
http://www.gsic.titech.ac.jp/sc13

Phase-field simulation

Peta-scale
GPU Applications on TSUBAME

Dendritic growth in the binary alloy

GPUs of TSUBAME2.0)

Distribution of multiple dendrites is

Initial condition

~ mm

3D simulation

The mechanical properties of metal materials largely depend on their

powerful method known to simulate the micro-scale dendritic growth

 Weak scaling in single precision
 Mesh size of a subdomain (1GPU
+ 4 CPU cores): 4096 x 162 x 130

TSUBAME 2.5
3.406 PFlops (3,968 GPUs+15,872 CPU cores)
4,096 x 5,022 x 16,640

TSUBAME 2.0
2.000 PFlops

(4,000 GPUs+16,000 CPU cores)
4,096 x 6,480 x 13,000

time

Whole subdomain

z boundary (CPU) y boundary (CPU) Inside region (GPU)

Divided domains

GPU computation

[a] z bottom [b] z topCPU computation

MPI communication

[b] top boundary

[a] bottom boundary [c] left boundary
[d] right boundary

[e] Inside region

[a] z bottom

[c] y left [d] y right

Upload [a][b] to GPU

[b] z top

Copy corners of z boundary to y boundary

[c] y left [d] y right

Upload [c][d] to GPU
GPU-CPU
communication

Download data for
y,z boundaries from GPU

Copy corners of y boundary to z boundary

[e] Inside region

(1) (2) (3) (4) (5) (6) (7) (8) (9)

z boundary (CPU) y boundary (CPU) Inside region (GPU)

GPU computation

GPU-CPU
communication

CPU computation
MPI communication

Divided domains

GPU-CPU
Hybrid

Scheme of the GPU-CPU Hybrid method

Stencil comp. framework

OpenMP
thread

GPU

OpenMP
thread

GPU

OpenMP
thread

GPU

MPI process

OpenMP
thread

GPU

OpenMP
thread

GPU

OpenMP
thread

GPU

MPI process

OpenMP
thread

GPU

OpenMP
thread

GPU

OpenMP
thread

GPU

MPI process

A high-productivity framework for multi-GPU computation of mesh-based
applications is proposed. Our framework automatically translates user-written
functions that update a grid point and generates both GPU and CPU code. In
order to execute user's code on multiple GPUs, the framework parallelizes this
code by using MPI and OpenMP. The programmers write user's code just in
the C++ language and can develop program code optimized for GPU
supercomputers without introducing complicated optimizations for GPU
computation and GPU-GPU communication.

struct Diffusion3d {
 __host__ __device__
 void operator()(const ArrayIndex3D &idx,
 float ce, float cw, float cn, float cs,
 float ct, float cb, float cc,
 const float *f, float *fn) {
 fn[idx.ix()] = cc*f[idx.ix()]
 +ce*f[idx.ix<1,0,0>()]+cw*f[idx.ix<-1,0,0>()]
 +cn*f[idx.ix<0,1,0>()]+cs*f[idx.ix<0,-1,0>()]
 +ct*f[idx.ix<0,0,1>()]+cb*f[idx.ix<0,0,-1>()];
 }
};

Loop3D loop3d(nx+2*mgnx, mgnx, mgnx,
 ny+2*mgny, mgny, mgny,
 nz+2*mgnz, mgnz, mgnz);
loop3d.run(Diffusion3d(), ce, cw, cn, cs,
 ct, cb, cc, f, fn);

User-written function that update a grid point

User-written function is run over the grids
Simulation results of the
Rayleigh-Taylor
instability using our
framework.

User-written code for a single GPU is parallelized by usiing MPI and OpenMP.

User-written code

is obtained by the proposed
framework and manual
implementation. The framework can
utilize GPUDirect for two-GPU
computation within a node, which
improves the peformance.

Particle simulation
 The distinct element method (DEM) is used for numerical simulations of
granular mechanics. Each particle collides with the contacting particles. In
order to bring the simulation closer to the real phenomena for the purpose
of quantitative studies, it is necessary to execute large-scale DEM simula-
tions on modern high-performance supercomputers. In this study, we pro-

simulations based on short-range interactions such as DEM or SPH.

・ Domain decomposition is executed every 10 steps.

・ Frequency of de-fragmentation of GPU memory is optimized.

・ Number of particles :
 1.6 ×108
・

・ Time integration :
 4th Runge-Kutta method
・ Initial condition :
 Gaussian distribution

Convey simulation

 P = (Total computational time/Total step)-1 x Number of particles

・ By applying the slice-grid method to our particle simulation,
we maintain the same number of particles in each domain.

・ The data of the particles moving to the
neighbor subdomains are copied through
PCI-Express bus and CPUs memory.

・ We introduce the linked-list method
for the neighbor particle list to save the
memory drastically.

・ 144 hours are needed for 47,200 steps of the computation using 256 GPUs.

Performance scalability on TSUBAME 2.0

・ 64 GPUs are used.
・ 4 million particles are used.

Demonstration of 130 million particles golf-bunker shot

・ Signed distance function is generated from CAD data
and the zero iso-surface represent the CAD polygons.

LES wind simulation

Large-scale LES wind simulation for 10 km x 10 km area in metropolitan Tokyo
with 1-m resolution.

Weak scaling in single precision.
Mesh size of a subdomain: 192 x 256 x 256/GPU

Overlapping technique

The lattice Boltzmann method (LBM) is a class of CFD methods that solve
the discrete-velocity Boltzmann equation. LBM continuously accesses
memory with a simple algorithm and is suitable for large-scale computations
including complicated objects.

0

250

500

750

1000

1250

0 1000 2000 3000 4000

 TSUBAME 2.5 (overlap)
 TSUBAME 2.0 (overlap)

Number of GPUs

Pe
rfo
rm
an
ce
 [T
Fl
op
s] TSUBAME 2.5

1142 TFlops(3968 GPUs)
288 GFlops / GPU

TSUBAME 2.0
149 TFlops(1000 GPUs)
149 GFlops / GPU

Number of grid ponts : 10,080 × 10,240 × 512
(4,032 GPUs of TSUBAME2.0)

 Shinjuku area

Shinagawa station

Tokyo

10
 k

m

10 km

Shibuya station

N
or

th
 w

in
d

the Shinjuku area (north is left).

LES lattice Boltzmann method

D3Q19 model

Relaxation time and eddy viscosity

Discrete velocity

Coherent-structure Smagorinsky model
local memoty access

particles in the Shinjuku area

PFLOPS Computing of Real Application

2011 ACM Gordon Bell Prize
Special Achievements in Scalability and Time-to-Solution

