
http://www.gsic.titech.ac.jp/sc13

Phase-field simulation

Peta-scale 
GPU Applications on TSUBAME

Dendritic growth in the binary alloy 

GPUs of TSUBAME2.0)

Distribution of multiple dendrites is 
 

Initial condition

~ mm

3D simulation

The mechanical properties of metal materials largely depend on their 

powerful method known to simulate the micro-scale dendritic growth 

 Weak scaling in single precision
 Mesh size of a subdomain (1GPU 
+ 4 CPU cores): 4096 x 162 x 130

TSUBAME 2.5
3.406 PFlops (3,968 GPUs+15,872 CPU cores)
4,096 x 5,022 x 16,640

TSUBAME 2.0
2.000 PFlops 

(4,000 GPUs+16,000 CPU cores)
4,096 x 6,480 x 13,000
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A high-productivity framework for multi-GPU computation of mesh-based 
applications is proposed.  Our framework automatically translates user-written 
functions that update a grid point and generates both  GPU and CPU code. In 
order to execute user's code on multiple GPUs, the framework parallelizes this 
code by using MPI and OpenMP.  The programmers write user's code just in 
the C++ language and can develop program code optimized for GPU 
supercomputers without introducing  complicated optimizations for GPU 
computation and GPU-GPU communication.

struct Diffusion3d {
    __host__ __device__
    void operator()(const ArrayIndex3D &idx,
      float ce, float cw, float cn, float cs,
      float ct, float cb, float cc,
      const float *f, float *fn) {
      fn[idx.ix()] = cc*f[idx.ix()]
      +ce*f[idx.ix<1,0,0>()]+cw*f[idx.ix<-1,0,0>()]
      +cn*f[idx.ix<0,1,0>()]+cs*f[idx.ix<0,-1,0>()]
      +ct*f[idx.ix<0,0,1>()]+cb*f[idx.ix<0,0,-1>()];
    }
};

Loop3D loop3d(nx+2*mgnx, mgnx, mgnx,
              ny+2*mgny, mgny, mgny,
              nz+2*mgnz, mgnz, mgnz);
loop3d.run(Diffusion3d(), ce, cw, cn, cs,
           ct, cb, cc, f, fn);

User-written function that update a grid point

User-written function is run over the grids
Simulation results of the 
Rayleigh-Taylor 
instability using our 
framework.

User-written code for a single GPU is parallelized by usiing MPI and OpenMP.

User-written code

is obtained by the proposed 
framework and manual 
implementation. The framework can 
utilize GPUDirect for two-GPU 
computation within a node, which 
improves the peformance.

Particle simulation
       The distinct element method (DEM) is used for numerical simulations of 
granular mechanics. Each particle collides with the contacting particles. In 
order to bring the simulation closer to the real phenomena for the purpose 
of quantitative studies, it is necessary to execute large-scale DEM simula-
tions on modern high-performance supercomputers.   In this study, we pro-

simulations based on short-range interactions such as DEM or SPH. 

・ Domain decomposition is executed every 10 steps.

・ Frequency of de-fragmentation of GPU memory is optimized.

・ Number of particles : 
   1.6 ×108   
・

・ Time integration : 
   4th Runge-Kutta method
・ Initial condition : 
   Gaussian distribution

Convey simulation

  P = (Total computational time/Total step)-1 x  Number of particles

・ By applying the slice-grid method to our particle simulation,
we maintain the same number of particles in each domain.

・ The data of the particles moving to the 
neighbor subdomains are copied through 
PCI-Express bus and CPUs memory. 

・ We introduce the linked-list method 
for the neighbor particle list to save the 
memory drastically.

・ 144 hours are needed for  47,200 steps of the computation using 256 GPUs.

Performance scalability on TSUBAME 2.0

・ 64 GPUs are used.
・ 4 million particles are used.

Demonstration of 130 million particles golf-bunker shot

・ Signed distance function is generated from CAD data 
and the zero iso-surface represent the CAD polygons.

LES wind simulation

Large-scale LES wind simulation for 10 km x 10 km area in metropolitan Tokyo 
with 1-m resolution.

Weak scaling in single precision.
Mesh size of a subdomain: 192 x 256 x 256/GPU

Overlapping technique

The lattice Boltzmann method (LBM) is a class of CFD methods that solve 
the discrete-velocity Boltzmann equation. LBM continuously accesses 
memory with a simple algorithm and is suitable for large-scale computations 
including complicated objects. 
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1142 TFlops(3968 GPUs)
288 GFlops / GPU

TSUBAME 2.0
149 TFlops(1000 GPUs)
149 GFlops / GPU

Number of grid ponts : 10,080 × 10,240 × 512 
(4,032 GPUs of TSUBAME2.0)
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the Shinjuku area (north is left).

LES lattice Boltzmann method

D3Q19 model

Relaxation time and eddy viscosity

Discrete velocity

Coherent-structure Smagorinsky model
local memoty access

particles in the Shinjuku area
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