
TTX: A Direct Numerical Simulation Code
for Turbulent Reacting Flows

DS-CUDA: A Handy Tool to Use GPUs
in a Cloud Network

A High-level Framework for Parallel and
Efficient AMR on GPUs

15

02

Over eighty percent of world energy supply is estimated to

be provided by burning fossil fuels for the next 30 years [1],

and this imposes more and more stringent environmental

regulations on the design of combustion related devices.

Direct numerical simulations (DNS) have played important

roles in the research of turbulent combustion. DNS data base

provide key information for the development of turbulent

combustion models, which are to be used in computational

fluid dynamics (CFD) of various combustion devices during

design and development phases.

 For decades, DNS have been used for canonical

combustion problems such as statistically 1D planar

propagating premixed flames and HCCI-type combustion

in a periodic rectangular domain. However, with the recent

advancement in high-performance computing, DNS of slightly-

more complicated and computationally costly combustion

configurations such as V-flame, jet flame and flames stabilized

in jet-in-cross-flow and swirl flow with using complex chemical

mechanisms have been performed, and such simulations

will further our understanding on the physics of turbulent

combustion. Since these configurations include walls that do

not necessarily conform with the preferred structured mesh

coordinates for combustion DNS, most of these simulations

use presumed profiles for inflow/near-wall flows as boundary

conditions. A portable high-order immersed boundary method

suited for parallel computation is one way to improve these

simulations. Also, the use of more practical and complicated

hydrocarbon fuels such as methane, n-heptane and gasoline

surrogates with complex chemical kinetic models is important

to reveal underlying flame —turbulence interaction that is

a key for the development of “green” combustor. However,

computing elementary reaction rates existing in chemical

mechanisms takes most of combustion DNS costs and a

method to improve this computation speed is necessary

to achieve such DNS. The present research implements

such a boundary technique and methods to accelerate

kinetic computation in a DNS code, TTX, and simulations are

performed to confirm its accuracy and performance for several

laminar/turbulent reacting/non-reacting flow problems.

Introduction 1

Mathematical Background 2

TTX : A Direct Numerical Simulation Code
for Turbulent Reacting Flows

Over eighty percent of world energy supply is estimated to be provided by burning fossil fuels for the next
30 years, and this imposes more and more stringent environmental regulations on the design of combustion
related devices. Direct numerical simulations (DNS) have played important roles in the research of turbulent
combustion. DNS data base provide key information for the development of turbulent combustion models,
which are to be used in computational fluid dynamics (CFD) of various combustion devices during design and
development phases. This article summarises a DNS code and implemented numerical techniques that are
developed at Tokyo Institute of Technology.

Yuki Minamoto* Kozo Aoki** Mamoru Tanahashi*
* Department of Mechanical Engineering, Tokyo Institute of Technology　**Mechanical and aerospace engineering, Tokyo Institute of Technology

＊＊ Current position : Japan Atomic Energy Agency

2.1 Governing equations and PDE solver

The governing equations consist of fully compressible

conservation equations for mass, momentum, energy and

mass fractions of N -1 chemical species, where N is the number

of chemical species involved in combustion. The equations

are discretised by a fourth order central finite difference

scheme and integrated in time by using a third order

explicit Runge-Kutta scheme on Cartesian mesh. Unphysical

numerical oscillations resulted from the use of finite difference

scheme are removed by using either a sixth order explicit

spatial filtering or a fourth order compact filter. All open

computational boundaries are described

based on the Navier-Stokes characteristic boundary conditions

(NSCBC) formulation. The detailed description can be found in

previous studies [2-6].

2.2 MTS and CODACT

One of the difficulties in conducting combustion DNS is the

time integration of the governing equations with chemical

reaction terms. The time stepping (Δt) for fully explicit

03

schemes has to be smaller than the smallest chemical

timescale which can become much smaller than the time

stepping limited by a CFL condition. MTS (multi-timescale)

method [7] is an algorithm for integrating ODEs associated with

chemical reaction using a large Δt . In MTS method, each

chemical species (Yk) belongs to one integration group based

on its chemical timescale (τk). The index (M) of an integration

group which Yk belongs to is obtained as

M = log10 (Δt /τk) + 1. Species in M th group are integrated

using a time stepping Δt M = Δt /10 (M-1). The integration

procedure starts with the smallest Δt M. After convergence of

M th group, the mass fractions of the species in the group are

fixed and then the ODE system continues to be integrated

using Δt M-1. Thus, MTS enables us to use a large Δt , which is

not limited by the smallest chemical timescale, as a global

time stepping for DNS.

 Another approach to reducing computational cost

is reduction of the reaction ODE system. CODAC (correlated

dynamic adaptive chemistry) [8] is one of the methods for

dynamically generating reduced kinetic mechanisms at each

spatial location and each time step. In CODAC method,

a phase space consisting of a few key parameters is

constructed. Temperature and mass fractions of fuel, oxidizer

and important radicals are selected as the key parameters.

Comparing the instantaneous phase parameters at a grid

point with those at another reference point (different point in

time/space), correlation between the two points in the phase

space is examined. Threshold values used for examining the

correlation are specified by a user. If the phase parameters at

the two points are correlated, the reduced mechanism used at

the reference point is reused at the correlated grid point. If the

phase parameters at a grid point are not correlated with any

other reference point, a new reduced mechanism needs to be

generated by PFA (path flux analysis) [9].

 Further reduction of computational cost is achieved

by using CODACT (CODAC and transport) [10]. The same

correlation procedure in CODAC is applied to reducing the

computation of

transport properties, i.e. viscosity, diffusivity and thermal

conductivity. The phase parameters for reducing transport

calculation are temperature and molar fractions of the first

several abundant species. As with CODAC, transport properties

at a grid point are not calculated if the phase parameters at

the point are correlated with those at a different grid point.

2.3 Immersed boundary method

The present immersed boundary method (IBM) is based on

well-known ghost region/reverse profile approach [11] with

some modification to achieve high accuracy and portability.

The important change from the conventional ghost region

approach is that the ghost points are identified not only from

the non-fluid points that face to the fluid region, but the

region has certain non-fluid mesh points in the wall normal

directions. The points width in wall normal direction is max (nd,

nf /2) for uniform one-dimensional configuration, where

nd and nf are the order of differentiation and explicit filter,

respectively. Figure 1 shows an example schematic of ghost

region for a nd = 4 and nf = 6 case. Once the ghost points are

identified, a reference point is identified for each ghost point:

where the three vectors denote the locations of reference

point, corresponding wall and ghost point, respectively. For

each physical quantity, , solved in the set of governing

equations, the reference value is obtained by interpolating the

field onto the reference point. Using the reference point, the

value at each ghost point is estimated depending on the wall

conditions as:

Here, Eq. (2) is used for Dirichlet, and Eq. (3) is for Neumann

wall boundary conditions. In the present implementation,

ghost values for velocity and temperature are obtained by

using Eq. (2), while species mass fractions and pressure are

treated with Eq. (3). The density values on ghost points are

obtained using a combination of Eqs. (2) and (3) to achieve

mass conservation.

Fig. 1 Schematic of DNS domain. Blue shade
 indicates identified ghost region.

04

3.1 MTS and CODACT

A typical computational performance is shown in Fig. 2 in

terms of weak scaling. The used DNS configuration is a periodic

cuboid domain without using MTS, CODACT and IBM. The

domain was initially filled with a reactant mixture of CH4 - air

preheated to 1000 K at 1 atm. The chemical reactions are

described by using GRI-3.0 mechanism. The mixture is then

ignited at the centre location by gradually imposing an energy

source term having a profile based on a Gaussian distribution.

Each CPU core are allotted 12 3 mesh points and simulations

were continued for the first 100 time steps. Clearly, TTX has

excellent parallel computation performance for a range of

number of cores.

 A comparison between explicit time integration

without CODACT (i), time integration using MTS without

CODACT (ii) and time integration using MTS and CODACT (iii)

is shown in Fig. 3 for a homogeneous ignition simulation of

methane-air combustion. The time stepping for these cases

are set to be Δt =1ns (i), 5ns (ii) and 5ns (iii). Smaller Δt for

the case (i) is necessary as chemical time scales typically

decreases rapidly with pressure rise. In Fig. 3, the temperature

profiles show identical variation except for the explicit case

(i) which starts to show a deviation after t =0.5ms. This is due

to the lack of temporal resolution (Δt) since the chemical

time scales are typically shortened as pressure increases with

ignition proceeds. Thus, without the aid of MTS, Δt needs to

be set significantly smaller values than other cases. However,

the use of CODACT does not influence the results. Figure 4

shows accumulated computational times for the cases (i) —

(iii). Clearly, due to significantly small Δt , the computational

time for the case (i) takes longest of all. Clearly, the use of MTS

and CODACT decreases computational by a factor of 7—8

times for complex chemistry. Similar trends are observed for

more complex fuel combustion mechanism such as n-heptane.

3.2 Immersed boundary method

To access developed IBM, non-reacting laminar Taylor-Couette

flows are simulated. The inner and outer walls are described

based on the present IBM, and the DNS solutions at different

spatial resolutions are compared with the analytical solution.

The error convergence plot is shown in Fig. 5 in terms of

maximum and L 2 norm of relative errors. The convergence

Fig. 2 Weak scaling plot of combustion DNS
 in a typical configuration using TTX.

Fig. 3 Comparison of temperature profiles
 between the cases (i)—(iii).
 Red: case (i),
 black dashed: case (ii),
 black solid: case (iii).

Fig. 4 Comparison of accumulated computational
 costs between the cases (i)—(iii).
 Red: case (i), black dashed: case (ii),
 black solid: case (iii).
 black dashed: case (ii), black solid: case (iii).

Performance and Accuracy 3

TTX : A Direct Numerical Simulation Code for Turbulent Reacting Flows

05

rate of L 2 norm decreases at a rate of between third and

fourth orders, and this is comparable with the accuracy of

differentiation in the interior points in the present DNS.

evolve from a current relatively small, canonical configuration

to a larger scale, more complex geometry that is more relevant

to practical combustion devices.

 DNS of a turbulent pipe flow is performed. The

present pipe wall boundary conditions are specified as in the

developed IBM, whereas previous pipe flow DNS database

applied structured mesh that represent the pipe shape. The

initial nominal Reynolds number Reτ is set as 200, which is

defined based on the friction velocity and radius of the pipe.

The dimensions of the pipe are shown in Fig. 6 with the

DNS result for the streamwise velocity field. The simulation

was continued for over 40 mean-flow-through times to

achieve quasi-steady state and samples are collected after 25

mean-flow-through times for statistics. Turbulent statistics

are compared with previous DNS with conventional wall

boundary method for mean streamwise velocity and Reynolds

shear stress (not shown) in Fig. 7. The present pipe flow DNS

results show excellent agreement with the previous DNS

results with Reτ =180 and 181, ensuring that the present IBM

can capture the large velocity gradient and reproduce the

turbulent boundary layer accurately. Also, the computational

cost per time step is 1020 ms with IBM and when IBM is

switched off, it decreases to 950 ms with 1296 cores at

Reedbush-U system at the University of Tokyo. Therefore, the

additional computational cost due to the IBM is less than 10%

of the overall cost.

3.3 3D Turbulent combustion simulations

Typical DNS results of three-dimensional turbulent combustion

performed by using TTX is shown in Fig. 8. With the numerical

techniques described here, the turbulent combustion DNS will

Fig. 5 Error convergence plot of the present IBM
 obtained from a laminar Taylor-Couette DNS.

Fig. 8 Typical combustion DNS results of swirl
 flow stabilised turbulent flames of hydrogen-
 air combustion. Iso-surfaces: heat release rate.
 Color: normalised temperature. Left: low swirl
 number (0.6) case.
 Right: high swirl number (1.2) case

Fig. 7 Comparison of the mean streamwise velocity
 profile of the pipe flow DNS.

Fig. 6 Configuration and streamwise velocity field
 of turbulent pipe flow DNS.

06

timescale and correlated dynamic adaptive chemistry

modeling of ignition and flame propagation using a real

jet fuel surrogate model, Combust. Flame, Vol. 162, pp.

1530-1539 (2015)

[9] W. Sun, Z. Chen, X. Gou and Y. Ju: A path flux analysis

method for the reduction of detailed chemical kinetic

mechanisms, Combust. Flame, Vol. 157, pp. 1298-1307

(2010)

[10] W. Sun and Y. Ju: Multi-timescale and Correlated Dynamic

Adaptive Chemistry and Transport Modeling of Flames

in n-Heptane/Air Mixtures, Proc. 53rd AIAA Aerospace

Sciences Meeting (2015).

[11] P. Parnaudeau, E. Lamballais, D. Heitz, J. H. Silverstrini:

Combination of the Immersed Boundary Method

with Compact Schemes for DNS of Flows in Complex

Geometry, ERCOFTAC seriese, Direct and Large-Eddy

Simulation V, Vol. 9, pp. 581-590.

A direct numerical simulation code, TTX, is developed by

implementing MTS, CODACT and IBM capability for better

computational speed and relatively flexible boundary

configurations. The computational speed is increased by

a factor of 7 to 8 when DNS are performed with both MTS

and CODACT for a complex chemical mechanism, while the

implemented IBM shows comparable accuracy to the accuracy

of present numerical schemes.

Acknowledgements

This research was supported in part by Grant-in-Aid for Young

Scientists B (16K18026) of the Japan Science and Technology

Agency (JST).

References

[1] U.S. Energy Information Administration: International

energy outlook 2010, DOE/EIA-0484 (2010)

[2] M. Tanahashi, M. Fujimura, and T. Miyauchi: Coherent

fine-scale eddies in turbulent premixed flames, Proc.

Combust. Inst., Vol. 28, pp. 529–535 (2000)

[3] Y. Minamoto, N. Fukushima, M. Tanahashi, T. Miyauchi, T.

D. Dunstan, and N. Swaminathan: Effect of flow-geometry

on turbulence-scalar interaction in premixed flames.

Phys. Fluids, Vol. 23, 125107 (2011)

[4] M. Shimura, K. Yamawaki, N. Fukushima, Y. S. Shim, Y.

Nada, M. Tanahashi, and T. Miyauchi: Flame and eddy

structures in hydrogenair turbulent jet premixed flame, J.

Turbulence, Vol. 13, pp. 1–17 (2010)

[5] B. Yenerdag, N. Fukushima, M. Shimura, M. Tanahashi,

and T. Miyauchi: Turbulence-flame interaction and fractal

characteristics of H2-air premixed flame under pressure

rising condition. Proc. Combust. Inst., Vol. 35, pp.1277–

1285 (2015)

[6] Sussman, P. Smereka and S. Osher: A Level Set Approach

for Computing Solutions to Incompressible Two-Phase

Flow, J. Comp. Phys., Vol. 114, pp.146-159 (1994)

[7] X. Gou, W. Sun, Z. Chen and Y. Ju: A dynamic multi-

timescale method for combustion modeling with

detailed and reduced chemical kinetic mechanisms,

Combust. Flame, Vol. 157, pp. 1111-1121 (2010)

[8] W. Sun, X. Gou, H.A. El-Asrag, Z. Chen and Y. Ju: Multi-

Summary 4

TTX : A Direct Numerical Simulation Code for Turbulent Reacting Flows

07

In many scientific and engineering simulations, Partial

Differential Equations (PDEs) are solved in a uniform mesh

arrangement by using finite difference schemes, referred to

as iterative stencils. Typically, the resolution of the mesh is

uniformly set to the highest resolution to provide accurate

solutions. For meshes that require only high resolution for

some portions of the mesh, an alternative method, known

as Adaptive Mesh Refinement (AMR), can be used instead of

the uniform mesh. The AMR method solves the problem on

a relatively coarse grid, and dynamically refines it in regions

requiring higher resolution. However, AMR codes tend to be

far more complicated than their uniform mesh counterparts

due to the software infrastructure necessary to dynamically

manage the hierarchical mesh framework. Despite this

complexity, it is generally believed that future applications will

increasingly rely on adaptive methods to study problems at

unprecedented scale and resolution.

 Implementing efficient adaptive meshes in GPU-

accelerated systems is significantly hard in comparison

to traditional CPU systems. More specifically, GPUs add

complexity overhead for managing the mesh hierarchy and

optimization of data movement. This is made evident by the

relatively wide use of AMR in CPU in comparison to GPU-based

systems. For example, a mature AMR framework supporting

CPU, namely FLASH is reported to be in use by dozens of

production applications[1]. On the contrary, a few number of

individual applications adapted AMR solvers for GPU, with

varying levels of optimization and scaling. To summarize

the problems with GPU-based AMR, only a few frameworks

enable automated AMR transformations for GPU, and their

programming models require the programmer to write his

Structured AMR methods use logically rectangular meshes in

the implementation of the adaptive mesh. Structured AMR

utilizes a hierarchy of levels of spatial, and often temporal,

mesh spacing with each level being composed of a union

of logically rectangular mesh regions. One way to represent

the structured AMR, namely tree-based AMR, divides the

discretized domain into fixed blocks. If any cell within a block

requires refinement, the whole block is refined.

 In the tree-based scheme, the mesh is organized

into a hierarchy of refinement levels. The mesh is usually

decomposed into relatively small fixed-sized octants of

mesh cells. Each octant can be recursively refined into a set

of octants of fine cells. The mesh configuration is managed

using a tree-based data structure that maintains explicit child-

parent relationships between coarse and fine octants. Size

relations between neighboring octants are typically enforced

in structured AMR, which means neighboring octants can

have at most one level of refinement difference (referred to

as 2:1 balance). An important feature of octrees is that the

traversal of an octree across its leaves corresponds to a Morton

z-shaped Space Filling Curve (SFC) in the geometric domain[4].

Accordingly, sorting the blocks by their Morton ID and equally

own versions of the target-optimized solvers. Moreover, there

can be scalability limitations caused by the overhead of the

CPU-GPU communication schemes in those frameworks[2].

 In this article, we present a high-level framework,

called Daino[3], which auto-generates efficient and scalable

structured AMR solutions to scientific applications running on

GPU-accelerated systems.

Introduction 1

Background 2

A High-level Framework for
Parallel and Efficient AMR on GPUs

Adaptive Mesh Refinement methods reduce computational requirements of problems by increasing resolution
for only areas of interest. However, in practice, efficient AMR implementations are difficult considering that
the mesh hierarchy management must be optimized for the underlying hardware. Architecture complexity of
GPUs can render efficient AMR to be particularity challenging in GPU-accelerated supercomputers.
This article presents a compiler-based high-level framework that can automatically transform serial uniform
mesh code annotated by the user into parallel adaptive mesh code optimized for GPU-accelerated
supercomputers. Experimental results on three applications show that the speedups of code generated by
our framework are comparable to hand-written AMR code, while achieving good and weak scaling up to 3,640
GPUs of the TSUBAME2.5 supercomputer.

Mohamed Wahib* Naoya Maruyama* Takayuki Aoki**
* RIKEN Advanced Institute for Computational Science　**Global Scientific Information and Computing Center, Tokyo Institute of Technology

08

partitioning them leads to a uniform distribution of the blocks

of a mesh among different Processing Elements (PEs), while

benefiting from the locality provided by SFC affinity. Fig.1

illustrates how the domain and tree are represented in AMR,

and the use of SFC to divide the blocks among three PEs.

Fig. 1 Octree-based meshes. The blocks are equally
 partitioned using a space filling curve.
 (a) Adaptive mesh
 (b) Tree representation
 (Note: 2D quadtree is used for illustration)

Fig. 2 Minimal example of using Daino directives

We design a high-level programming framework that provides

a highly productive programming environment for AMR. The

framework is transparent and requires minimal involvement

from the programmer, while generating efficient and scalable

AMR code. The framework consists of a compiler and runtime

components. A set of directives allows the programmer to

identify stencils of a uniform mesh in an architecture- neutral

way. The uniform mesh code is then translated to GPU-

optimized parallel AMR code, which is then compiled to an

executable. The runtime component encapsulates the AMR

hierarchy and provides an interface for the mesh management

operations.

3.1 Programming Model

The framework provides directives to be used with standard

C (see [3] for details on directives). The programmer is required

to add the directives to a serial uniform mesh code in order

to identify the operations and stencil data arrays that are the

target for transformation. Note that the directives are not

changing the uniform mesh implementation; the programmer

can still use the uniform mesh implementation if the directives

are ignored by compiler. A sample example of using directives

to annotate a C kernel in Daino is shown in Fig. 2.

3.2 Optimizations

When an AMR code generated by Daino is executed on a GPU-

accelerated cluster, the stencil and mesh adaptation kernels

run on the GPU, while managing the octree data structures

and load balancing is done on the CPU side. Since we pursue

efficiency and scalability, code on both the CPU and GPU

should be optimized. The stencil operations in the blocks

are themselves optimized for the GPU architecture[5]. Other

optimizations, such as data layout in memory and using user-

managed cache memory, are applied on the GPU kernels

responsible for adapting the mesh: error estimation, refinement

(interpolation), and coarsening (extrapolation). Finally,

the generated code includes optimizations to reduce the

communication between nodes, i.e. boundary data exchange,

and balancing the load, i.e. number of blocks per node.

3.3 Implementation

Our framework consists of a compiler and runtime

components. We generate executables optimized for GPU

execution by leveraging the LLVM compiler infrastructure.

The compiler builds on the LLVM compiler infrastructure[6].

First, we use the front end to analyze and translate the stencil

source code into GPU-optimized code in the form of LLVM

Intermediate Representation (IR). Next, compiler passes are

applied on the IR to add the AMR management code, which

in turn make API calls to the runtime API and GPU-optimized

High-level Framework for
Efficient AMR 3

A High-level Framework for Parallel and Efficient AMR on GPUs

09

Fig. 3 The framework overview

Fig. 4 Weak scaling of uniform mesh,
 hand-written and automated AMR

We demonstrate the scalability of auto-generated AMR code

using three production applications. We compare the speedup

and scalability with hand-written AMR of all three applications

using the TSUBAME2.5 supercomputer at Tokyo Institute of

Technology.

4.1 Applications

Phase-field Simulation : This application simulates 3D dendritic

growth during binary ally solidification[7].

Hydrodynamics Solver : This solver models a 2nd order

directionally split hyperbolic schemes to solve Euler

equations[8].

Shallow-water : Modelling shallow water by depth-averaging

Navier-Stokes equations[9].

4.1 Results

In a weak scaling experiment, shown in Fig. 4, the run- time for

uniform mesh, hand-written AMR, and auto-generated AMR

are compared. The following points are important to note.

First, more than 1.7x speedup is achieved using Daino using

up to 3640 GPUs of TSUBAME for the phase-field simulation.

This is a considerable improvement considering that the

uniform mesh implementation is a Gordon Bell prize winner

for time-to-solution[7]. Second, Daino achieves good scaling

that comparable to the scalability of the hand-written AMR

code.

Evaluation 4

code generated by the Nvidia backend code generator. Finally,

LLVM IR is compiled and linked with the runtime libraries to

generate and executable.

 The runtime includes two libraries: the first library

encapsulates the AMR hierarchy management software and

the second is a communication library that wraps the MPI

runtime library to simplify data movement operations for the

AMR driver. The stages of compilation and layout of Diano are

shown in Fig. 3.

10

 Fig. 5 shows a strong scaling comparison for hand-

written and auto-generated AMR against uniform mesh

implementation. The code generated by Daino achieves

speedups and scalability comparable to hand-written

implementations. However, when using more GPUs, reduction

in speedup starts to occur as the management of AMR starts

to dominate the simulation runtime.

Fig. 5 Strong scaling of uniform mesh,
 hand-written and automated AMR

Producing efficient AMR code is a challenge, especially for

GPUs. We introduce a framework for producing efficient

and distributed AMR code for GPU-accelerated systems. We

demonstrated the efficacy and scalability of three applications

using the full TSUBAME supercomputer. To the authors

knowledge, this is the first study to scale auto-generated AMR

code to O(1,000s) of GPUs. However, there are still problems to

be solved, for example, handling of customized error functions

and boundary conditions.

Acknowledgements

This project is partially supported by JST, CREST through its

research program: "Highly Productive, High Performance

Application Frameworks for Post Petascale Computing.".

This research is also partly supported by KAKENHI, Grant-in-

Aid for Scientific Research (S) 26220002 from the Ministry of

Education, Culture, Sports, Science and Technology (MEXT) of

Japan and "Joint Usage/Research Center for Interdisciplinary

Large-scale Information Infrastructures (JHPCN)" and "High

Performance Computing Infrastructure (HPCI)" in Japan.

References

[1] A. Dubey, K. Antypas, M. K. Ganapathy, L. B. Reid, K.

Riley, D. Sheeler, A. Siegel, and K. Weide, “Extensible

Component-based Architecture for FLASH, a Massively

Parallel, Multiphysics Simulation Code,” Parallel Comp.,

vol. 35, no. 10-11, pp. 512–522, (2009)

[2] M. Wahib, N. Maruyama, Data-centric GPU-based

Adaptive Mesh Refinement, IA^3 2015, Workshop on

Irregular Applications: Architectures and Algorithms, co-

located with SC’15, Austin, TX (2015)

[3] M. Wahib, N. Maruyama, T. Aoki, Daino: A High-level

Framework for Parallel and Efficient AMR on GPUs, SC'16,

ACM/IEEE Proceedings of the International Conference

for High Performance Computing, Networking, Storage

and Analysis (2016)

[4] H. Tropf and H. Herzog, “Multidimensional Range Search

in Dynamically Balanced Trees,” Angewandte Informatik,

1981 (1981)

[5] N. Maruyama and T. Aoki, Optimizing Stencil

Summary 5

A High-level Framework for Parallel and Efficient AMR on GPUs

11

Computations for NVIDIA Kepler GPUs, 1st International

Workshop on High-Performance Stencil Computations

HiStencils'14 (2014)

[6] http://www.llvm.org

[7] T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A. Yamanaka,

N. Maruyama, A. Nukada, and S. Matsuoka, “Peta-scale

Phase-field Simulation for Dendritic Solidification on the

TSUBAME 2.0 Super- computer,” ser. SC ’11 (2011)

[8] H.-Y. Schive, U.-H. Zhang, and T. Chiueh, “Directionally

Unsplit Hydrodynamic Schemes with Hybrid MPI/

OpenMP/GPU Parallelization in AMR,” Int. J. High Perform.

Comput. Appl., vol. 26, no. 4, pp. 367–377 (2012)

[9] M. Sætra, A. Brodtkorb, K. Lie, “Efficient GPU-

implementation of Adaptive Mesh Refinement for the

Shallow-Water Equations,” J. Sci. Comput., vol. 63, no. 1,

pp. 23–48 (2015)

12

Several services and tools have been released to reduce the

cost of preparing high-performance GPUs (Graphics Processing

Units) on a client device. Amazon EC2 [1] provides a cloud

server with 16 GPUs for GPGPU (General-Purpose computing

on GPUs) applications. Nvidia GRID [2] enables us to run high-

end GUI applications on a low-performance client device by

utilizing GPU-enabled calculation and rendering on the cloud

server and transferring the result via a low-latency network.

 In this report, we consider an interactive molecular

dynamics simulation [3], which calculates on GPUs with CUDA

(Compute Unified Device Architecture) and visualizes at

the same time. Seamless methods to use high-end GPUs

on a cloud device to achieve interactive simulations and

visualizations would be required from mobile devices like

tablets which supports many sensors.

 DS-CUDA [4, 5] is a tool to virtualize cloud-side GPUs as

if they are attached to a client side. It supports fault tolerance

of GPUs and networks. In this report, the overview of DS-CUDA

and their recent results are presented.

Doing everything on one computer often results in higher cost

or lower energy-efficiency compared to role sharing of client-

and cloud-side computers. Fig. 1 shows three ways of role

sharing between a client device and cloud servers: A) Most of

the calculation and rendering are performed on a cloud server,

B) Only rendering is performed on a cloud server, and C) Only

CUDA calculation is performed on a cloud server.

 In the case of A), the client works as a zero-client

computer, which means that the keyboard input or touch

information of the client device is transferred to the cloud

server, and the rendered video or sound is transferred from

the cloud server. However, cloud service like Nvidia GRID does

Introduction 1 Role sharing of a client device
and cloud servers 2

DS-CUDA : A Handy Tool to Use GPUs
in a Cloud Network

Cloud services have recently added GPU support for gaming and HPC purposes.
Our DS-CUDA offloads only the calculation on GPUs to a cloud system using CUDA.
The merit of DS-CUDA is that users can freely modify their applications on the client side,
as well as supporting tablet sensors and fault tolerance of networks.
We report four topics on DS-CUDA: 1) Overview of DS-CUDA, 2) 880 fold acceleration of replica-exchange
molecular dynamics simulation using 1,024 GPUs on the TSUBAME 2.5 supercomputer,
3) Overhead of fault tolerant function using overclocked GPUs,
and 4) Energy efficiency using a tablet and GPU notebook.

Tetsu Narumi*
* Faculty of Informatics and Engineering, University of Electro-Communications

Fig. 1 Role sharing of a client device and cloud servers

Comparison against other tools 3

Overview of DS-CUDA 4

13

Table 1 compares the cloud tools mentioned in the previous

section. DS-CUDA and rCUDA in method C) can easily support

specific functions of applications since most parts run on the

client side. Only the information called from CUDA APIs are

transferred via a network, and attackers cannot see readable

information like files on the cloud server, which should

increase security. However, they currently do not support

interoperability functions of OpenGL and Direct3D, which is

necessary to render the result of CUDA calculation without

moving data from the GPU memory.

 The recompilation of CUDA code is not needed in

the case of rCUDA since the change of the path of dynamic

link library is enough, while DS-CUDA needs recompilation.

rCUDA requires a CUDA environment on the client side,

while DS-CUDA supports client devices without CUDA when

specially prepared [8, 9]. Special environment like CUDA is

not needed on a client side for Nvidia GRID or Amazon EC2,

but users have to prepare the same software-development

environment on the cloud server.

 The merit of DS-CUDA is that it supports fault

tolerant mechanism for the cases when GPUs caused

Fig. 2 and 3 show the procedure of compilation and the block

diagram of DS-CUDA system, respectively.

not support the recompiling and execution of user’s own

applications on the cloud server. They only provide popular

ISV applications. Amazon EC2 supports the compilation and

execution of any application since users can customize the

development environment on the virtual machine, while the

video transfer via a network might become the bottleneck.

Special mechanism will be needed to support tablet sensors

like accelerometers on a client device for both services.

 In the case of B), a tool can hook rendering APIs

like OpenGL on a client device and transfer them to a cloud

server [6]. However, CUDA is not supported, which is a big

disadvantage for HPC applications.

 In the case of C), rendering and light processing

including sensors are performed on a client device. Users can

compile their applications on a familiar environment without

changing their source codes. DS-CUDA or rCUDA [7] is suitable

for such situations. Users can enjoy the benefit of high-

end GPUs on a cloud server by hooking CUDA APIs in their

applications.

calculation errors or a network is unstable. The reliability of

GPUs are usually lower than those of CPUs even when they are

specially designed for GPGPU [10]. The fault tolerance should be

useful for reliable simulations, especially for unstable network

environments in cloud computing.

 In the method of A), implementing fault tolerance

is a little difficult. Users can customize their applications to

support fault tolerance if Amazon EC2 is used. However, the

cost of such modification is usually very high. In the method of

C), users have potentially no cost for fault tolerance since the

tool can virtually provide reliable CUDA APIs to them.

Table 1 Comparison of tools for using cloud GPUs

Fig. 2 Compilation with DS-CUDA compiler

14

 First, a CUDA source code is compiled with DS-

CUDA compiler, which is actually a Ruby script, and two

executables are generated for both the client and cloud

(or server) sides (Fig. 2). On the client side, CUDA APIs are

replaced with DS-CUDA APIs, and compiled with the DS-CUDA

library to generate the executable. On the server side, the

main function is removed from the source code, and compiled

using the nvcc compiler with the DS-CUDA server library,

which includes the body of a server as well as the CUDA library

to generate a server executable.

 Before running the user application, a DS-CUDA

daemon should be ready for each node (Fig. 3). When the

client executable is started, the server executable is transferred

from the client side to the server side and started via the DS-

CUDA daemon. Every time the client executable accesses the

virtual GPU in the client device, its data is transferred to the

server side via a network through the DS-CUDA server, and the

server accesses the physical GPU in the node.

 When the function of redundant calculations is

activated for fault tolerance, each CUDA API is automatically

copied to two identical APIs and executed in two servers.

Then the results from cudaMemcpy(DeviceToHost) APIs are

compared. If the results do not match, previous APIs are

automatically re-executed. When the migration function

is activated, data in GPU memory which is allocated by

cudaMalloc() API are periodically backed up to the client side.

If unrecoverable error occurs on GPUs or network between

client and servers is disconnected, backed-up data are

transferred to a new GPU to continue the calculation.

CUDA provides APIs to use multiple GPUs in a node even from

a single thread program. However, parallel programming like

MPI is needed to use many GPUs in a cluster by controlling

them node by node. Beginners in GPGPU might feel difficulty

in programming since a distributed memory paradigm must

be considered. Programming of GPUs with DS-CUDA is simple

since the client sees all the GPUs in the server side as if they

are attached to the client. In the following, result of using

1,024 GPUs from a single thread program is explained as an

extreme case [11].

 In this case, replica-exchange Molecular Dynamics

(MD) simulation with 14,336 replicas was executed with 1,024

GPUs in the TSUBAME 2.5 supercomputer. Replica-exchange

MD simulation can search energy minimum state efficiently

by exchanging temperature between parallel MD simulations

with different temperatures every constant steps (100 in this

result). One replica holds 256 or 2,048 Argon particles. Since

the amount and frequency of the communication between

different replicas are small, a single thread is enough to control

all the GPUs in the cluster.

 Fig. 4 shows the strong scaling of the relative

calculation speed. 880 and 340 times acceleration is achieved

with 1,024 GPUs for 256 and 2,048 particles, respectively.

Fig. 3 Block diagram of a DS-CUDA system

Fig. 4 Strong scaling of performance
 against the number of GPUs

Using many GPUs
from a single thread 5

DS-CUDA : A Handy Tool to Use GPUs in a Cloud Network

15

 In the performance model, the total calculation time

is divided into three parts: GPU calculation, CPU calculation,

and communication. The communication is further

divided into two parts: Latency-oriented communication

time and bandwidth-oriented communication time. The

average amount of the communication is only 1.9 kbytes,

which is relatively small. Therefore, the latency-oriented

communication time is 57.5 msec for 1,024 GPUs, while

the bandwidth-oriented one is only 6.7 msec. In total, GPU

calculation time is still dominant, which is 471 msec. However

for 4,096 GPUs, GPU calculation time would be reduced to

118 msec, while latency-oriented communication time be

increased to 230 msec. The bottleneck would be caused by

the latency-oriented communication for this case. To avoid the

bottleneck, one idea is to use multi thread programming like

OpenMP on the client side.

 On the one hand, the calculation time becomes

larger when the period of checkpointing is small, since the

operation of backing-up GPU memory takes more time. On

the other hand, the calculation time also becomes larger when

the period of checkpointing is large, since the re-execution

of previous CUDA APIs takes time as the possibility of errors

occurring becomes larger. In this configuration, the optimal

checkpointing interval was 100 seconds, and the overhead

was roughly 10% . Non-over-clocked GPUs are more reliable [10],

and the overhead would be much less than this result.

Users have only to set environment variables to activate

the fault tolerant function, but the overhead in calculation

time exists. Backing-up GPU memory to the client side every

few steps, known as checkpointing, causes performance

degregation, especially when the frequency of checkpoinging

is not optimal.

 Fig. 6 shows the relative calculation time when the

period of checkpointing was changed [12]. The same application

in the previous section was used for this experiment. Over-

clocked GPUs were used to artificially generate calculation

errors, and we chose data when the period is close to 900

seconds per one error, which is shown as crosses in Fig. 6.

A special DS-CUDA server, which is designed to generate an

error every 900 seconds, is also used, and its data was plotted

as circles in Fig. 6.

 Fig. 5 shows the time ratio of calculation and

communication with 2,048 particles for 256, 1,024, and 4,096

GPUs. We made a performance model which fits up to 1,024

GPUs and applied it to 4,096 GPUs.

Fig. 5 Ratio of calculation and communication

Fig. 6 Overhead of calculation with
 fault tolerant function

Overhead to support fault tolerance 6

16

Combining tablet and GPU notebook 7
Fig. 7 shows a block diagram of a DS-CUDA system, which

composed of a non-GPU tablet on the client side, a GPU

notebook on the cloud side, and a WiFi router between

them. Table 2 shows the energy efficiency (Gflops/Watt)

and rendering speed (Frame/sec) of an MD simulation and

visualization using 5,832 particles [13, 14]. Power consumption of

both of the tablet and the notebook are summed for the last

row.

 The DS-CUDA system achieves 9.0 Gflops/Watt,

which is good enough compared with Green500 [15], though

the number is a little lower than that of a Notebook of 12.8

Gflops/Watt. Note that it should not be compared with

Green500 numbers precisely, since it was calculated by a

single-precision flops count and complicated function and

division is counted as several operations.

 Though the tablet itself is slow both in calculation

and rendering, combining a tablet and a notebook with DS-

CUDA achieved several tens of acceleration in calculation

speed, energy efficiency, and rendering speed. Especially,

rendering speed of 20 Frame/sec is smooth enough for

interactive simulation.

 Although not shown in this table, a SHIELD tablet,

which supports native CUDA, was found to achieve lower

numbers in calculation speed, energy efficiency, and rendering

speed compared with the DS-CUDA system.

Fig. 7 Using a tablet and notebook with DS-CUDA

Table 2 Calculation speed and energy efficiency

The effectiveness of the idea of DS-CUDA to use multiple GPUs

was discussed as a cloud and visualization tool.

 DS-CUDA enables the use of many GPUs via a

network from a usual client computer. Acceleration of

calculation and visualization can be achieved while utilizing

touch and accelerometer sensors on a tablet client device.

Moreover, a fault tolerant capability can be easily added.

 Although mobile GPUs might have better energy

performance and high-end GPUs might have better absolute

performance, combining a client with cloud computers can

achieve balanced performance in calculation speed, rendering

speed, and power efficiency.

 Recent advancement of tablets makes them an ideal

tool for interactive simulation and visualization. Cloud tools

like DS-CUDA would be an interesting approach to realize such

requirements.

Acknowledgements

This research was supported in part by the Japan Science and

Technology Agency’s Core Research of Evolutional Science

and Technology research program:“Highly Productive, High

Performance Application Frameworks for Post Petascale

Computing.” TSUBAME 2.5 supercomputer in Tokyo Institute of

Technology was used in part for this research. Author thanks

Atsushi Kawai in K&F Computing Research, Minoru Oikawa in

Chiba University, Edgar Josafat Martinez-Noriega in University

of Electro-Communications, and Kentaro Nomura and Kenji

Yasuoka in Keio University for the development and evaluation

of DS-CUDA.

References

[1] Amazon EC2: https://aws.amazon.com/jp/ec2/instance-

types/p2/ (Accessed in Jan. 2017)

[2] Nvidia GRID: http://www.nvidia.com/object/grid-

technology.html (Accessed in Jan. 2017)

[3] N. Luehr, A. G. Jin, and T. J. Mart́ ınez, “Ab Initio Interactive

Molecular Dynamics on Graphical Processing Units

(GPUs),” Journal of chemical theory and computation,

Vol. 11, No. 10, pp. 4536–4544, (2015)

[4] A. Kawai, K. Yasuoka, K. Yoshikawa, and T. Narumi,

Concluding remarks 8

DS-CUDA : A Handy Tool to Use GPUs in a Cloud Network

17

“Distributed-Shared CUDA: Virtualization of large-scale

GPU systems for programmability and reliability,” Future

Computing 2012, Nice, France, (2012)

[5] DS-CUDA: http://narumi.cs.uec.ac.jp/dscuda/ (Accessed

in Jan. 2017)

[6] S. Shi, C.H. Hsu, “A Survey of Interactive Remote

Rendering Systems,” ACM Computing Surveys (CSUR),

Vol. 47, No. 4, Article 57, pp. 1-29, (2015)

[7] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-

Orti, “Performance of CUDA virtualized remote GPUs in

high performance clusters,” International Conference on

Parallel Processing, IEEE, pp. 365–374, (2011)

[8] T. Shimada, “PluginGPU Box : Virtual CUDA environment

for Windows PC,” Graduation thesis in Department of

Communication Engineering and Informatics, University

of Electro-Communications, (2014)

[9] E. J. Martinez-Noriega, “Running CUDA on Android

Through GPU Virtualization,” GPU Technology

Conference, San Jose, P4160, (2014)

[10] I. S. Haque, V. S. Pande, “Hard Data on Soft Errors: A Large-

Scale Assessment of Real-World Error Rate in GPGPU,”

10th IEEE/ACM International Conference on Cluster,

Cloud and Grid Computing, pp.691-696, (2010)

[11] M. Oikawa, K. Nomura, K. Yasuoka, T. Narumi, “ Parallel

Molecular Dynamics Simulation with Replica-exchange

Method Using 1,024 GPUs,” IPSJ Transactions on

Advanced Computing Systems, Vol. 7, No. 4, pp. 1-14,

(2014)

[12] T. Narumi, M. Oikawa，E. J. Martinez-Noriega，K.

Yasuoka, “DS-CUDA: GPU Virtualization Middleware to

Support Migration Functionality,” IPSJ SIG Technical

Report, 2016-HPC-153(17), pp.1-6, (2016)

[13] E. J. Martinez-Noriega, “High Performance Computing on

Mobile Devices through Distributed Shared CUDA,” GPU

Technology Conference, San Jose, S5290, (2015)

[14] E. Martinez-Noriega, S. Yazaki, T. Narumi, “Performance

Evaluation of Remote CUDA Offloading on Mobile

Devices for Energy Efficient Systems,” submitted

[15] Green500 List: https://www.top500.org/green500/

(Accessed in Jan. 2017)

● TSUBAME e-Science Journal vol.15
Published 3/8/2017 by GSIC, Tokyo Institute of Technology ©
ISSN 2185-6028
Design & Layout: Kick and Punch
Editor: TSUBAME e-Science Journal - Editorial room
 Takayuki AOKI, Toshio WATANABE,
 Atsushi SASAKI, Yuki ITAKURA
Address: 2-12-1-E2-6 O-okayama, Meguro-ku, Tokyo 152-8550
Tel: +81-3-5734-2085　Fax: +81-3-5734-3198
E-mail: tsubame_ j@sim.gsic.titech.ac.jp
URL: http://www.gsic.titech.ac.jp/

vol. 15

International Research Collaboration

Application Guidance

Inquiry

Please see the following website for more details.
http://www.gsic.titech.ac.jp/en/InternationalCollaboration

The high performance of supercomputer TSUBAME has been extended to the
international arena. We promote international research collaborations using
TSUBAME between researchers of Tokyo Institute of Technology and overseas
research institutions as well as research groups worldwide.

Recent research collaborations using TSUBAME

1. Simulation of Tsunamis Generated by Earthquakes using Parallel
　Computing Technique

2. Numerical Simulation of Energy Conversion with MHD Plasma-fluid Flow

3. GPU computing for Computational Fluid Dynamics

Candidates to initiate research collaborations are expected to conclude
MOU (Memorandum of Understanding) with the partner organizations/
departments. Committee reviews the “Agreement for Collaboration” for joint
research to ensure that the proposed research meet academic qualifications
and contributions to international society. Overseas users must observe
rules and regulations on using TSUBAME. User fees are paid by Tokyo Tech’s
researcher as part of research collaboration. The results of joint research are
expected to be released for academic publication.

