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Emerging new commodity devices, especially such as GPU accelerators and NVM (Non-Volatile Memory) devices, 
etc., which are employed on modern high-end supercomputers, may drastically improve performance on the 
current “Big Data” processing, although the existing “Big Data” processing is mostly operated on poor and 
cheap infrastructures derived from the cloud-based architecture that employs commodity web-oriented servers 
equipped with HDDs and GigE networks by using MapReduce-based frameworks. However, the case studies 
of BigData-enabled software execution on large-scale environments with the modern commodity devices are 
underinvestigated. This article introduces recent research activities on Big Data-related software techniques, 
including Graph 5 0 0 , GPU-based MapReduce, large-scale distributed sorting, with TSUBAME 2 toward future 
extreme-scale supercomputers and cloud data centers.
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"B ig  Data"  recent ly  att racts  many attent ions  in  var ious 

application domains such as Social Networks, Bioinformatics, 

Internet of Things, etc., and the demand for fast and scalable 

processing to petabyte- or yottabyte-scale data sets drastically 

increases. The existing Big Data processing is mostly operated 

on poor and cheap infrastructures derived from the cloud-based 

architecture that employs commodity web-oriented servers 

equipped with HDDs and GigE networks by using MapReduce-

based frameworks, i.e., Hadoop. By contrast, emerging new 

commodity devices, especially such as GPU accelerators and 

NVM (Non-Volatile Memory) devices, etc. as shown in Fig. 1, 

may drastically improve performance on Big Data processing. 

For  example,  GPUs can provide high peak performance 

and rich memory bandwidth for applications with specific 

workload patterns, while CPUs offer flexibility and generality 

over wide-ranging classes of applications. Also, NVMs such as 

Flash have positive aspects of inexpensive cost, high energy-

efficiency, and huge capacity compared with conventional 

DRAM devices, as well as negative aspects of low throughput 

and latency. These new devises may bring various benefits 

to the architecture design of BigData-oriented extreme-scale 

supercomputers. Indeed, modern high-end supercomputers, 

such as TSUBAME2 that anticipates the architecture of future 

extreme-scale  supercomputers  and c loud data centers , 

e m p l o y  c o m m o d i t y - b a s e d  n o v e l  d e v i c e s  s u c h  a s  G P U 

accelerators, Infiniband interconnects, and flash devices, etc. 

and provide possible platforms for extremely fast processing 

to gigantic data sets; however, the case studies of BigData-

enabled software execution on large-scale environments 

with the  modern commodity devices are underinvestigated. 

This article introduces recent research activities on Big Data-

related software techniques, including Graph500, GPU-based 

MapReduce, Large-scale distributed sorting, with TSUBAME2 

toward future extreme-scale supercomputers and cloud data 

centers.

Introduction 1

Graph and HPC 2

Fig. 1   Hierarchical Memory Devices

2.1  Graph500 as a Big Data Kernel for Supercomputers

Graph is  a  fundamental  mathematical  representat ion of 

connected objects described as vertices and edges. Various 

important applications, such as health care, systems biology, 

social networks, business intelligence, and social networks, 

and electric power grids, etc. as shown in Fig. 2 are modeled as 

graphs. Moreover, since various data source recently generates 

massive amounts of volumes, demands for large-scale graph 

processing is significantly increasing, so that graph applications 

are considered an important kernel for HPC applications. 

In fact, the Graph500 list[1], which ranks supercomputers by 
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Fig. 2   Large-scale Graphs

Fig. 3   Overview of Graph500

executing large-scale graph problems, are employed as a 

major metric to evaluate the ability of Big Data processing for 

supercomputers, instead of the Top500 list known as a list that 

ranks supercomputers by executing the Linpack benchmark to 

evaluate the ability of computation. Fig. 3 shows an overview 

of the instruction of the Graph500 benchmark. The current 

benchmark in Graph500 measures the time for performing 

the Breadth-first search (BFS) to a Kronecker graph[2] that 

models a real-word network with scale-free and small diameter 

properties; however, the optimal algorithm for supercomputers, 

especially with distributed memory, is not well investigated. 

Our Graph500 activities aims for clarifying various hardware- 

and software-related issues on large-scale graph processing on 

supercomputers and making the Graph500 a fair benchmark.

2.2  Scalability Issues

In order to process BFS on supercomputers with distributed 

memory, we have to partition a graph to several subgraphs; 

however, to achieve the scalability of BFS on supercomputers 

with more than over thousands of compute nodes, we have to 

deal with several problems such as high memory consumption, 

large communication data transfers, and high computation 

costs, etc. Specifically, the scalable BFS implementation requires 

the following algorithms and the data structures:

• Graph data structures with low memory consumption and 

access costs to other vertex's edge lists on large-scale 

environments

•  Communication algorithms to reduce the number of 

communications and the communication data volumes 

between over thousands of compute nodes

• Efficient search algorithms with reduced access costs to the 

graph data structures

The existing Graph500 reference code has limited scalability on 

thousands of compute nodes due to the naive data structure and 

communication algorithm. The latest advanced BFS algorithm for 

large-scale supercomputers with distributed memory is known as 

the Wave method with 2D partitioning proposed by Checconi et 

al.[3] However, the algorithm is not employed another important 

BFS algorithm, called the hybrid BFS algorithm[4], which drastically 

improve BFS performance by reducing inefficient edge scans 

proposed by Beamer et al., although the hybrid BFS algorithm 

itself has negligible scalability on more than thousands of nodes.

2.3  Ueno’s Algorithm

Our Koji Ueno proposes a new sophisticated algorithm for 

scalable BFS on large-scale supercomputers. Our algorithm 

is based on the distributed hybrid BFS algorithm proposed 

by Beamer et al.[5], whereas we also apply the following new 

techniques to improve the scalability and the performance of 

BFS on over thousands of compute nodes:

• A new sparse matrix data structure based on bitmap

• An adaptive data representation of a vertex queue to reduce 

both communication data and memory consumption

• A data structure highly optimized for edge scans

•  A memory eff ic ient technique using shared memory 

between processes on the same compute node to reduce 

communication data volumes

2.4  Performance Evaluation

Fig .  4  shows the result  on the performance of  our  new 

implementation in a Giga TEPS (Traversed Edges per second) 

metric on TSUBAME2.5. We also show the result of our previous 

implementation (September 2012) that utilizes GPUs without 

the hybrid BFS algorithm. By using our optimized hybrid BFS 

implementation, we achieve 1280 GTEPS using 1024 nodes 

and 2.78x times speed up compared with our previous result 

(September 2012).



04

Extreme Big Data with TSUBAME2 and Beyond

Fig. 4   Graph500 performance results

Fig. 5   Graph500 submission history on TSUBAME2

Fig. 5 shows the history of the achievements on the Graph500 

performance on the TSUBAME system. The first submission for 

Graph500 was conducted on November 2011 and ranked 3rd 

in the list with 100 GTEPS. Compared with the results, the latest 

score is achieved about 13 times faster than the first submission. 

Thus, we believe that continuous software development on a 

given large-scale real environment makes amazing performance 

improvement.

3.1  MapReduce and Deep Memory Hierarchy Machines

MapReduce[6] is a successful programing model for efficient 

scalable massive data processing in clouds with large-scale 

commodity compute clusters, since MapReduce can achieve 

scalable processing on distributed systems by utilizing the 

locality and conceal elaborate efforts on the system, such as 

localized data access for petabyte-scale large data volumes, 

communicat ion between thousands of  nodes,  and fault 

tolerance, etc. MapReduce may also be a good programming 

model for GPU accelerators for hiding massive parallelism and 

deep hierarchical memory. However, how much MapReduce-

based applications can be accelerated on large-scale GPU-

based heterogeneous clusters is an open problem.

3.2  HAMAR: Highly Accelerated Data Parallel Processing 
Framework for Deep Memory Hierarchy Machines

In order to investigate the above issues, we have developed 

a highly accelerated data parallel framework, including the 

MapReduce programming model, for deep memory hierarchy 

systems with thousands of compute nodes with GPU accelerators 

and NVM devices. Current version of our implementation (See 

Fig. 5) automatically handles memory overflows from GPUs by 

dynamically dividing processing data into multiple chunks and 

overlaps CPU-GPU data transfer and computation in Map, Reduce 

Shuffle phases on GPUs as much as possible. We also employ a 

GPU-based external sorting in our framework.

3.3  Case Study: GIM-V 
 (Generalized Iterative Matrix-Vector multiplication)

GIM-V (Generalized Iterative Matrix-Vector multiplication) 

is a general expression of matrix-vector multiplication with 

iterative operations for MapReduce-based large-scale graph 

processing[7]. Here, let M = (mi, j) be a matrix of size n  x n , and v  = 

(vi) be a vector of size n, where i , j  in {1, ..., n}. By introducing the 

operator xG , we can define the GIM-V algorithm as follows:

GPU-based MapReduce 3
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Fig. 6   Overview of HAMAR

Here,  the above express ion is  descr ibed by using three 

operators: combine2, combineAll , and assign . We iterate the above 

operation until satisfying a convergence condition defined by 

graph algorithms such as PageRank, Random Walk with Restart, 

and Connected Component, etc. We can describe these graph 

applications by defining the above three operators in our 

HAMAR framework.

3.4  Performance Evaluation

We have conducted large-scale experiments of PageRank 

algorithm based on the GIM-V model on top of the HAMAR 

framework on TSUBAME2.5 with 1024 nodes (12288 CPU cores, 

3072 GPUs). The results (Fig. 7 ) in exhibit that our GPU-based 

implementation performs 2.81 GEdges/sec (billion edges per 

second, 47.7GB/sec) to a large-scale graph with 17.18 billion 

vertices and 274.9 billion edges, which is 2.10x faster than the 

multi-core CPU-based implementation even when the graph 

data size exceeds the capacity on multiple GPUs. As for the 

weak scaling performance, our GPU-based implementation 

also shows good scalability: 686x performance improvement 

by using 1024 nodes (3072 GPUs) compared with using a single 

node (3 GPUs).

Fig. 7   Overview of GIM-V

Fig. 8   GIM-V scalability on TSUBAME2
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Fig. 9   Splitter-based parallel sorting algorithm Fig. 10   Results of GPU-based hyksort

4.3  GPU-based Implementation of 
 Splitter-based Sorting Algorithms

In order to demonstrate the acceleration of performance 

bottlenecks in splitter-based parallel sorting algorithms, we 

extend the existing algorithm, HykSort[8], by offloading the costly 

local sort phase. Since the GPU memory capacity is limited, we 

firstly break an unsorted array int chunks appropriately sized to 

fit the capacity of GPU memory. After creating the chunks, the 

chunks are sorted on GPU iteratively and the sorted chunks are 

merged on DRAM.

4.4  Performance Evaluation

We conduct weak-scaling experiments using up to 1024 nodes 

(2048 of CPU cores and GPU devices) and compare our GPU-

based hyksort implementation that uses 6 threads per CPU 

socket with OpenMP-based hyksort implementation that 

uses 1 thread and 6 threads per CPU socket. Note that each 

process is bound to a single socket for processing 2GB of 64 

integer data sets. Fig. 9 shows the results, where the x-axis 

denotes the number of processes and the y-axis denotes the 

throughput performance in Keys per second. Our GPU-based 

implementation achieves 0.25 TB/s when we sort 4TB of data on 

1024 nodes, which is 1.40 x times faster than the OpenMP-based 

implementation using 12 threads per CPU socket and 3.61x 

times faster than using 1 thread per CPU socket.

Extreme Big Data with TSUBAME2 and Beyond

4.1  Sorting on Distributed Memory Architectures

Sorting is also considered a key building block in many data-

intensive supercomputing applications in various domains 

such as genomics and astrophysics, etc., in which the need for 

processing terabyte- and petabyte-scale data sets is drastically 

increasing due to the generation of science experiments and 

observations. In order to sort such huge data sets, many sorting 

algorithms for distributed memory architectures are proposed. 

In particular, splitter-based parallel sorting algorithms are 

known as  fast  d ist r ibuted sort ing a lgor i thms,  s ince the 

communication costs of the algorithms are relatively small. 

However, as the communication costs go down in the splitter-

based parallel sorting, the computation costs dominate the 

overall performance.

4.2  Sorting on Distributed Memory Architectures

Most splitter-based parallel sorting algorithms consist of the 

following steps shown in Fig. 8. Firstly, data on each process are 

sorted in the local sort phase. After the sorting phase, splitters 

are selected and data are transferred based on the splitters. 

Finally, each node merges sorted chunks into a single sorted 

array. Although other distributed sorting algorithms, such as 

Merge sort, Radix sort, etc., introduce significant data transfers 

between processes; splitter-based parallel sorting can reduce 

the number of iterations for data transfers.

GPU-based Distributed Sorting 4
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We have introduced our recent activities on "Big Data" related 

issues, including Graph500, GPU-based MapReduce, Large-

scale distributed sorting, with TSUBAME2 and demonstrates 

efficient execution of the “Big Data” software implementations 

on a large-scale modern high-end supercomputer.  These 

activities are also applied to the design and development of the 

production machines, such as TSUBAME3.0, which is slated to 

be deployed in the first half of 2016 as one of the first “Extreme 

Big Data” convergent production machine.
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Weather and climate simulations play important roles in weather 

forecasting and climate prediction, and also in researches 

such as those on typhoon genesis and feedback mechanisms 

of cl imate systems, and so on.  Global-scale atmospheric 

phenomena are interacted with small-scale motions. High-

resolution simulations are one of the approaches for reducing 

uncertainties in numerical simulations. However, to perform 

a simulation with high resolution, significant computational 

resources are required. Recent trends in supercomputers are 

for the increased use of multi-core processors, and in particular, 

graphics processing units (GPUs). Heterogeneous architectures 

are becoming more common, and it is expected that weather 

and climate simulations will benefit from such approaches. 

Applications for atmospheric simulations require a large byte 

per floating-point operation (FLOP) ratio, or a B/F ratio; however, 

the performance of such simulations is typically limited by the 

memory throughput. The use of GPUs for weather and climate 

simulations is therefore interesting because of the large memory 

bandwidth. 

 Weather and climate simulations typically contain 

10,000 –100,000 lines of source code; therefore, the cost of 

rewriting these applications using languages, such as CUDA 

or CUDA-Fortran, is large. Furthermore, weather and climate 

models are typically developed via interdisciplinary cooperation, 

so they contain different modules written by people from 

different research fields. This makes maintaining the source 

code and supporting the architecture particularly challenging.

 Recently, a new programming model called OpenACC 

has appeared. OpenACC is directive-based and enables the 

straightforward use of GPUs. Placing directives in the existing 

source code enables data transmission between the CPU and 

Nonhydrostatic ICosahedral Atmospheric Model (NICAM)[1][2]

is  a weather and cl imate application for high-resolution 

global simulations of the atmosphere using massively parallel 

machines .  N ICAM was  developed by the Japan Agency 

for Marine–Earth Science and Technology ( JAMSTEC), the 

University of Tokyo, and the RIKEN Advanced institute of 

Computational Science (AICS). The source code was mostly 

written using Fortran90. NICAM employs a fully compressible  

non-hydrostatic dynamics, where the finite volume method 

(FVM) is used for discretization into the icosahedral grid 

configuration. The icosahedral grid system covers the sphere 

quasi-homogeneously. A grid point method, such as FVM, 

has the advantage of reducing data transfer between the 

computational nodes over a spectral transform method, which 

requires global communication between nodes, and is one of 

the bottlenecks in a massively parallel machine. 

 The components of weather and climate models can 

be divided into two categories. The first are components to 

solve the fluid dynamics of the atmosphere (referred to as the 

dynamics). The dynamics of NICA consists of the kernel of stencil 

operators, including divergence, gradient, Laplacian, and tracer 

advection with a non-negative flux limiter. The dynamics require 

a large B/F ratio, as well as frequent communication during the 

calculations. The second category is referred to as the physics, 

which contains the cloud microphysics, atmospheric radiation 

GPU, and calculations can be performed on a GPU. In this study, 

we applied OpenACC to an existing meteorological code that 

is large and complicated, and evaluated its performance on a 

parallel GPU supercomputer. We also evaluated the portability, 

readability, and maintainability of the source code.

Introduction 1

NICAM and the dynamical core 2

A Global Atmosphere Simulation on a GPU 
Supercomputer using OpenACC: 
Dry Dynamical Core Tests

In many cases, weather and climate simulations are memory-bound. Therefore, use of a graphics processing unit (GPU) 
is expected to be helpful; however, rewriting the source code for execution using a GPU is time-consuming, as 
such applications are typically large and complex. Here, we describe the application of OpenACC to the dynamical 
core package of a global high-resolution atmosphere model application and report the successful execution of 
the dynamical core without re-writing any specific kernel subroutines for GPU execution. The performance and 
scalability was evaluated using the TSUBAME2.5 supercomputer. The results showed that the kernels generated 
by OpenACC achieved good performance, which was appropriate to the memory performance of GPU, as well as 
weak scalability. A large-scale simulation was carried out using 2560 GPUs, which achieved 60 TFLOPS.

Hisashi Yashiro*  Akira Naruse**  Ryuji Yoshida*  Hirofumi Tomita*
* RIKEN Advanced Institute for Computational Science　** NVIDIA
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transfer, the sub-grid scale boundary layer turbulence, and so 

on. These components do not require such a large B/F ratio 

compared with the dynamics, and typically do not require 

communication, because they have no reference of neighbor 

grid information in the horizontal direction. 

 To obtain effective performances of weather and 

climate applications using GPUs, all of the dynamics and physics 

components for execution using a GPU should be optimized. 

These applications exhibit a “flat profile” (i.e., no clear hotspots 

of the calculation exist). Because of this, we carried out GPU 

optimization of the entire dynamics part of the NICAM. In this 

study, we used the dynamical core package of NICAM, named 

NICAM-DC. NICAM-DC is distributed under the BSD 2-clause 

license (http://scale.acis.riken.jp/nicamdc/), and is not simply a 

kernel program, but is a stand-alone application that includes 

file input/output (I/O) routines. A performance evaluation of 

the data throughput from the GPU to the hard disk drive (HDD) 

is important, and was implemented using a number of popular 

test cases for the dynamical core.

We optimized NICAM-DC using OpenACC employing the 

following policies.

・ Ful l  separat ion of  the memory a l locat ion stage and 

computation stage. Arrays such as the metric term, which 

should be executed on the GPU, were prepared in the setup 

stage. Memory allocation of the working array was excluded 

from the main loop

・ Arrays reside in GPU memory if they are not updated during 

the computation: Before start of time integration, non-

updated arrays were transferred in the setup stage using 

the “present_or_copyin” clause. 

・ Asynchronous execution of loop kernels. The structure of 

loops was refactored, and the timing of the communication 

was arranged to execute using the “async” clause as much 

as possible.

・ Optimization of halo exchange. For the point-to-point 

exchange in the halo grid, data were packed in the sending 

node and unpacked in the receiving node. We conducted 

these packing/unpacking actions on the GPU configuration 

and minimized the data size for transfer between the host 

and device.

・ Calculation of a singular point. There are special loops 

Implementation of OpenACC 3

for two singular grids: north-pole and south-pole points. 

These loops incur less computational cost, so they were 

not executed on the GPU. If the CUDA programming model 

is used, offloading loops and non-offloading loops should 

be separated. OpenACC enables more flexible treatment 

regarding whether each loop uses the GPU in a subroutine. 

This improves the readabil ity of the source code and 

facilitates maintenance.

・ Output of s imulation results .  Many of the 2D and 3D 

variables are output during the simulation for analysis. 

File I/O incurs a significant cost for execution on a GPU 

because of the data transfer from the device. We calculated 

diagnostic variables, converted the vertical coordinates, and 

stored them on the GPU. Only at the time of writing data to 

files were these data transferred from the GPU.

The order of the array dimensions used in NICAM was (ij,k,l ), 

which represented the horizontal grid, vertical grid, and the 

unit that was divided for process parallelization (=region). 

In many cases, the number of horizontal grid points is the 

largest. For execution using GPUs, we did not have to change 

the dimension ordering. In NICAM-DC, only a few arrays were 

changed to “Array of Structure (AoS)” for optimization to the 

scalar machine. These arrays were reverted to “Structure of 

Array (SoA)” for calculation using the GPUs. Approximately 2,000 

lines of code were modified or inserted to implement OpenACC, 

which accounted for 5% of the total lines of source code in the 

NICAM-DC. 

Fig. 1  Usage of the CPU and GPU in the computing 
 node of TSUBAME2.5. Data shown on the left 
 represent the CPU–GPU calculation, and those 
 on the right represent the CPU-only calculation.
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A Global Atmosphere Simulation on a GPU Supercomputer 
using OpenACC: Dry Dynamical Core Tests

4.1  Single node performance

We evaluated NICAM-DC on the TSUBAME2.5 supercomputer. 

We implemented two architecture settings to achieve a node-

to-node comparison between the CPU–GPU and CPU-only 

calculations, as shown in Figure 1. NICAM-DC is a memory-

bound application, so the total throughput of memory should 

be the most important parameter. Each node of TSUBAME2.5 

had three GPUs; however, we only used two of them due to 

the limitations of process division of NICAM. The number of 

floating operations and the amount of memory transfer were 

measured in advance. At the time of the performance tests, we 

only measured the elapsed time of each part of the application 

to avoid perturbing the performance counters. We also used 

monitor tools for power consumption of each node and each 

GPU. The problem size was as follows. For the control run, the 

horizontal mesh size was 56 km, and there were 160 vertical 

layers corresponding to 26 mill ion grids points. The total 

number of floating point operations in the main loop was 420 

GFLOPS, and 2.3 TB/step of memory transfer was required for 

each message passing interface (MPI) process. For the CPU-only 

calculation, we used an AoS version of the code, and increased 

the number of MPI processes 4-fold. A total of 2 problem sizes 

were used: one with 5 nodes and 10 MPI processes for the CPU–

PGU calculation, and one with 5 nodes and 40 MPI processes 

for the CPU-only calculation. The performance test was based 

on a baroclinic instability test case for the global atmospheric 

model,[3] and only small steps were executed. The file output of 

some of the variables for analysis was included in the test. 

 Figure 2 shows the results of the performance test for 

one node. The upper panel shows that the CPU–GPU calculation 

was completed in approximately 1/8th of the elapsed time 

of the CPU-only calculation.  This result  is  approximately 

proportional to the difference in memory transfer performance. 

We achieved a peak memory transfer of ~50 % in both of the 

architecture settings, which demonstrates that OpenACC, which 

has a directive-based programming style, can generate the 

code with a sufficient level of performance. From the point of 

view of the number of floating-point operations, the peak ratio 

was worse in GPU calculation (see the middle panel of Fig. 2). 

Because of the large B/F ratio, the computational resources of 

the GPUs could not be effectively utilized by the application. To 

more effectively use the GPUs, in the future, we plan to make 

greater use of mixed precision, and further consideration of 

the trade-off between numerical accuracy and computational 

efficiency is warranted. The lower panel in Figure 2 shows 

the power consumption in FLOPS/W; the dif ference was 

approximately inversely proportional to the elapsed time, so 

the total energy consumption was similar.

Performance evaluation 
using TUBAME2.5 4

Fig. 2  The performance of NICAM-DC on TSUBAME2.5.  
 The elapsed time per step in the main loop  
 (upper panel), the peak performance ratio 
 (middle panel), and the power consumption  
 (lower panel) for both the CPU–GPU and CPU- 
 only calculations.

4.2. Scalability

Weak  sca l ing  tes ts  were  per formed by  decreas ing  the 

horizontal mesh size from 56 km to 3.5 km, while increasing 

the number of nodes accordingly. The number of vertical 

layers and steps remained unchanged. The largest simulation 

used 1280 nodes (2560 GPUs) and achieved 46.5 TFLOPS. The 

data showed good scalability for both the CPU–GPU and CPU-

only calculations. Only 30 % of the elapsed time of the 1280-

node test increased compared to the 5-node test. The main 

cause of the increase in the elapsed time was communication 

between nodes in the CPU-only calculation, whereas file I/

O was dominant in the CPU–GPU calculation. In the CPU-only 

calculation, there were more MPI processes per node. This led 

to greater communications congestion than with the CPU–GPU 

calculation. Data transfer from device to host for file I/O was the 

limiting factor for scalability with the GPU–CPU calculation. To 

reduce the data transfer due to file I/O, the precision of output 

data should be reduced. Data compression on the GPU will also 

be favorable. In this test, output variables were called every 15 
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Fig. 3  The weak scaling performance of  
 NICAM-DC on TSUBAME2.5.

min. Typically, data output is less frequent than this in climate 

and weather simulations. We changed the interval for data 

output to every 12 h, and the performance increased from 46.5 

TFLOPS to 60 TFLOPS for the 1280-node case.

 Figure 4 shows the results of strong scaling tests. 

Here, a 56 km mesh size was used, and the number of nodes 

increased from 5 to 1280. The number of horizontal grids points 

in each process was changed from 16,900 to 100. We observed 

saturation in the performance of the CPU–GPU calculation as 

a function of the number of the nodes. This was related to the 

decrease in the horizontal grid size per process. When we used 

a larger number of nodes, the number of horizontal grid points 

was not sufficient, considering the number of threads on the 

GPU. The data transfer between the nodes decreased as the 

number of horizontal grids per process decreased; however, 

the latency of MPI communication did not decrease, and the 

ratio of the communication time to the time for computation 

increased. Reducing the frequency of communication will 

therefore be more effective than reducing the size of the data 

in these communications. Support for ‘pinned memory’ is also 

expected to be useful in reducing data transfer latency between 

the host and the device. The performance of strong scaling is 

more critical for climate simulations, which typically consider 

10 to 100 years (106–107 steps). A drastic improvement in this 

aspect of performance is therefore required in the future.

Fig. 4  Strong scaling performance of   
 NICAM-DC on the TSUBAME2.5.

In this study, we implemented GPU-based calculations of the 

dynamical core of a global high-resolution atmosphere model 

using OpenACC. We obtained a performance level that was 

appropriate for the memory transfer performance of GPU. Only 

5 % of the lines of source code were modified, demonstrating 

good portability using the approach described. 

 Weak scal ing tests  exhibited good results  with 

t h o u s a n d s  o f  G P U s .  H o w e v e r ,  w e  b e l i e v e  t h a t  f u r t h e r 

improvements are required to achieve effective strong scaling. 

Our results demonstrate the effectiveness of OpenACC in 

enabling large and complex applications to be executed on 

GPUs.

 In the future, we plan to expand the application of 

OpenACC to physics calculations, and will perform simulations 

with the full NICAM package. Further improvements to the 

dynamical core will be implemented using mixed precision. 

Some algorithms in the dynamical core should be modified to 

decrease the memory transfer and to reduce the frequency of 

communications. 

Summary 5
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Recently, exploiting accelerators, including GPUs, along with 

conventional CPUs on supercomputers has emerged as an 

effective way to achieve high performance with relatively-low 

power consumption [1,2,3]. It is well known that the advantages of 

GPU in both computation power and wide memory bandwidth 

allow various scientific simulations. In the field of numerical 

weather prediction, a computationally expensive physics 

module of the WRF model was accelerated by using a GPU[6]. By 

using large-scale of GPUs, the weather prediction code ASUCA 

was accelerated by using multiple GPUs on the TSUBAME 

supercomputer in our previous research [1,2,5]. WRF model was 

also accelerated by using NVIDIA Kepler GPUs of the Cray XE6 

``Blue Waters'' at NCSA at the University of Illinois [7].

 Although various applications are accelerated by 

GPUs, programming on different types of devices by using low 

level platform-specific programming languages such as CUDA 

that is specific to NVIDIA GPUs forces the programmer to learn 

multiple distinctive programming models especially to achieve 

high performance as expected. To solve this problem and 

improve programmer productivity, various types of high-level 

programming models were proposed [8].

 In this research, in order to implement ASUCA on 

GPU-rich supercomputers effectively with high portability, 

we propose a high-productivity framework for multi-GPU 

computation of  mesh-based applicat ions.  The proposed 

framework can be used in the user code developed in the 

C++ language. The framework itself is written in the C++ 

language with CUDA. The framework provides C++ classes 

that support the programmer to write stencil functions that 

update a grid point, execute these functions and describe 

efficient GPU-GPU communication. By using these classes, the 

ASUCA (Asuca is a System based on a Unified Concept for 

Atmosphere) is a next-generation high resolution mesoscale 

a t m o s p h e r i c  m o d e l  b e i n g  d e v e l o p e d  b y  t h e  J a p a n 

Meteorological Agency (JMA).  ASUCA is going to succeed the 

Japan Meteorological Agency Non-Hydrostatic Model (JMA-

NHM) as an operational non-hydrostatic regional model at the 

JMA. In the ASUCA, a generalized coordinate and flux-form 

non-hydrostatic balanced equations are used for the dynamical 

core. The time integration is carried out by a fractional step 

method with the horizontally explicit and vertically implicit (HE-

VI) scheme. One time step consists of short time sub-steps and 

a long time step. The horizontal propagation of sound waves 

and the gravity waves with implicit treatment for the vertical 

propagation are computed in the short time step with the 

third-order Runge-Kutta scheme. The long time step is used 

for the advection of the momentum, the density, the potential 

programmer can write user code just in the C++ language and 

develop program code optimized for multiple GPU systems 

including GPU-rich supercomputers without introducing 

complicated optimizations. Since the programmer can write 

the stencil functions without depending on platform-specific 

programming languages, the framework is possible to translate 

these user-written functions to several platforms; the proposed 

framework currently generates CPU code and GPU code.

 This article reports that the programming model and 

our implementation strategies of the proposed framework, and 

the performance results of the dynamical core and a portion 

of physics processes in the framework-based ASUCA. We 

also show the performance evaluation of ASUCA running on 

TSUBAME. Please see the references[4,5] for more details.

Introduction 1

Weather prediction code ASUCA 
and its GPU acceleration 2

High-productivity Framework 
on GPU-rich Supercomputers 
for Weather Prediction Code

Numerical weather prediction is one of the major applications in high-performance computing and is accelerated 
on GPU supercomputers. Skillful programming techniques are required for obtaining good parallel efficiency on 
GPU supercomputers. The Japan Meteorological Agency is developing a next-generation high-resolution meso-
scale weather prediction code ASUCA. Our framework-based weather prediction code ASUCA has achieved 
good scalability with hiding complicated implementation and optimizations required for distributed GPUs, 
contributing to increasing the maintainability.

Takashi Shimokawabe*  Takayuki Aoki*  Naoyuki Onodera*
* Global Scientific Information and Computing Center, Tokyo Institute of Technology
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In our previous porting of ASUCA, in order to archive high 

performance,  we changed element order of arrays to an 

appropriate one that was suitable for GPUs and introduced 

optimization for GPU architectures. In the large-scale GPU 

computation, we introduced optimizations such as overlapping 

technique to hide communication overhead by computation. 

Through implementing ASUCA on GPU, multi-GPU computation 

of mesh-based applications, including weather prediction 

codes, has the potential to achieve high performance. However, 

it requires relatively-high cost of implementation. To apply these 

complicated optimizations to various mesh-based applications 

including ASUCA easily, we have developed high-productivity 

and high-portability framework for multi-GPU computation of 

mesh-based applications, and implemented ASUCA based on 

this proposed framework from scratch. The proposed framework 

is  designed to provide highly-product ive programming 

envi ronment  for  s tenci l  appl icat ions  with expl ic i t  t ime 

integration running on regular structured grids, including the 

weather prediction codes. The framework updates the physical 

variables defined on grid points and stored in arrays in user 

programs. The framework is intended to execute user programs 

on NVIDIA's GPUs; the C/C++ language and CUDA are used for 

the implementation of CPU code and GPU code, respectively. 

The framework also supports multi-GPU computation.

 Our major design goals of the framework are described 

as follows.

・ To perform stencil computations on grids, the programmer 

only defines C++ functions that update a grid point, which 

is applied to entire grids by the framework. Our framework 

automatically translates these functions and generates both 

GPU and CPU code. The framework allows us to write the 

user code just in the C++ language and we can develop 

program code optimized for GPU computing without 

introducing complicated optimizations.

・ The user code with the framework should be written in 

a standard language without using the non-standard 

programming model and language extension, especially 

considering the cooperation with external existing libraries.

・ The framework should provide unified interfaces for both 

inter-node and intra-node communications while each 

of these communications is performed using the most 

appropriate method.

3.1  Writing Stencil Functions

In this framework, stencils must be defined as C++ functors 

ca l led stenci l  funct ions .  The stenci l  funct ion for  three-

dimensional diffusion equation is defined as follows:

Stencil access patterns on three-dimensional grids are described 

by using ArrayIndex3D, which is provided by the framework. 

Similarly, classes for writing 1D and 2D access patterns are 

provided.

 ArrayIndex3D holds the size of each dimension of 

a grid (nx, ny, nz) and index parameters (i , j , k ). ArrayIndex3D 

can be used for an array f that has elements. When idx is 

an object of ArrayIndex3D ,  f[idx.ix()] will return an 

element on the (i , j , k ) point of the grid. ArrayIndex3D has 

C++ template member functions that provide indices of 

points around the (i , j , k ) point of the grid; idx.ix<1,0,0>() 

and idx.ix<-1,-2,0>() will, for example, return indices of 

(i +1, j , k) and (i -1, j -2, k ) points, respectively.

temperature and the water substances, the Coriolis force, the 

diffusion and other effects by physical processes with the third-

order Runge-Kutta method. The physical processes that are 

equivalent to or more enhanced than those employed in the 

JMA-NHM are implemented in the current ASUCA.

 In our previous research, we have developed the 

full GPU version of ASUCA. All variables are allocated on GPU 

memory and al l  computational modules inside the time-

step loops are carried out by GPU. Since ASUCA is being 

developed in Fortran language at the JMA, the GPU code has 

to be developed from scratch in CUDA. Before implementing 

the ASUCA on GPU, we re-wrote the Fortran ASUCA code to 

C/C++ language because we changed the element order 

of the 3-dimensional array to improve the memory access 

performance of the GPU computing. In 2011, we achieved 145 

TFlops for the domain of 14368 x 14284 x 48 in single precision 

using 3,990 GPUs of GPU-rich supercomputer TSUBAME.

GPU-computing Framework 3

High-productivity Framework on GPU-rich Supercomputers 
for Weather Prediction Code
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 The function parameter of stencil functions must 

begin with ArrayIndex3D, which represents the coordinate of 

the point where this function is applied. This is followed by any 

number of additional parameters, including scalar values and 

pointers of arrays.

3.2  Run Stencil Functions on Grids

In order to apply user-written stencil functions to grids, the 

framework provides the Loop3D class, which is used to invoke 

the diffusion equation on the three-dimensional grid as follows:

Loop3D  i s  in it ia l ized with parameters  that  speci fy  a  3D 

rectangular range where stencil functions are applied. The 

parameters of Loop3D::run must begin with a stencil function 

defined as a functor, followed by any number of additional 

parameters that are provided to this functor. We use C++ type 

inference and call an appropriate functor at Loop3D::run . 

The programmer can define stencil functions as both host and 

device (i.e., GPU) functions using the qualifiers __host__ and 

__device__  provided by CUDA. Loop3D  executes stencil 

functions on grids sequentially for CPU while it executes the 

stencil functions in parallel for GPU using CUDA's global kernel 

functions. Loop3D determines whether a pointer given by 

Loop3D::run as a parameter points to host memory or device 

memory, and call appropriate internal functions within Loop3D.

3.3  GPU-GPU Communication

In the multi-GPU computation of mesh-based applications, the 

domain decomposition is often used for these parallelization. The 

fundamental structure of this framework is based on this strategy. 

Figure 1 shows the domain decomposition of computational grid. 

Since stencil computation that updates to a point of grid needs 

to access its neighbor points, the data exchanges of boundary 

regions between subdomains are performed frequently. The 

framework provides the BoundaryExchange class to write 

this communication. The BoundaryExchange class utilizes 

appropriate GPU-GPU communication as follows. For intra-node 

parallelization, we utilize OpenMP and GPUs directly access data 

stored on device memory of other GPU on the same node. When 

two GPUs within a same node support GPUDirect peer-to-peer 

access, communication between these two GPUs no longer 

needs to be staged through the host and is therefore faster. 

Figure 2 illustrates intra-node GPU-GPU communication based 

on peer-to-peer access. On the other hand, inter-node GPU-GPU 

communication is performed by using the MPI library. Figure 3 

illustrates this communication. Since GPUs cannot directly access 

data stored on device memory of other GPUs on other nodes, 

the host CPUs are used as bridges to exchange boundary data 

between neighbor GPUs.

Fig. 1  Multi-GPU computing of 
 mesh-based computation

Fig. 2   Intra-node GPU-GPU communication by the 
 OpenMP threads. This process is composed of
 (1) GPUDirect peer-to-peer access.

Fig. 3   Inter-node GPU-GPU communication by MPI. 
 This process is composed of (1) memory copy
 from GPU to host, (2) data exchange by MPI 
 communications and (3) memory copy from
 host to GPU.
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 BoundaryExchange is typically used as follows:

BoundaryExchange  is  init ial ized by domain ,  which is a 

Domain object, and holds the connection relation with neighbor 

subdomains and the size of data exchanged with them. When 

BoundaryExchange::transfer is called, boundary regions 

of arrays specified by BoundaryExchange::append  are 

exchanged.

3.4 Overlapping Method

The data communication time between GPUs is not ignored in 

the total execution time in the case of large-scale computation. 

The overlapping technique to hide communication overhead with 

computation can contributes to performance improvement.

 This framework provides kernel-division overlapping 

method reported in our previous work[1,2]. This method exploits 

data independency within a single variable. Since each element 

of a variable can be computed independently for one calculation, 

computations for the boundary regions can be executed separately 

from other calculations for the rest of the domain. Figure 4 

illustrates the flow of the overlapping method. This method 

consists of the following. First, the values in the inside region are 

computed, while simultaneously the boundary exchange between 

GPUs is executed. When this boundary exchange is completed, the 

computations for the four boundaries are executed.

 In order to apply the kernel-division overlapping 

method to the user program, the framework provides the 

CompCommBinder class, which is used to execute diffusion 

computations along with boundary exchange as follows:

CompCommBinder is initialized with a BoundaryExchange 

object. To apply the overlapping method to a user-written 

function, by using CompCommBinder::set_post_func, the 

programmer specifies a loop range and the stencil function 

with additional parameters that are provided to this function. 

CompCommBinder::run  divides the specif ic loop range 

into several loop ranges that correspond to boundaries and 

the inside region, and executes this stencil function on these 

loop ranges in several CUDA streams. Holding the parameters 

provided to the stencil function in CompCommBinder enables 

multiple executions of the stencil function.

High-productivity Framework on GPU-rich Supercomputers 
for Weather Prediction Code

Fig. 4   Scheme of the overlapping method based on  
 kernel division.

In this section, we present the strong and weak scaling results 

obtained by the weather prediction code ASUCA on the 

TSUBAME 2.5 supercomputer. The TSUBAME 2.5 supercomputer 

is equipped with 4224 NVIDIA Tesla K20X GPUs.

 Figure 5 demonstrates the real case of the ASUCA 

operation with both the real initial and the boundary data used 

for the current weather forecast at the JMA. This simulation was 

performed with a 5,376 × 4,800 × 57 mesh with horizontal mesh 

resolution of 500 meters using 672 GPUs of the TSUBAME 2.5 in 

single precision.

 Figure 6 shows the performance of ASUCA running 

on multiple GPUs in single precision and compares the strong 

scalability of the non-overlapping version and the overlapping 

version of ASUCA. In this graph, Flat-MPI version, in which each 

MPI process handles a single GPU, is also shown as reference. 

Since two of three GPUs on each TSUBAME node can utilize 

GPUDirect peer-to-peer access, we use these two GPUs per 

each node for these calculations. As shown in this figure, we 

Performance Evaluation of 
framework-based ASUCA 4
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Fig. 5   ASUCA real operation to describe a typhoon with 5,376 × 4,800 × 57 mesh using 672 GPUs of the TSUBAME 2.5.

Fig. 6   Strong scaling results of ASUCA. Fig. 7   Weak scaling results of ASUCA.

observe that the overlapping method works effectively to hide 

communication cost for both mesh sizes we expected, resulting 

in performance improvement. In the results using a 3,072 × 

2,560 × 60 mesh on 512 GPUs, the overlapping method achieves 

18.9 TFlops.

 F igure 7 shows the weak scal ing results  of  the 

framework-based ASUCA code running on multiple GPUs. We 

measure the performance of ASUCA using both the overlapping 

method and non-overlapping methods in single precision. Bigger 

domain has better performance and we choose that each GPU 

handles the domain of 768 × 128 × 60. Unlike the strong scaling 

study, we use three GPUs per each node of TSUBAME 2.5 in all 

cases of calculations in order to maximize attainable performance 

by using TSUBAME 2.5. As shown in the graph, we achieve an 

extremely high performance of 209.6 TFlops using 4,108 GPUs 

with the overlapping method in single precision.
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This  art ic le  has presented the programming model  and 

implementation of our framework that is developed for multi-

GPU computation of stencil applications, and evaluation of 

the weather prediction code ASUCA based on the proposed 

framework running on a supercomputer equipped with multiple 

GPUs. The design of framework focuses on the portability 

of both framework and user code and cooperation with the 

existing codes. Our code can effectively utilize intra-node 

GPU peer-to-peer direct accesses with optimizations to hide 

communication overhead by overlapping of computation 

and communication. With our proposed framework, we have 

conducted performance studies using thousands of GPUs on the 

TSUBAME 2.5 supercomputer at Tokyo Institute of Technology. 

The performance evaluation has successfully demonstrated that 

strong and weak scalabilities are improved by the overlapping 

method provided by the framework.
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International Research Collaboration

Application Guidance

Inquiry

Please see the following website for more details.
http://www.gsic.titech.ac.jp/en/InternationalCollaboration

The high performance of supercomputer TSUBAME has been extended to the 
international arena. We promote international research collaborations using 
TSUBAME between researchers of Tokyo Institute of Technology and overseas 
research institutions as well as research groups worldwide.

Recent research collaborations using TSUBAME

1. Simulation of Tsunamis Generated by Earthquakes using Parallel
　Computing Technique

2. Numerical Simulation of Energy Conversion with MHD Plasma-fluid Flow

3. GPU computing for Computational Fluid Dynamics

Candidates to initiate research collaborations are expected to conclude 
MOU (Memorandum of Understanding) with the partner organizations/
departments. Committee reviews the “Agreement for Collaboration” for joint 
research to ensure that the proposed research meet academic qualifications 
and contributions to international society. Overseas users must observe 
rules and regulations on using TSUBAME. User fees are paid by Tokyo Tech’s 
researcher as part of research collaboration. The results of joint research are 
expected to be released for academic publication.


