

Data-Intensive Supercomputing

Graph500 Challenges

Graph500 with 4000 GPUs

- Graph500 is a benchmark that ranks supercomputers by executing a large-scale graph search problem.
- The benchmark is ranked by so-called **TEPS (Traversed Edges Per Second) that** measures the number of edges to be traversed per second by searching all the

Kronecker graph

<u>Green Graph500</u>

- Green Graph500 is a new benchmark that complements Graph500 with an energy metric.
- The benchmark is ranked by TEPS/kW that measures BFS computation time in Graph500 without validation during a specified time.

reachable vertices from one arbitrary vertex with each team's optimized BFS (Breadth-First Search) algorithm.

2D Partitioning Optimization

$A_{1,1}^{(1)}$	$A_{1,2}^{(1)}$	•••	$A_{1,C}^{(1)}$
$A_{2,1}^{(1)}$	$A_{2,2}^{(1)}$	•••	$A_{2,C}^{(1)}$
:	:	·.	:
$A_{R,1}^{(1)}$	$A_{R,2}^{(1)}$	•••	$A_{R,C}^{(1)}$
$A_{1,1}^{(2)}$	$A_{1,2}^{(2)}$	•••	$A_{1,C}^{(2)}$
A ⁽²⁾ _{2,1}	$A_{2,2}^{(2)}$	•••	$A_{2,C}^{(2)}$
:	:	·.	:
$A_{R1}^{(2)}$	$A_{R2}^{(2)}$		$A_{R,C}^{(2)}$

$A_{1,1}^{(C)}$	$A_{1,2}^{(C)}$		$A_{1,C}^{(C)}$
$A_{2,1}^{(C)}$	$A_{2,2}^{(C)}$		$A_{2,C}^{(C)}$
:	:	·.	:
$A_{R,1}^{(C)}$	$A_{R,2}^{(C)}$		$A_{R,C}^{(C)}$

Performance Comparison with CPU and GPU implementations

SCALE 26 (#vertices: 67,108,864 ≈2²⁶ 、#directed-edges: 2,147,475,066 ≈2³¹)

Machine (#threads) TEPS ratio CPU time* (s) Effective Power (W) Apparent Power (kVAh) CO2 (kg) TEPS/k WestmreEX (80) 10.066 G 207.21 1000.6 0.06 0.02 10.060 SandyBridgeEP (32) 5.607 G 370.34 362.0 0.04 0.01 15.489	`				0 ,		/
WestmreEX(80) 10.066 G 207.21 1000.6 0.06 0.02 10.060 SandyBridgeEP(32) 5.607 G 370.34 362.0 0.04 0.01 15.489	Machine(#threads)	TEPS ratio	CPU time* (s)	Effective Power (W)	Apparent Power (kVAh)	CO2 (kg)	TEPS/k\
SandyBridgeEP(32) 5.607 G 370.34 362.0 0.04 0.01 15.489	WestmreEX(80)	10.066 G	207.21	1000.6	0.06	0.02	10.060
	SandyBridgeEP(32)	5.607 G	370.34	362.0	0.04	0.01	15.489

Machine(#threads)	TEPS ratio	CPU time* (s)	Effective Power (W)	Apparent Power (kVAh)	CO2 (kg)	TEPS/kV
WestmreEX(80)	3.967 G	6.06	854.1	0.00	0.00	4.645 (
SandyBridgeEP(32)	5.293 G	6.23	310.3	0.00	0.00	17.058 (
Atom2(2)	0.163 G	925.16	94.6	0.03	0.01	1.723 (
MacbookAir(4)	0.782 G	375.93	20.3	0.00	0.00	38.133 (
Intel Core i5-2557M 1.70GHz						

Cooperative work with

Katsuki Fujisawa, Chuo Univ.

 Our early study reveals that HPC processors such as Intel Westmere EX SCALE 21 (#vertices: 2,097,152 ≈ 2²¹ 、#directed-edges: 67,105,930 ≈ 2²⁶) ^{* TIGER/Line} US road-network and SandyBridge EP are energy efficient than low power processors such as Intel Atom.

• We propose an optimized method based on 2D based partitioning and other various optimization methods such as communication compression and vertex sorting.

• We developed CPU implementation and GPU implementation.

 Our optimized GPU implementation can solve BFS (Breadth First Search) of large-scale graph with 2^{35} (34.4 billion) vertices and 2³⁹ (550 billion) edges for 1.275 seconds with 1366 nodes and 4096 GPUs on TSUBAME 2.0.

• This record corresponds to 431 GTEPS.

GPU MapReduce

Nathematical Optimization Settle Room 355-EF

<u>Multi-GPU Implementation of GIM-V</u>

- GIM-V (Generalized Iterative Matrix-Vector multiplication)
- MapReduce-based graph algorithm (PageRank, CC, RWR)
- General expression of matrix-vector multiplication with iterative operations

Problem

 Scalability and data management optimization on a multi-GPU environment

Solution

- Multi-GPU-based implementation for handling extremely large-scale graph
- We extend the existing single-GPU-based MapReduce library (Mars) for GPU-based heterogeneous supercomputers
- Data transfer reduction in communication between GPU devices by using a graph partition method (METIS)

<u>Solving SDP problems with > 1M constraints</u>

• SDP (semidefinite programming) is one of mathematical programming methods with many applications: structural optimization, combinatorial optimization, quantum chemistry, etc.

 SDPARA is a parallel implementation of the primal- The boundary of the feasible reported by the feasible rep dual interior-point method for SDP

- SDPARA can solve the largest SDP problem that has over 1.48 million constraints (sko42a problem), and create a new world record in 2012
- Using 1360 nodes, 2720 CPUs, 4080 GPUs
- Computation time: 2700 sec./iterations (About 30 iterations are required)
- Performance of CHOLESKY: 2045 sec./iteration, 533TFLOPS

fech Paper