributed memory 

system of a few hundred of GPU accelerators. Thus, the MD 

program for TSUBAME supercomputer should combine the 

implementation of CPUs and accelerators,  which execute 

processes in parallel while being accelerated by an accelerator 

and exchanging the data  through high-speed network 

communication. 

 myPresto/Psygene-G i s  an  MP I/GPU-combined 

parallel program with an NVIDIA GPU as its accelerator, which 

was developed for massively parallel computers. This program 

divides many atoms that construct a system in a coordinate 

space. The MD simulation of the atoms belonging to the 

subspaces is assigned to the components (MPI processes) of 

the parallel computer. Among the assigned MD calculations, 

the pair-wise interact ions of  the non-bonded terms are 

computed on GPUs. Along with the data transfer required for 

the migration of atoms that extend across subspaces and the 

control of temperature and pressure, the mutual transfer of 

the atomic data between neighboring subspaces, which is 

necessary for calculations of the pair-wise interaction, uses 

the MPI communication. The parallel execution of myPresto/

Psygene-G with more than a hundred CPUs accelerated by GPU 

nodes could allow it to handle a system consisting of over a few 

million atoms (Fig 2).

 In the ZD method,  the long-range electrostat ic 

interaction is cut off within a short range, and so the most of the 

charged particle assembles in such a way that the electrostatic 

interactions cancel each other well, unless very high energy 

phenomena occur.  Thus, actual interactions in biological 

systems are essentially screened, as compared with the bare 

Coulombic form      . These considerations provide a positive 

motivation for employing the cut-off based methods.

 Based on these considerations, we have developed a 

novel idea, the ZD method. This method prevents the nonzero-

charge and nonzero-dipole states artificially generated by a 

simple cutoff truncation, but the resulting energy formula is 

nevertheless represented by a pair-wise summation form. The 

method is due to the following two strategies: (A: ideal ) For 

each particle    , the summation with respect to the all particles 

is replaced by the one with respect to the neutralized subset      , 

whose existence is assumed; (B: specific ) Pair potential function is 

redefined in order that we can handle the summation defined in 

(A) using a simple pair-wise-sum form.

 Here,       (   ) is the complementary error function 

of       , with     being a damping parameter. For general molecular 

system, some modifications are required [2]. The resulting energy 

formula is represented by a simple pair-wise function sum along 

with a constant term, enabling the simple implementation and 

facile applications to high-performance computation. The ZD 

method does not assume the exact periodic boundary condition 

as used in the lattice sum method, which often causes artifacts 

in an application to an inherently non-periodic system [3]. In 

addition, the ZD method conserves the total energy and the 

center of mass of the physical system in the MD simulation, for 

which these conservations are not trivial in the particle mesh 

Ewald method and the fast multipole method even if they are 

good at the energy accuracy. The accuracy of the ZD method 

has been examined in several systems [1,2,4,5] and high efficiencies 

were confirmed. For example, in the GPCR system [4], which will 

be also discussed later, the energy accuracy of the ZD method 

was about 0.04 % at 12Å cutoff length. Thus, the reaming task is 

to attain its efficient parallelization, which is the main theme of 

this article.

MD simulation with the space
decomposition algorithm 3 

 We then have the total electrostatic energy in the 

following form [1,2]

Fig. 1     The current ZD method conceptually deals 
 with the particles only in the shaded region, 
 which schematically represent the zero-dipole 
 subset       .

Molecular Dynamics Simulation Accelerated 
by GPU for GPCR with a non-Ewald Algorithm
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computations are performed within each cell. The ZD method is 

useful for parallel computation by reducing the communication 

among the cells, thus, the ZD method was applied in myPresto/

Psygene-G.

Fig.2    Schematic representation of the space decomposition in myPresto/Psygene-G

In the MD simulation, most of the inter-atomic energy potentials 

are pair-wise interactions. For computing those interactions, 

which consist of the electrostatic and the van der Waals 

interactions, the forces between the atom pairs are individually 

calculated. Thus, the calculation time is almost proportional to 

the square of the number of atoms. The space decomposition 

method reduces the number of calculations by performing pair-

wise interaction calculations for only the atom pairs included in 

the relevant and neighboring decomposed regions.

 In myPresto/Psygene-G,  the components of  the 

decomposed system are called cells. The cells are obtained 

by decomposition of the cuboid system along three axes 

by an arbitrary number.  Each cell  manages its respective 

region boundaries, constituent atom quantity, and data of 

each constituent atom. Then, the entire system is formed 

by integrating all of the cells. Each cell is the smallest unit of 

the calculated regions, handled by a CPU core of the parallel 

computer. One CPU core as an MPI process is assigned to one 

cell.

 In General, one step in the MD calculation is divided 

into calculations of force and integral of the equations of motion, 

where the force calculations are further divided into calculations 

For calculations of the pair-wise interactions performed in each 

cell, it is necessary to calculate the interactions between the 

atoms in the relevant cell and the atoms in its neighboring 

cells. Thus, in the three-dimensional space decomposition, we 

need to send and receive the atom information in a cell to its 

surrounding 26 cells.

 In myPresto/Psygene-G, the communication between 

the processors is conducted for exchanging atom information 

between the neighboring cells, as well as for actualizing the 

migration of atoms that straddle the cells. This communication 

is  performed using the Message Passing Interface (MPI) 

communication. Here, we applied the asynchronous one-to-

one communication, in order to reduce the communication 

overhead.

of bonded terms and non-bonded terms. The calculation of non-

bonded terms is further partitioned in three ways: calculations 

of the forces due to the van der Waals interactions, the short 

range Coulombic electrostatic interactions, and the long range 

one. Whereas the former two force terms are directly computed 

by pair-wise interaction calculations, and the last long range 

electrostatic forces are calculated by the ZD method.
Computation in each cell 4 

Communication between processes 5 
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Fig.3
Cartoon graphics of GPCR 
( β2 - adrenargic receptor).
Each helix is shown in 
different color. 
The membrane and solvent 
molecules are not shown.

Fig.4    Molecular dynamics simulation of β2- adrenargic 
receptor system. Final coordinate (after 20 nsec) at 
room temperature.

There are mainly two types of GPCR-targeting drugs: agonists 

and inverse agonists. Partial agonist has the aspects of both 

agonists and inverse agonists. In the current study, we studied 

the structures of the agonist bound and the inverse agonist 

bound β2 adrenergic receptors.

In biological system, GPCR is located in the membrane and the 

system consists of approximately 56,000 atoms. The dynamics 

of GPCR is slow process and the MD simulation should be 

performed at least several-tens nsec to observe the structural 

change of GPCR.

 GPCRs are mainly composed of seven trans-membrane 

helices embedded in the membrane (Fig. 3). In Fig 3, the up-

side and down-side are the extra-cellar and intra-cellar regions. 

Ligands (agonist, inverse agonist and partial agonist) bound to 

the almost middle of the trans-membrane helices. The structural 

change due to the induce fit is small around the bound ligand, 

but the structural change in the intra-cellar part is large enough 

for signal transduction.

 We applied myPresto/Psygene-G to the GPCR system, 

in which one GPCR, its bound ligand, membrane, and solvent 

atoms were included (total about 56,000 atoms),  and we 

performed 20-50 nsec simulations to analyze the structural 

change of the GPCR induced by the agonists and the inverse 

agonists. MD simulation by myPresto/Psygene-G on TSUBAME 

supercomputer system was 30 times faster than that by the 

usual CPU version.

 The ligand (agonist or inverse agonist) was placed into 

the ligand-binding site of the GPCR by docking calculation, and 

then the protein-ligand complex structure was embedded into 

the membrane. Finally, solvent water and counter ions (Na+/

Cl- ) were added to complete the system. We performed the 

MD simulation at room temperature with 1 atm pressure. After 

relaxing the system, we started observation of the system (Fig 4).

 While we performed many MD simulations with 

various drugs,  we showed the MD simulation results for 

carazolol (an inverse agonist) and formoterol (an agonist) with 

β2- adrenargic receptor.

 Figs 5 and 6 show the root-mean square deviations 

(RMSD) of the seven trans-membrane helix structures along the 

simulation time. The structural change induced by the inverse 

agonist (Fig 5) was larger than that by the agonist (Fig 6). These 

results show that the binding of small ligands could induce the 

larger structure change of the whole GPCR.

Application to GPCR 6 

Table1    myPresto/Psygene-G benchmark results

Molecular Dynamics Simulation Accelerated 
by GPU for GPCR with a non-Ewald Algorithm
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Fig.5    RMSD of seven trans-membrane helix (TMH1-TMH7)
structures obtained by the MD simulation of β2 - 
adrenargic receptor with an inverse-agonist
Carazolol. Light yellow: RMSD of all atoms of GPCR
including loops. Dark green: TMH1, 
Green: TMH2, Blue: TMH3, Dark orange: THM4, 
Cyan: TMH5, Yellow: TMH6, Red: TMH7, 
Black: all atoms of TMH1-TMH7.

Fig.6    RMSD of seven trans-membrane helix (TMH1-TMH7) 
structures obtained by the MD simulation of β2 -
adrenargic receptor with an agonist Formoterol. 
Light yellow: RMSD of all atoms of GPCR including 
loops. Dark green: TMH1, Green: TMH2, 
Blue: TMH3, Dark orange: THM4, Cyan: TMH5, 
Yellow: TMH6, Red: TMH7, 
Black: all atoms of TMH1-TMH7.

We developed an MD simulation software myPresto/Psygene-G 

for TSUBAME supercomputer system and the ZD method 

realized the rapid and precise calculations of electrostatic 

interactions. In this software, non-bonded pair-wise interactions 

were calculated on multi GPUs and the software was 30 times 

faster than the CPU version for conventional PC clusters. The 

myPresto/Psygene-G showed a scalable acceleration by the 

space-decomposition method, according to the number of 

computer nodes.

 myPresto/Psygene-G was applied to the simulations 

of GPCR systems, which includes the GPCR molecule, its bound 

ligand (agonist or inverse agonist), membrane, and solvent 

molecules. We observed that the agonist-bound GPCR showed 

the different dynamics from the inverse agonist bound GPCR. 

Our study showed that the long-time large-scale MD simulations 

of drug-target proteins should be important to understand the 

mechanism of the drug effect and drug design.
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The importance of high performance parallel algorithms for tackling difficult combinatorial optimization problems 
cannot be understated. With the advent of computer systems equipped with millions of heterogeneous compute 
cores, it is especially important to develop algorithms which can be well suited for future machines. Currently, 
the most successful methods of solving such problems are meta-heuristic algorithms providing an approximate 
solution. One of the most successful and general algorithms is called Iterated Local Search (ILS), where the solution 
is gradually refined and its quality depends on the time available. We demonstrate that this can also depend on 
available parallelism, i.e. number of cores without losing the generality and requiring problem-specific knowledge, 
thus keeping the same assumptions as the original ILS. In this article, we are showing the Parallel Iterated Local 
Search (Parallel ILS) algorithm, a very efficient method of performing distributed combinatorial optimization. Due 
to its simplicity and abstraction it can be applied to any problem that can be solved using traditional ILS method 
requiring only slight modification of the sequential code. Our experimental results based on Traveling Salesman 
Problem (TSP) solving indicate that this algorithm is also more efficient than careful and time-consuming local 
search parallelization. We achieve over 9 0 x speedup compared to sequential algorithm using our Parallel ILS 
method with MPI inter-node communication scheme on TSUBAME 2.0 supercomputer using 256 nodes.

Large-scale Parallel Iterated Local Search 
Algorithm for Traveling Salesman Problem

Combinatorial problems are present in many areas of computer 

science and other fields in which computational methods are 

applied, such as artificial intelligence, operations research or 

bioinformatics. The best known examples of such problems 

include optimal scheduling, finding models of propositional 

formulae (SAT), graph traversal (Traveling Salesman Problem - 

TSP[4]) or Quadratic Assignment problem (QAP). These problems 

typically involve finding groupings, orderings, or assignments 

of a discrete set of objects which satisfy certain conditions or 

constraints. Those where solutions are encoded with discrete 

variables contain a class of problems called Combinatorial 

Optimization (CO) problems. Therefore a solution is an object 

composed of a finite, or possibly countably infinite, set of 

integer numbers, a subset, a permutation, or a graph structure. 

For most combinatorial optimization problems, the space of 

potential solutions for a given problem instance is exponential 

in the size of that instance[1]. As a result of the practical 

importance of CO problems, many algorithms to approach them 

have been developed. These algorithms can be categorized as 

either complete (exact) or heuristic (approximate) algorithms. 

Complete algorithms are guaranteed to find for every finite size 

instance of a CO problem an optimal solution in bounded time 

[1][2][3]. Within the approximate algorithms we can distinguish 

between constructive methods and local search methods. 

Constructive algorithms generate solutions from scratch by 

adding - to an initially empty partial solution - components, until 

a solution is complete. Local search algorithms start from some 

initial solution and iteratively try to refine the current solution 

Iterated Local Search (ILS) is a Stochastic Local Search (SLS) 

method that generates a sequence of solutions generated 

by an embedded heuristic, leading to far better results than 

if one were to use repeated random trials of that heuristic[5]. 

The implicit assumption is that of a clustered distribution of 

local minima. When minimizing a function, determining good 

local minima is easier when starting from a local minimum 

with a low value than when starting from a random point. The 

iterative algorithm is based on building a sequence of locally 

optimal solutions by: 1. perturbing the current local minimum; 2. 

by a better one in an appropriately defined neighborhood of 

the current solution[3][5]. However, Local search methods can get 

stuck in a local minimum, where the solution is unsatisfactory 

and improvement not possible. Therefore they are not suited 

for searching the whole state-space as the number of such 

local searches would be enormous. However, they can quickly 

converge to a local minimum, which means that a large number 

of local minima can be explored. In order to improve this 

process, a new type of algorithms called metaheuristics[7][8] has 

emerged. This class of methods tries to combine basic heuristic 

methods in higher level frameworks aimed at efficiently and 

effectively exploring a search space. It includes algorithms such 

as Ant Colony Optimization[11] (ACO), Genetic Algorithms[10] (GA), 

Iterated Local Search[6] (ILS), Simulated Annealing[9] (SA), or Tabu 

Search[7] (TS). This paper focuses on the ILS algorithm (Figs. 1 and 

2), it is a simple but powerful metaheuristic algorithm [12][13][16][17].

Introduction 1 

Iterated Local Search 2 

Kamil Rocki   Reiji Suda
Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo
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It is important to mention, that in the previously presented 

Mult i -start  Local  Search a lgor i thm does not  have st r ict 

synchronization point, therefore the threads or processes can 

run on different machines at different speeds or even using 

different algorithms. This is the key point of the modified 

algorithm that is using active communication: Parallel Iterated 

Local Search (or Multi-start Local Search with Communication). 

The sequential code remains basically unchanged except for the 

thread encapsulation, added memory synchronization (critical 

section) as well as storing and reading the best global solution. 

Due to the required communication between the threads - 

both the cost and the solution itself have to be shared - the 

implementation differs depending on the system. The whole 

algorithm is explained in Listing 1.

applying local search after starting from the modified solution. 

The perturbation strength has to be sufficient to lead the 

trajectory to a different attraction basin leading to a different 

local optimum. However it cannot be to strong as it would 

lead to a random restart strategy. There are many strategies of 

choosing the right perturbation technique as well as there are 

many local search algorithms for every problem. Our algorithm 

uses a local search method called 2-opt exchange.

2.1 2-opt Local Search

The 2-opt algorithm basically removes two edges from the tour, 

and reconnects the two paths created. This is often referred to 

as a 2-opt move. There is only one way to reconnect the two 

paths so that the tour remains valid (Fig. 3). It improves tour by 

reconnecting and reversing order of sub-tour. The procedure 

is repeated until no further improvement can be done. It is 

good for finding a local, but it is not guaranteed to find the 

best possible solution (the global optimum) out of all plausible 

solutions. A method allowing escaping from local optima has 

to be provided, which usually means that a local solution needs 

to be worsened is some way, keeping it within a certain search-

space.

Parallel Iterated Local Search 3 

Fig.1    Iterated Local Search – solution space

Fig.2    Iterated Local Search – algorithm

Fig.3    2-opt exchange
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 First, each process starts with a random solution which 

stands for a different point in the state-space. Further, the first, 

initial descend is being performed. Afterwards, each process 

executes the search-perturb ILS cycle until at least one of them 

has an acceptable solution. During this procedure, once a better 

solution is found by one of the processes, it is propaged  to 

other ones. Lines 7 and 12 show the steps where the data is 

being exchanged. This can be done using shared memory or MPI 

in case of distributed processes.

3.1 Shared Memory Implementation

A single node comprising homogenous or heterogeneous, 

but shared memory can use global variables and threads to 

exchange the data (Fig. 4). This method is the simplest and 

probably the most effective way of implementing the algorithm. 

3.2 Distributed Memory Implementation

When we consider multiple processes instead of multiple 

threads, the code becomes simpler on one hand as it does 

not have to be contained in a function that runs as a thread. 

On the other hand, it requires inter-process communication 

which makes it more complicated and typically slower. We 

have successfully implemented and tested the algorithm using 

MPI (Message Passing Interface). The fastest implementation 

uses shared memory based communication within a node to 

minimize the data turnaround and only one of the threads may 

be responsible for the inter-process communication (Fig. 5).

Listing 1    Multi-start Local Search 
with Comminication Pseudo-code

Fig.4   Shared-memory Parallelization Scheme Fig.5   Distributed-memory Parallelization Scheme

Large-scale Parallel Iterated Local Search 
Algorithm for Traveling Salesman Problem
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Fig.6   Results of Parallel ILS using TSUBAME 2.0

We tested the shared version of our algorithm on a GeForce GTX 

680 GPU. When we tested the distributed version, we used up 

to 256 nodes of TSUBAME 2.0 with three NVIDIA Tesla M2050s 

per node. The performances of the computations are plotted in 

Fig. 6. In this figure, time is plotted on the x-axis and the quality 

of the solution on the y-axis. The lower the result, the better the 

quality. As expected, the solution gradually improves over time 

with the ILS algorithm. Two distinct results can be compared by 

measuring the time needed to reach an equally good solution. 

In this way we per formed the speedup measurement. We 

observed that the algorithm runs approximately 90 times faster 

when all 768 GPUs are utilized. In our opinion, the imperfect 

scalabil it y of the algorithm is due to the communication 

between the nodes as well as time which is required to copy 

the data to and from the GPU.

Results 4
In this article we have presented a high-performance Multi-

GPU implementation of 2-opt local search in Traveling Salesman 

Problem. However, the main contribution of our work is the 

Parallel Iterated Local Search algorithm which can be used with 

other local search methods. It can be used to solve arbitrarily 

big problem instances using distributed GPU systems such 

as TSUBAME 2.0. We believe that it is a good base for more 

sophisticated approaches. Our algorithm solves the problem 

in a brute-force way, but due to the very high parallelism, the 

overall speed allows to tackle large TSP instances. The results 

show that the time needed to perform a single search operation 

can be decreased up to 90 times compared to sequential GPU 

implementation using a single TSUBAME 2.0 node. We believe 

that the algorithm presents strong-scaling features, but it is 

limited by network and CPU-GPU communication. 

Summary 5
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Please see the following website for more details.
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The high performance of supercomputer TSUBAME has been extended to the 
international arena. We promote international research collaborations using 
TSUBAME between researchers of Tokyo Institute of Technology and overseas 
research institutions as well as research groups worldwide.

Recent research collaborations using TSUBAME

1. Simulation of Tsunamis Generated by Earthquakes using Parallel
　Computing Technique

2. Numerical Simulation of Energy Conversion with MHD Plasma-fluid Flow

3. GPU computing for Computational Fluid Dynamics

Candidates to initiate research collaborations are expected to conclude 
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departments. Committee reviews the “Agreement for Collaboration” for joint 
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researcher as part of research collaboration. The results of joint research are 
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