
Extreme Big Data with TSUBAME2 and Beyond

A Global Atmosphere Simulation on a GPU
Supercomputer
using OpenACC: Dry Dynamical Core Tests

High-productivity Framework on GPU-rich
Supercomputers
for Weather Prediction Code

12

02

Emerging new commodity devices, especially such as GPU accelerators and NVM (Non-Volatile Memory) devices,
etc., which are employed on modern high-end supercomputers, may drastically improve performance on the
current “Big Data” processing, although the existing “Big Data” processing is mostly operated on poor and
cheap infrastructures derived from the cloud-based architecture that employs commodity web-oriented servers
equipped with HDDs and GigE networks by using MapReduce-based frameworks. However, the case studies
of BigData-enabled software execution on large-scale environments with the modern commodity devices are
underinvestigated. This article introduces recent research activities on Big Data-related software techniques,
including Graph 5 0 0 , GPU-based MapReduce, large-scale distributed sorting, with TSUBAME 2 toward future
extreme-scale supercomputers and cloud data centers.

Extreme Big Data with
TSUBAME2 and Beyond
Hitoshi Sato* Koji Ueno** Koichi Shirahata** Hideyuki Shamoto** Satoshi Matsuoka*
* Global Scientific Information and Computing Center, Tokyo Institute of Technology
** Graduate School of Information Science and Engineering, Tokyo Institute of Technology

"B ig Data" recent ly att racts many attent ions in var ious

application domains such as Social Networks, Bioinformatics,

Internet of Things, etc., and the demand for fast and scalable

processing to petabyte- or yottabyte-scale data sets drastically

increases. The existing Big Data processing is mostly operated

on poor and cheap infrastructures derived from the cloud-based

architecture that employs commodity web-oriented servers

equipped with HDDs and GigE networks by using MapReduce-

based frameworks, i.e., Hadoop. By contrast, emerging new

commodity devices, especially such as GPU accelerators and

NVM (Non-Volatile Memory) devices, etc. as shown in Fig. 1,

may drastically improve performance on Big Data processing.

For example, GPUs can provide high peak performance

and rich memory bandwidth for applications with specific

workload patterns, while CPUs offer flexibility and generality

over wide-ranging classes of applications. Also, NVMs such as

Flash have positive aspects of inexpensive cost, high energy-

efficiency, and huge capacity compared with conventional

DRAM devices, as well as negative aspects of low throughput

and latency. These new devises may bring various benefits

to the architecture design of BigData-oriented extreme-scale

supercomputers. Indeed, modern high-end supercomputers,

such as TSUBAME2 that anticipates the architecture of future

extreme-scale supercomputers and c loud data centers ,

e m p l o y c o m m o d i t y - b a s e d n o v e l d e v i c e s s u c h a s G P U

accelerators, Infiniband interconnects, and flash devices, etc.

and provide possible platforms for extremely fast processing

to gigantic data sets; however, the case studies of BigData-

enabled software execution on large-scale environments

with the modern commodity devices are underinvestigated.

This article introduces recent research activities on Big Data-

related software techniques, including Graph500, GPU-based

MapReduce, Large-scale distributed sorting, with TSUBAME2

toward future extreme-scale supercomputers and cloud data

centers.

Introduction 1

Graph and HPC 2

Fig. 1 Hierarchical Memory Devices

2.1 Graph500 as a Big Data Kernel for Supercomputers

Graph is a fundamental mathematical representat ion of

connected objects described as vertices and edges. Various

important applications, such as health care, systems biology,

social networks, business intelligence, and social networks,

and electric power grids, etc. as shown in Fig. 2 are modeled as

graphs. Moreover, since various data source recently generates

massive amounts of volumes, demands for large-scale graph

processing is significantly increasing, so that graph applications

are considered an important kernel for HPC applications.

In fact, the Graph500 list[1], which ranks supercomputers by

03

Fig. 2 Large-scale Graphs

Fig. 3 Overview of Graph500

executing large-scale graph problems, are employed as a

major metric to evaluate the ability of Big Data processing for

supercomputers, instead of the Top500 list known as a list that

ranks supercomputers by executing the Linpack benchmark to

evaluate the ability of computation. Fig. 3 shows an overview

of the instruction of the Graph500 benchmark. The current

benchmark in Graph500 measures the time for performing

the Breadth-first search (BFS) to a Kronecker graph[2] that

models a real-word network with scale-free and small diameter

properties; however, the optimal algorithm for supercomputers,

especially with distributed memory, is not well investigated.

Our Graph500 activities aims for clarifying various hardware-

and software-related issues on large-scale graph processing on

supercomputers and making the Graph500 a fair benchmark.

2.2 Scalability Issues

In order to process BFS on supercomputers with distributed

memory, we have to partition a graph to several subgraphs;

however, to achieve the scalability of BFS on supercomputers

with more than over thousands of compute nodes, we have to

deal with several problems such as high memory consumption,

large communication data transfers, and high computation

costs, etc. Specifically, the scalable BFS implementation requires

the following algorithms and the data structures:

• Graph data structures with low memory consumption and

access costs to other vertex's edge lists on large-scale

environments

• Communication algorithms to reduce the number of

communications and the communication data volumes

between over thousands of compute nodes

• Efficient search algorithms with reduced access costs to the

graph data structures

The existing Graph500 reference code has limited scalability on

thousands of compute nodes due to the naive data structure and

communication algorithm. The latest advanced BFS algorithm for

large-scale supercomputers with distributed memory is known as

the Wave method with 2D partitioning proposed by Checconi et

al.[3] However, the algorithm is not employed another important

BFS algorithm, called the hybrid BFS algorithm[4], which drastically

improve BFS performance by reducing inefficient edge scans

proposed by Beamer et al., although the hybrid BFS algorithm

itself has negligible scalability on more than thousands of nodes.

2.3 Ueno’s Algorithm

Our Koji Ueno proposes a new sophisticated algorithm for

scalable BFS on large-scale supercomputers. Our algorithm

is based on the distributed hybrid BFS algorithm proposed

by Beamer et al.[5], whereas we also apply the following new

techniques to improve the scalability and the performance of

BFS on over thousands of compute nodes:

• A new sparse matrix data structure based on bitmap

• An adaptive data representation of a vertex queue to reduce

both communication data and memory consumption

• A data structure highly optimized for edge scans

• A memory eff ic ient technique using shared memory

between processes on the same compute node to reduce

communication data volumes

2.4 Performance Evaluation

Fig . 4 shows the result on the performance of our new

implementation in a Giga TEPS (Traversed Edges per second)

metric on TSUBAME2.5. We also show the result of our previous

implementation (September 2012) that utilizes GPUs without

the hybrid BFS algorithm. By using our optimized hybrid BFS

implementation, we achieve 1280 GTEPS using 1024 nodes

and 2.78x times speed up compared with our previous result

(September 2012).

04

Extreme Big Data with TSUBAME2 and Beyond

Fig. 4 Graph500 performance results

Fig. 5 Graph500 submission history on TSUBAME2

Fig. 5 shows the history of the achievements on the Graph500

performance on the TSUBAME system. The first submission for

Graph500 was conducted on November 2011 and ranked 3rd

in the list with 100 GTEPS. Compared with the results, the latest

score is achieved about 13 times faster than the first submission.

Thus, we believe that continuous software development on a

given large-scale real environment makes amazing performance

improvement.

3.1 MapReduce and Deep Memory Hierarchy Machines

MapReduce[6] is a successful programing model for efficient

scalable massive data processing in clouds with large-scale

commodity compute clusters, since MapReduce can achieve

scalable processing on distributed systems by utilizing the

locality and conceal elaborate efforts on the system, such as

localized data access for petabyte-scale large data volumes,

communicat ion between thousands of nodes, and fault

tolerance, etc. MapReduce may also be a good programming

model for GPU accelerators for hiding massive parallelism and

deep hierarchical memory. However, how much MapReduce-

based applications can be accelerated on large-scale GPU-

based heterogeneous clusters is an open problem.

3.2 HAMAR: Highly Accelerated Data Parallel Processing
Framework for Deep Memory Hierarchy Machines

In order to investigate the above issues, we have developed

a highly accelerated data parallel framework, including the

MapReduce programming model, for deep memory hierarchy

systems with thousands of compute nodes with GPU accelerators

and NVM devices. Current version of our implementation (See

Fig. 5) automatically handles memory overflows from GPUs by

dynamically dividing processing data into multiple chunks and

overlaps CPU-GPU data transfer and computation in Map, Reduce

Shuffle phases on GPUs as much as possible. We also employ a

GPU-based external sorting in our framework.

3.3 Case Study: GIM-V
 (Generalized Iterative Matrix-Vector multiplication)

GIM-V (Generalized Iterative Matrix-Vector multiplication)

is a general expression of matrix-vector multiplication with

iterative operations for MapReduce-based large-scale graph

processing[7]. Here, let M = (mi, j) be a matrix of size n x n , and v =

(vi) be a vector of size n, where i , j in {1, ..., n}. By introducing the

operator xG , we can define the GIM-V algorithm as follows:

GPU-based MapReduce 3

05

Fig. 6 Overview of HAMAR

Here, the above express ion is descr ibed by using three

operators: combine2, combineAll , and assign . We iterate the above

operation until satisfying a convergence condition defined by

graph algorithms such as PageRank, Random Walk with Restart,

and Connected Component, etc. We can describe these graph

applications by defining the above three operators in our

HAMAR framework.

3.4 Performance Evaluation

We have conducted large-scale experiments of PageRank

algorithm based on the GIM-V model on top of the HAMAR

framework on TSUBAME2.5 with 1024 nodes (12288 CPU cores,

3072 GPUs). The results (Fig. 7) in exhibit that our GPU-based

implementation performs 2.81 GEdges/sec (billion edges per

second, 47.7GB/sec) to a large-scale graph with 17.18 billion

vertices and 274.9 billion edges, which is 2.10x faster than the

multi-core CPU-based implementation even when the graph

data size exceeds the capacity on multiple GPUs. As for the

weak scaling performance, our GPU-based implementation

also shows good scalability: 686x performance improvement

by using 1024 nodes (3072 GPUs) compared with using a single

node (3 GPUs).

Fig. 7 Overview of GIM-V

Fig. 8 GIM-V scalability on TSUBAME2

06

Fig. 9 Splitter-based parallel sorting algorithm Fig. 10 Results of GPU-based hyksort

4.3 GPU-based Implementation of
 Splitter-based Sorting Algorithms

In order to demonstrate the acceleration of performance

bottlenecks in splitter-based parallel sorting algorithms, we

extend the existing algorithm, HykSort[8], by offloading the costly

local sort phase. Since the GPU memory capacity is limited, we

firstly break an unsorted array int chunks appropriately sized to

fit the capacity of GPU memory. After creating the chunks, the

chunks are sorted on GPU iteratively and the sorted chunks are

merged on DRAM.

4.4 Performance Evaluation

We conduct weak-scaling experiments using up to 1024 nodes

(2048 of CPU cores and GPU devices) and compare our GPU-

based hyksort implementation that uses 6 threads per CPU

socket with OpenMP-based hyksort implementation that

uses 1 thread and 6 threads per CPU socket. Note that each

process is bound to a single socket for processing 2GB of 64

integer data sets. Fig. 9 shows the results, where the x-axis

denotes the number of processes and the y-axis denotes the

throughput performance in Keys per second. Our GPU-based

implementation achieves 0.25 TB/s when we sort 4TB of data on

1024 nodes, which is 1.40 x times faster than the OpenMP-based

implementation using 12 threads per CPU socket and 3.61x

times faster than using 1 thread per CPU socket.

Extreme Big Data with TSUBAME2 and Beyond

4.1 Sorting on Distributed Memory Architectures

Sorting is also considered a key building block in many data-

intensive supercomputing applications in various domains

such as genomics and astrophysics, etc., in which the need for

processing terabyte- and petabyte-scale data sets is drastically

increasing due to the generation of science experiments and

observations. In order to sort such huge data sets, many sorting

algorithms for distributed memory architectures are proposed.

In particular, splitter-based parallel sorting algorithms are

known as fast d ist r ibuted sort ing a lgor i thms, s ince the

communication costs of the algorithms are relatively small.

However, as the communication costs go down in the splitter-

based parallel sorting, the computation costs dominate the

overall performance.

4.2 Sorting on Distributed Memory Architectures

Most splitter-based parallel sorting algorithms consist of the

following steps shown in Fig. 8. Firstly, data on each process are

sorted in the local sort phase. After the sorting phase, splitters

are selected and data are transferred based on the splitters.

Finally, each node merges sorted chunks into a single sorted

array. Although other distributed sorting algorithms, such as

Merge sort, Radix sort, etc., introduce significant data transfers

between processes; splitter-based parallel sorting can reduce

the number of iterations for data transfers.

GPU-based Distributed Sorting 4

07

We have introduced our recent activities on "Big Data" related

issues, including Graph500, GPU-based MapReduce, Large-

scale distributed sorting, with TSUBAME2 and demonstrates

efficient execution of the “Big Data” software implementations

on a large-scale modern high-end supercomputer. These

activities are also applied to the design and development of the

production machines, such as TSUBAME3.0, which is slated to

be deployed in the first half of 2016 as one of the first “Extreme

Big Data” convergent production machine.

Acknowledgements

This research was supported in part by JST-CREST Projects

“Advanced Comput ing and Opt imizat ion Inf rast ructure

f o r E x t r e m e l y L a r g e - S c a l e G r a p h s o n P o s t P e t a - S c a l e

Supercomputers” and “Extreme Big Data (EBD): Next Generation

Big Data Infrastructure Technologies Towards Yottabyte/Year”,

JSPS KAKENHI Grant Number 26011503, 26540050, and TSUBAME

Grand Challenge Program.

References

[1] Graph500: http://www.graph500.org/

[2] Jure Leskovec, Deepayan Chakrabart i , Jon Kleinberg,

Christos Faloutsos, Zoubin Ghahramani, “Kronecker graphs:

An approach to model ing networks” , The Journal of

Machine Learning Research, Vol11, p985-1042, 2010.

[3] Fabio Checconi , Fabr iz io Petr in i , Jeremiah Wi l lcock ,

Andrew Lumsdaine, Anamitra Roy Choudhury, and Yogish

Sabharwal, “Breaking the speed and scalability barriers

for graph exploration on distributed-memory machines”,

Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis

(SC'12), Article No.13, p13:1-13:12, 2013.

[4] Scott Beamer , K rs te AsanoviĆ , and Dav id Patterson ,

“Direction-optimizing breadth-first search”, Proceedings

of the International Conference on High Performance

Computing, Networking, Storage and Analysis (SC' 1 2),

Article No.12, p12:1-12:10, 2012.

[5] Scott Beamer, Aydin Buluc, Krste AsanoviĆ , and David

Patterson, “Distr ibuted Memory Breadth-First Search

Revisited: Enabling Bottom-Up Search”, Proceedings of

Conclusions 5
IPDPSW’13, p1618-1627, 2013.

[6] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: simplified

data processing on large clusters”, Communications of the

ACM, Vol. 51, Issue 1, p107-113, 2008.

[7] U. Kang, Charalampos E. Tsourakakis, and Christos

 Faloutsos, “PEGASUS: A Peta-Scale Graph Mining System

Implementation and Observations”, Proceedings of the 9th

IEEE International Conference on Data Mining (ICDM '09),

p229-238, 2009.

[8] Hari Sundar, Dhairya Malhotra, and George Biros, “HykSort: a

new variant of hypercube quicksort on distributed memory

architectures”, Proceedings of the 27th international ACM

conference on International conference on supercomputing,

p293-302, 2013.

08

Weather and climate simulations play important roles in weather

forecasting and climate prediction, and also in researches

such as those on typhoon genesis and feedback mechanisms

of cl imate systems, and so on. Global-scale atmospheric

phenomena are interacted with small-scale motions. High-

resolution simulations are one of the approaches for reducing

uncertainties in numerical simulations. However, to perform

a simulation with high resolution, significant computational

resources are required. Recent trends in supercomputers are

for the increased use of multi-core processors, and in particular,

graphics processing units (GPUs). Heterogeneous architectures

are becoming more common, and it is expected that weather

and climate simulations will benefit from such approaches.

Applications for atmospheric simulations require a large byte

per floating-point operation (FLOP) ratio, or a B/F ratio; however,

the performance of such simulations is typically limited by the

memory throughput. The use of GPUs for weather and climate

simulations is therefore interesting because of the large memory

bandwidth.

 Weather and climate simulations typically contain

10,000 –100,000 lines of source code; therefore, the cost of

rewriting these applications using languages, such as CUDA

or CUDA-Fortran, is large. Furthermore, weather and climate

models are typically developed via interdisciplinary cooperation,

so they contain different modules written by people from

different research fields. This makes maintaining the source

code and supporting the architecture particularly challenging.

 Recently, a new programming model called OpenACC

has appeared. OpenACC is directive-based and enables the

straightforward use of GPUs. Placing directives in the existing

source code enables data transmission between the CPU and

Nonhydrostatic ICosahedral Atmospheric Model (NICAM)[1][2]

is a weather and cl imate application for high-resolution

global simulations of the atmosphere using massively parallel

machines . N ICAM was developed by the Japan Agency

for Marine–Earth Science and Technology (JAMSTEC), the

University of Tokyo, and the RIKEN Advanced institute of

Computational Science (AICS). The source code was mostly

written using Fortran90. NICAM employs a fully compressible

non-hydrostatic dynamics, where the finite volume method

(FVM) is used for discretization into the icosahedral grid

configuration. The icosahedral grid system covers the sphere

quasi-homogeneously. A grid point method, such as FVM,

has the advantage of reducing data transfer between the

computational nodes over a spectral transform method, which

requires global communication between nodes, and is one of

the bottlenecks in a massively parallel machine.

 The components of weather and climate models can

be divided into two categories. The first are components to

solve the fluid dynamics of the atmosphere (referred to as the

dynamics). The dynamics of NICA consists of the kernel of stencil

operators, including divergence, gradient, Laplacian, and tracer

advection with a non-negative flux limiter. The dynamics require

a large B/F ratio, as well as frequent communication during the

calculations. The second category is referred to as the physics,

which contains the cloud microphysics, atmospheric radiation

GPU, and calculations can be performed on a GPU. In this study,

we applied OpenACC to an existing meteorological code that

is large and complicated, and evaluated its performance on a

parallel GPU supercomputer. We also evaluated the portability,

readability, and maintainability of the source code.

Introduction 1

NICAM and the dynamical core 2

A Global Atmosphere Simulation on a GPU
Supercomputer using OpenACC:
Dry Dynamical Core Tests

In many cases, weather and climate simulations are memory-bound. Therefore, use of a graphics processing unit (GPU)
is expected to be helpful; however, rewriting the source code for execution using a GPU is time-consuming, as
such applications are typically large and complex. Here, we describe the application of OpenACC to the dynamical
core package of a global high-resolution atmosphere model application and report the successful execution of
the dynamical core without re-writing any specific kernel subroutines for GPU execution. The performance and
scalability was evaluated using the TSUBAME2.5 supercomputer. The results showed that the kernels generated
by OpenACC achieved good performance, which was appropriate to the memory performance of GPU, as well as
weak scalability. A large-scale simulation was carried out using 2560 GPUs, which achieved 60 TFLOPS.

Hisashi Yashiro* Akira Naruse** Ryuji Yoshida* Hirofumi Tomita*
* RIKEN Advanced Institute for Computational Science　** NVIDIA

09

transfer, the sub-grid scale boundary layer turbulence, and so

on. These components do not require such a large B/F ratio

compared with the dynamics, and typically do not require

communication, because they have no reference of neighbor

grid information in the horizontal direction.

 To obtain effective performances of weather and

climate applications using GPUs, all of the dynamics and physics

components for execution using a GPU should be optimized.

These applications exhibit a “flat profile” (i.e., no clear hotspots

of the calculation exist). Because of this, we carried out GPU

optimization of the entire dynamics part of the NICAM. In this

study, we used the dynamical core package of NICAM, named

NICAM-DC. NICAM-DC is distributed under the BSD 2-clause

license (http://scale.acis.riken.jp/nicamdc/), and is not simply a

kernel program, but is a stand-alone application that includes

file input/output (I/O) routines. A performance evaluation of

the data throughput from the GPU to the hard disk drive (HDD)

is important, and was implemented using a number of popular

test cases for the dynamical core.

We optimized NICAM-DC using OpenACC employing the

following policies.

・ Ful l separat ion of the memory a l locat ion stage and

computation stage. Arrays such as the metric term, which

should be executed on the GPU, were prepared in the setup

stage. Memory allocation of the working array was excluded

from the main loop

・ Arrays reside in GPU memory if they are not updated during

the computation: Before start of time integration, non-

updated arrays were transferred in the setup stage using

the “present_or_copyin” clause.

・ Asynchronous execution of loop kernels. The structure of

loops was refactored, and the timing of the communication

was arranged to execute using the “async” clause as much

as possible.

・ Optimization of halo exchange. For the point-to-point

exchange in the halo grid, data were packed in the sending

node and unpacked in the receiving node. We conducted

these packing/unpacking actions on the GPU configuration

and minimized the data size for transfer between the host

and device.

・ Calculation of a singular point. There are special loops

Implementation of OpenACC 3

for two singular grids: north-pole and south-pole points.

These loops incur less computational cost, so they were

not executed on the GPU. If the CUDA programming model

is used, offloading loops and non-offloading loops should

be separated. OpenACC enables more flexible treatment

regarding whether each loop uses the GPU in a subroutine.

This improves the readabil ity of the source code and

facilitates maintenance.

・ Output of s imulation results . Many of the 2D and 3D

variables are output during the simulation for analysis.

File I/O incurs a significant cost for execution on a GPU

because of the data transfer from the device. We calculated

diagnostic variables, converted the vertical coordinates, and

stored them on the GPU. Only at the time of writing data to

files were these data transferred from the GPU.

The order of the array dimensions used in NICAM was (ij,k,l),

which represented the horizontal grid, vertical grid, and the

unit that was divided for process parallelization (=region).

In many cases, the number of horizontal grid points is the

largest. For execution using GPUs, we did not have to change

the dimension ordering. In NICAM-DC, only a few arrays were

changed to “Array of Structure (AoS)” for optimization to the

scalar machine. These arrays were reverted to “Structure of

Array (SoA)” for calculation using the GPUs. Approximately 2,000

lines of code were modified or inserted to implement OpenACC,

which accounted for 5% of the total lines of source code in the

NICAM-DC.

Fig. 1 Usage of the CPU and GPU in the computing
 node of TSUBAME2.5. Data shown on the left
 represent the CPU–GPU calculation, and those
 on the right represent the CPU-only calculation.

10

A Global Atmosphere Simulation on a GPU Supercomputer
using OpenACC: Dry Dynamical Core Tests

4.1 Single node performance

We evaluated NICAM-DC on the TSUBAME2.5 supercomputer.

We implemented two architecture settings to achieve a node-

to-node comparison between the CPU–GPU and CPU-only

calculations, as shown in Figure 1. NICAM-DC is a memory-

bound application, so the total throughput of memory should

be the most important parameter. Each node of TSUBAME2.5

had three GPUs; however, we only used two of them due to

the limitations of process division of NICAM. The number of

floating operations and the amount of memory transfer were

measured in advance. At the time of the performance tests, we

only measured the elapsed time of each part of the application

to avoid perturbing the performance counters. We also used

monitor tools for power consumption of each node and each

GPU. The problem size was as follows. For the control run, the

horizontal mesh size was 56 km, and there were 160 vertical

layers corresponding to 26 mill ion grids points. The total

number of floating point operations in the main loop was 420

GFLOPS, and 2.3 TB/step of memory transfer was required for

each message passing interface (MPI) process. For the CPU-only

calculation, we used an AoS version of the code, and increased

the number of MPI processes 4-fold. A total of 2 problem sizes

were used: one with 5 nodes and 10 MPI processes for the CPU–

PGU calculation, and one with 5 nodes and 40 MPI processes

for the CPU-only calculation. The performance test was based

on a baroclinic instability test case for the global atmospheric

model,[3] and only small steps were executed. The file output of

some of the variables for analysis was included in the test.

 Figure 2 shows the results of the performance test for

one node. The upper panel shows that the CPU–GPU calculation

was completed in approximately 1/8th of the elapsed time

of the CPU-only calculation. This result is approximately

proportional to the difference in memory transfer performance.

We achieved a peak memory transfer of ~50 % in both of the

architecture settings, which demonstrates that OpenACC, which

has a directive-based programming style, can generate the

code with a sufficient level of performance. From the point of

view of the number of floating-point operations, the peak ratio

was worse in GPU calculation (see the middle panel of Fig. 2).

Because of the large B/F ratio, the computational resources of

the GPUs could not be effectively utilized by the application. To

more effectively use the GPUs, in the future, we plan to make

greater use of mixed precision, and further consideration of

the trade-off between numerical accuracy and computational

efficiency is warranted. The lower panel in Figure 2 shows

the power consumption in FLOPS/W; the dif ference was

approximately inversely proportional to the elapsed time, so

the total energy consumption was similar.

Performance evaluation
using TUBAME2.5 4

Fig. 2 The performance of NICAM-DC on TSUBAME2.5.
 The elapsed time per step in the main loop
 (upper panel), the peak performance ratio
 (middle panel), and the power consumption
 (lower panel) for both the CPU–GPU and CPU-
 only calculations.

4.2. Scalability

Weak sca l ing tes ts were per formed by decreas ing the

horizontal mesh size from 56 km to 3.5 km, while increasing

the number of nodes accordingly. The number of vertical

layers and steps remained unchanged. The largest simulation

used 1280 nodes (2560 GPUs) and achieved 46.5 TFLOPS. The

data showed good scalability for both the CPU–GPU and CPU-

only calculations. Only 30 % of the elapsed time of the 1280-

node test increased compared to the 5-node test. The main

cause of the increase in the elapsed time was communication

between nodes in the CPU-only calculation, whereas file I/

O was dominant in the CPU–GPU calculation. In the CPU-only

calculation, there were more MPI processes per node. This led

to greater communications congestion than with the CPU–GPU

calculation. Data transfer from device to host for file I/O was the

limiting factor for scalability with the GPU–CPU calculation. To

reduce the data transfer due to file I/O, the precision of output

data should be reduced. Data compression on the GPU will also

be favorable. In this test, output variables were called every 15

11

Fig. 3 The weak scaling performance of
 NICAM-DC on TSUBAME2.5.

min. Typically, data output is less frequent than this in climate

and weather simulations. We changed the interval for data

output to every 12 h, and the performance increased from 46.5

TFLOPS to 60 TFLOPS for the 1280-node case.

 Figure 4 shows the results of strong scaling tests.

Here, a 56 km mesh size was used, and the number of nodes

increased from 5 to 1280. The number of horizontal grids points

in each process was changed from 16,900 to 100. We observed

saturation in the performance of the CPU–GPU calculation as

a function of the number of the nodes. This was related to the

decrease in the horizontal grid size per process. When we used

a larger number of nodes, the number of horizontal grid points

was not sufficient, considering the number of threads on the

GPU. The data transfer between the nodes decreased as the

number of horizontal grids per process decreased; however,

the latency of MPI communication did not decrease, and the

ratio of the communication time to the time for computation

increased. Reducing the frequency of communication will

therefore be more effective than reducing the size of the data

in these communications. Support for ‘pinned memory’ is also

expected to be useful in reducing data transfer latency between

the host and the device. The performance of strong scaling is

more critical for climate simulations, which typically consider

10 to 100 years (106–107 steps). A drastic improvement in this

aspect of performance is therefore required in the future.

Fig. 4 Strong scaling performance of
 NICAM-DC on the TSUBAME2.5.

In this study, we implemented GPU-based calculations of the

dynamical core of a global high-resolution atmosphere model

using OpenACC. We obtained a performance level that was

appropriate for the memory transfer performance of GPU. Only

5 % of the lines of source code were modified, demonstrating

good portability using the approach described.

 Weak scal ing tests exhibited good results with

t h o u s a n d s o f G P U s . H o w e v e r , w e b e l i e v e t h a t f u r t h e r

improvements are required to achieve effective strong scaling.

Our results demonstrate the effectiveness of OpenACC in

enabling large and complex applications to be executed on

GPUs.

 In the future, we plan to expand the application of

OpenACC to physics calculations, and will perform simulations

with the full NICAM package. Further improvements to the

dynamical core will be implemented using mixed precision.

Some algorithms in the dynamical core should be modified to

decrease the memory transfer and to reduce the frequency of

communications.

Summary 5

12

A Global Atmosphere Simulation on a GPU Supercomputer
using OpenACC: Dry Dynamical Core Tests

Acknowledgements

The largest-node simulation was executed as a TSUBAME Grand

Challenge Program, spring 2014. We express our special thanks

for the use of these resources. This research was supported

in part by the G8 Research Councils Initiative for Multilateral

Research Funding, “Icosahedral-grid Models for Exascale Earth

System Simulations (ICOMEX)”.

References

[1] Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno and S.

Iga (2008) : Nonhydrostatic Icosahedral Atmospheric Model

(NICAM) for global cloud resolving simulations. J. Comp.

Phys., the special issue on Predicting Weather, Climate and

Extreme events, 227, 3486-3514.

[2] Tomita, H. and Satoh, M. (2004) : A new dynamical framework

of nonhydrostatic global model using the icosahedral grid.

Fluid Dyn. Res., 34, 357-400.

[3] Jablonowski C, Williamson DL. A baroclinic instabilitiy test

case for atmospheric model dynamical cores. Quart. J. Roy.

Meteor. Soc. 2006; 132(621C):2943–2975.

13

Recently, exploiting accelerators, including GPUs, along with

conventional CPUs on supercomputers has emerged as an

effective way to achieve high performance with relatively-low

power consumption [1,2,3]. It is well known that the advantages of

GPU in both computation power and wide memory bandwidth

allow various scientific simulations. In the field of numerical

weather prediction, a computationally expensive physics

module of the WRF model was accelerated by using a GPU[6]. By

using large-scale of GPUs, the weather prediction code ASUCA

was accelerated by using multiple GPUs on the TSUBAME

supercomputer in our previous research [1,2,5]. WRF model was

also accelerated by using NVIDIA Kepler GPUs of the Cray XE6

``Blue Waters'' at NCSA at the University of Illinois [7].

 Although various applications are accelerated by

GPUs, programming on different types of devices by using low

level platform-specific programming languages such as CUDA

that is specific to NVIDIA GPUs forces the programmer to learn

multiple distinctive programming models especially to achieve

high performance as expected. To solve this problem and

improve programmer productivity, various types of high-level

programming models were proposed [8].

 In this research, in order to implement ASUCA on

GPU-rich supercomputers effectively with high portability,

we propose a high-productivity framework for multi-GPU

computation of mesh-based applicat ions. The proposed

framework can be used in the user code developed in the

C++ language. The framework itself is written in the C++

language with CUDA. The framework provides C++ classes

that support the programmer to write stencil functions that

update a grid point, execute these functions and describe

efficient GPU-GPU communication. By using these classes, the

ASUCA (Asuca is a System based on a Unified Concept for

Atmosphere) is a next-generation high resolution mesoscale

a t m o s p h e r i c m o d e l b e i n g d e v e l o p e d b y t h e J a p a n

Meteorological Agency (JMA). ASUCA is going to succeed the

Japan Meteorological Agency Non-Hydrostatic Model (JMA-

NHM) as an operational non-hydrostatic regional model at the

JMA. In the ASUCA, a generalized coordinate and flux-form

non-hydrostatic balanced equations are used for the dynamical

core. The time integration is carried out by a fractional step

method with the horizontally explicit and vertically implicit (HE-

VI) scheme. One time step consists of short time sub-steps and

a long time step. The horizontal propagation of sound waves

and the gravity waves with implicit treatment for the vertical

propagation are computed in the short time step with the

third-order Runge-Kutta scheme. The long time step is used

for the advection of the momentum, the density, the potential

programmer can write user code just in the C++ language and

develop program code optimized for multiple GPU systems

including GPU-rich supercomputers without introducing

complicated optimizations. Since the programmer can write

the stencil functions without depending on platform-specific

programming languages, the framework is possible to translate

these user-written functions to several platforms; the proposed

framework currently generates CPU code and GPU code.

 This article reports that the programming model and

our implementation strategies of the proposed framework, and

the performance results of the dynamical core and a portion

of physics processes in the framework-based ASUCA. We

also show the performance evaluation of ASUCA running on

TSUBAME. Please see the references[4,5] for more details.

Introduction 1

Weather prediction code ASUCA
and its GPU acceleration 2

High-productivity Framework
on GPU-rich Supercomputers
for Weather Prediction Code

Numerical weather prediction is one of the major applications in high-performance computing and is accelerated
on GPU supercomputers. Skillful programming techniques are required for obtaining good parallel efficiency on
GPU supercomputers. The Japan Meteorological Agency is developing a next-generation high-resolution meso-
scale weather prediction code ASUCA. Our framework-based weather prediction code ASUCA has achieved
good scalability with hiding complicated implementation and optimizations required for distributed GPUs,
contributing to increasing the maintainability.

Takashi Shimokawabe* Takayuki Aoki* Naoyuki Onodera*
* Global Scientific Information and Computing Center, Tokyo Institute of Technology

14

In our previous porting of ASUCA, in order to archive high

performance, we changed element order of arrays to an

appropriate one that was suitable for GPUs and introduced

optimization for GPU architectures. In the large-scale GPU

computation, we introduced optimizations such as overlapping

technique to hide communication overhead by computation.

Through implementing ASUCA on GPU, multi-GPU computation

of mesh-based applications, including weather prediction

codes, has the potential to achieve high performance. However,

it requires relatively-high cost of implementation. To apply these

complicated optimizations to various mesh-based applications

including ASUCA easily, we have developed high-productivity

and high-portability framework for multi-GPU computation of

mesh-based applications, and implemented ASUCA based on

this proposed framework from scratch. The proposed framework

is designed to provide highly-product ive programming

envi ronment for s tenci l appl icat ions with expl ic i t t ime

integration running on regular structured grids, including the

weather prediction codes. The framework updates the physical

variables defined on grid points and stored in arrays in user

programs. The framework is intended to execute user programs

on NVIDIA's GPUs; the C/C++ language and CUDA are used for

the implementation of CPU code and GPU code, respectively.

The framework also supports multi-GPU computation.

 Our major design goals of the framework are described

as follows.

・ To perform stencil computations on grids, the programmer

only defines C++ functions that update a grid point, which

is applied to entire grids by the framework. Our framework

automatically translates these functions and generates both

GPU and CPU code. The framework allows us to write the

user code just in the C++ language and we can develop

program code optimized for GPU computing without

introducing complicated optimizations.

・ The user code with the framework should be written in

a standard language without using the non-standard

programming model and language extension, especially

considering the cooperation with external existing libraries.

・ The framework should provide unified interfaces for both

inter-node and intra-node communications while each

of these communications is performed using the most

appropriate method.

3.1 Writing Stencil Functions

In this framework, stencils must be defined as C++ functors

ca l led stenci l funct ions . The stenci l funct ion for three-

dimensional diffusion equation is defined as follows:

Stencil access patterns on three-dimensional grids are described

by using ArrayIndex3D, which is provided by the framework.

Similarly, classes for writing 1D and 2D access patterns are

provided.

 ArrayIndex3D holds the size of each dimension of

a grid (nx, ny, nz) and index parameters (i , j , k). ArrayIndex3D

can be used for an array f that has elements. When idx is

an object of ArrayIndex3D , f[idx.ix()] will return an

element on the (i , j , k) point of the grid. ArrayIndex3D has

C++ template member functions that provide indices of

points around the (i , j , k) point of the grid; idx.ix<1,0,0>()

and idx.ix<-1,-2,0>() will, for example, return indices of

(i +1, j , k) and (i -1, j -2, k) points, respectively.

temperature and the water substances, the Coriolis force, the

diffusion and other effects by physical processes with the third-

order Runge-Kutta method. The physical processes that are

equivalent to or more enhanced than those employed in the

JMA-NHM are implemented in the current ASUCA.

 In our previous research, we have developed the

full GPU version of ASUCA. All variables are allocated on GPU

memory and al l computational modules inside the time-

step loops are carried out by GPU. Since ASUCA is being

developed in Fortran language at the JMA, the GPU code has

to be developed from scratch in CUDA. Before implementing

the ASUCA on GPU, we re-wrote the Fortran ASUCA code to

C/C++ language because we changed the element order

of the 3-dimensional array to improve the memory access

performance of the GPU computing. In 2011, we achieved 145

TFlops for the domain of 14368 x 14284 x 48 in single precision

using 3,990 GPUs of GPU-rich supercomputer TSUBAME.

GPU-computing Framework 3

High-productivity Framework on GPU-rich Supercomputers
for Weather Prediction Code

15

 The function parameter of stencil functions must

begin with ArrayIndex3D, which represents the coordinate of

the point where this function is applied. This is followed by any

number of additional parameters, including scalar values and

pointers of arrays.

3.2 Run Stencil Functions on Grids

In order to apply user-written stencil functions to grids, the

framework provides the Loop3D class, which is used to invoke

the diffusion equation on the three-dimensional grid as follows:

Loop3D i s in it ia l ized with parameters that speci fy a 3D

rectangular range where stencil functions are applied. The

parameters of Loop3D::run must begin with a stencil function

defined as a functor, followed by any number of additional

parameters that are provided to this functor. We use C++ type

inference and call an appropriate functor at Loop3D::run .

The programmer can define stencil functions as both host and

device (i.e., GPU) functions using the qualifiers __host__ and

__device__ provided by CUDA. Loop3D executes stencil

functions on grids sequentially for CPU while it executes the

stencil functions in parallel for GPU using CUDA's global kernel

functions. Loop3D determines whether a pointer given by

Loop3D::run as a parameter points to host memory or device

memory, and call appropriate internal functions within Loop3D.

3.3 GPU-GPU Communication

In the multi-GPU computation of mesh-based applications, the

domain decomposition is often used for these parallelization. The

fundamental structure of this framework is based on this strategy.

Figure 1 shows the domain decomposition of computational grid.

Since stencil computation that updates to a point of grid needs

to access its neighbor points, the data exchanges of boundary

regions between subdomains are performed frequently. The

framework provides the BoundaryExchange class to write

this communication. The BoundaryExchange class utilizes

appropriate GPU-GPU communication as follows. For intra-node

parallelization, we utilize OpenMP and GPUs directly access data

stored on device memory of other GPU on the same node. When

two GPUs within a same node support GPUDirect peer-to-peer

access, communication between these two GPUs no longer

needs to be staged through the host and is therefore faster.

Figure 2 illustrates intra-node GPU-GPU communication based

on peer-to-peer access. On the other hand, inter-node GPU-GPU

communication is performed by using the MPI library. Figure 3

illustrates this communication. Since GPUs cannot directly access

data stored on device memory of other GPUs on other nodes,

the host CPUs are used as bridges to exchange boundary data

between neighbor GPUs.

Fig. 1 Multi-GPU computing of
 mesh-based computation

Fig. 2 Intra-node GPU-GPU communication by the
 OpenMP threads. This process is composed of
 (1) GPUDirect peer-to-peer access.

Fig. 3 Inter-node GPU-GPU communication by MPI.
 This process is composed of (1) memory copy
 from GPU to host, (2) data exchange by MPI
 communications and (3) memory copy from
 host to GPU.

16

 BoundaryExchange is typically used as follows:

BoundaryExchange is init ial ized by domain , which is a

Domain object, and holds the connection relation with neighbor

subdomains and the size of data exchanged with them. When

BoundaryExchange::transfer is called, boundary regions

of arrays specified by BoundaryExchange::append are

exchanged.

3.4 Overlapping Method

The data communication time between GPUs is not ignored in

the total execution time in the case of large-scale computation.

The overlapping technique to hide communication overhead with

computation can contributes to performance improvement.

 This framework provides kernel-division overlapping

method reported in our previous work[1,2]. This method exploits

data independency within a single variable. Since each element

of a variable can be computed independently for one calculation,

computations for the boundary regions can be executed separately

from other calculations for the rest of the domain. Figure 4

illustrates the flow of the overlapping method. This method

consists of the following. First, the values in the inside region are

computed, while simultaneously the boundary exchange between

GPUs is executed. When this boundary exchange is completed, the

computations for the four boundaries are executed.

 In order to apply the kernel-division overlapping

method to the user program, the framework provides the

CompCommBinder class, which is used to execute diffusion

computations along with boundary exchange as follows:

CompCommBinder is initialized with a BoundaryExchange

object. To apply the overlapping method to a user-written

function, by using CompCommBinder::set_post_func, the

programmer specifies a loop range and the stencil function

with additional parameters that are provided to this function.

CompCommBinder::run divides the specif ic loop range

into several loop ranges that correspond to boundaries and

the inside region, and executes this stencil function on these

loop ranges in several CUDA streams. Holding the parameters

provided to the stencil function in CompCommBinder enables

multiple executions of the stencil function.

High-productivity Framework on GPU-rich Supercomputers
for Weather Prediction Code

Fig. 4 Scheme of the overlapping method based on
 kernel division.

In this section, we present the strong and weak scaling results

obtained by the weather prediction code ASUCA on the

TSUBAME 2.5 supercomputer. The TSUBAME 2.5 supercomputer

is equipped with 4224 NVIDIA Tesla K20X GPUs.

 Figure 5 demonstrates the real case of the ASUCA

operation with both the real initial and the boundary data used

for the current weather forecast at the JMA. This simulation was

performed with a 5,376 × 4,800 × 57 mesh with horizontal mesh

resolution of 500 meters using 672 GPUs of the TSUBAME 2.5 in

single precision.

 Figure 6 shows the performance of ASUCA running

on multiple GPUs in single precision and compares the strong

scalability of the non-overlapping version and the overlapping

version of ASUCA. In this graph, Flat-MPI version, in which each

MPI process handles a single GPU, is also shown as reference.

Since two of three GPUs on each TSUBAME node can utilize

GPUDirect peer-to-peer access, we use these two GPUs per

each node for these calculations. As shown in this figure, we

Performance Evaluation of
framework-based ASUCA 4

17

Fig. 5 ASUCA real operation to describe a typhoon with 5,376 × 4,800 × 57 mesh using 672 GPUs of the TSUBAME 2.5.

Fig. 6 Strong scaling results of ASUCA. Fig. 7 Weak scaling results of ASUCA.

observe that the overlapping method works effectively to hide

communication cost for both mesh sizes we expected, resulting

in performance improvement. In the results using a 3,072 ×

2,560 × 60 mesh on 512 GPUs, the overlapping method achieves

18.9 TFlops.

 F igure 7 shows the weak scal ing results of the

framework-based ASUCA code running on multiple GPUs. We

measure the performance of ASUCA using both the overlapping

method and non-overlapping methods in single precision. Bigger

domain has better performance and we choose that each GPU

handles the domain of 768 × 128 × 60. Unlike the strong scaling

study, we use three GPUs per each node of TSUBAME 2.5 in all

cases of calculations in order to maximize attainable performance

by using TSUBAME 2.5. As shown in the graph, we achieve an

extremely high performance of 209.6 TFlops using 4,108 GPUs

with the overlapping method in single precision.

18

High-productivity Framework on GPU-rich Supercomputers
for Weather Prediction Code

of the 2010 ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis,

SC’10, New Orleans, LA, USA, Nov 2010.

[2] Takashi Shimokawabe, Takayuki Aoki, Junichi Ishida, Kohei

Kawano, and Chiashi Muroi, "145 TFlops Performance

on 3990 GPUs of TSUBAME 2.0 Supercomputer for an

Operational Weather Prediction," Procedia Computer

Science, Volume 4, Proceedings of the International

Conference on Computational Science, ICCS 2011, 2011,

Pages 1535-1544.

[3] T. Shimokawabe, T. Aoki, T. Takaki, A. Yamanaka, A. Nukada,

T. Endo, N., Maruyama, S. Matsuoka: Peta-scale Phase-Field

Simulation for Dendritic Solidification on the TSUBAME

2.0 Supercomputer, in Proceedings of the 2011 ACM/IEEE

International Conference for High Performance Computing,

Networking, Storage and Analysis, SC’11, IEEE Computer

Society, Seattle, WA, USA, Nov. 2011.

[4] Takashi Shimokawabe, Takayuki Aoki and Naoyuki Onodera,

"A High-productivity Framework for Multi-GPU computation

of Mesh-based applications," First International Workshop

on High-Performance Stencil Computations (HiStencils),

Vienna, Austria, Jan 2014

[5] Takashi Shimokawabe, Takayuki Aoki and Naoyuki Onodera

"High-productivity Framework on GPU-rich Supercomputers

for Operational Weather Prediction Code ASUCA," in

Proceedings of the 2014 ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and

Analysis, SC’14, New Orleans, LA, USA, Nov 2014. (to appear)

[6] J. C. Linford, J. Michalakes, M. Vachharajani, and A. Sandu,

“Multi-core acceleration of chemical kinetics for simulation

and prediction,” in Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis,

SC'09. New York, NY, USA: ACM, 2009, pp. 1–11.

[7] P. Johnsen, M. Straka, M. Shapiro, A. Norton, and T.

 Galarneau, “Petascale WRF s imulat ion of hurr icane

sandy deployment of NCSA’s Cray XE6 Blue Waters,” in

Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis,

SC’13. New York, NY, USA: ACM, 2013, pp. 63:1–63:7.

[8] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka,

 “Physis: an implicitly parallel programming model for

stencil computations on large-scale GPU-accelerated

supercomputers,” in Proceedings of 2011 International

Conference for High Performance Computing, Networking,

Storage and Analysis, SC’11. New York, NY, USA: ACM, 2011,

pp. 11:1–11:12.

This art ic le has presented the programming model and

implementation of our framework that is developed for multi-

GPU computation of stencil applications, and evaluation of

the weather prediction code ASUCA based on the proposed

framework running on a supercomputer equipped with multiple

GPUs. The design of framework focuses on the portability

of both framework and user code and cooperation with the

existing codes. Our code can effectively utilize intra-node

GPU peer-to-peer direct accesses with optimizations to hide

communication overhead by overlapping of computation

and communication. With our proposed framework, we have

conducted performance studies using thousands of GPUs on the

TSUBAME 2.5 supercomputer at Tokyo Institute of Technology.

The performance evaluation has successfully demonstrated that

strong and weak scalabilities are improved by the overlapping

method provided by the framework.

Acknowledgements

This research was supported in part by KAKENHI, Grant-in-Aid

for Young Scientists (B) 25870223, Grant-in-Aid for Scientific

Research (B) 23360046 and Grant-in-Aid for Scientific Research

(S) 26220002 from the Ministry of Education, Culture, Sports,

Science and Technology (MEXT) of Japan, in part by the

Japan Science and Technology Agency (JST) Core Research

of Evolutional Science and Technology (CREST) research

program ``Highly Productive, High Performance Application

Frameworks for Post Petascale Computing'', and in part by

"Joint Usage/Research Center for Interdisciplinary Large-scale

Information Infrastructures" and "High Performance Computing

Infrastructure" in Japan. The authors would like to thank Dr.

Chiashi Muroi, Dr. Junichi Ishida, Dr. Kohei Kawano and Dr. Tabito

Hara at the Japan Meteorological Agency the for providing the

original ASUCA code, the real initial and boundary data.

References

[1] Takashi Shimokawabe, Takayuki Aoki, Chiashi Muroi Junichi

Ishida, Kohei Kawano, Toshio Endo, Akira Nukada, Naoya

Maruyama, and Satoshi Matsuoka, "An 80-Fold Speedup,

15.0 TFlops, Full GPU Acceleration of Non-Hydrostatic

Weather Model ASUCA Production Code," in Proceedings

Summary 5

19

● TSUBAME e-Science Journal vol.12
Published 9/22/2014 by GSIC, Tokyo Institute of Technology ©
ISSN 2185-6028
Design & Layout: Kick and Punch
Editor: TSUBAME e-Science Journal - Editorial room
 Takayuki AOKI, Toshio WATANABE,
 Atsushi SASAKI, Eri Nakagawa
Address: 2-12-1-E2-6 O-okayama, Meguro-ku, Tokyo 152-8550
Tel: +81-3-5734-2085　Fax: +81-3-5734-3198
E-mail: tsubame_j@sim.gsic.titech.ac.jp
URL: http://www.gsic.titech.ac.jp/

vol. 12

International Research Collaboration

Application Guidance

Inquiry

Please see the following website for more details.
http://www.gsic.titech.ac.jp/en/InternationalCollaboration

The high performance of supercomputer TSUBAME has been extended to the
international arena. We promote international research collaborations using
TSUBAME between researchers of Tokyo Institute of Technology and overseas
research institutions as well as research groups worldwide.

Recent research collaborations using TSUBAME

1. Simulation of Tsunamis Generated by Earthquakes using Parallel
　Computing Technique

2. Numerical Simulation of Energy Conversion with MHD Plasma-fluid Flow

3. GPU computing for Computational Fluid Dynamics

Candidates to initiate research collaborations are expected to conclude
MOU (Memorandum of Understanding) with the partner organizations/
departments. Committee reviews the “Agreement for Collaboration” for joint
research to ensure that the proposed research meet academic qualifications
and contributions to international society. Overseas users must observe
rules and regulations on using TSUBAME. User fees are paid by Tokyo Tech’s
researcher as part of research collaboration. The results of joint research are
expected to be released for academic publication.

