Fault Tolerant Infrastructure for Billion-Way Parallelization

Project introduction

Thanks to Supercomputers, the large-scale simula-
tions can be achieved. However, the increasing number
of nodes and components will lead to a very high failure
frequency. In Exa-scale supercomputers, the MTBF will
be no more than tens of minutes, which means comput-
iIng node doesn’t work in effect. We’re seeking a solu-
tion to the problem.

FMI: Fault Tolerant Messaging Interface

FMI is an MPI-like survivable messaging interface

Lossy Compression for cp./rst.
To reduce checkpoint time, lossy compression is ap-

Target

e 1,2,3D mesh w/o pointer
Approach:;
1. wavelet transformation
2. quantization

3. encoding

4. 9gzip

Distribution of high-frequency band

that enables scalable failure detection, dynamic node

allocation, fast and transparent recovery.

@

4

‘ I ‘@emge [9]—[average (H{——average [2}-average [3]
7 i “"""""Ill"l"lll m )

10 N

[N\ — o (=}

0 — 10 O W0

TOKYO TIECH

plied to checkpoint data then checkpoint size is reduced.
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NICAM [M.Satoh, 2008]
climate simulation about
Pressure, temperature and velocity (6 cores 3.20GHz)

Machine Spec

CPU:

Intel Core i7-3930K

Dealing with Deeper Memory Hierarchy

Overview of Project

On Exa-scale supercomputers, the “Memory Wall” problem will
become even more severe, which prevents the realization of Extreme-
ly Fast&Big Simulations.

This project promotes research towards this problem via co-design ap-
proach among application algorithms, system software, architecture.
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+ In Exa-scale era
HPC Architecture with
hybrid memory devices
HMC, HBM Next-gen NVM O(GB/s) Flash

Target Architecture

Deeper memory hierarchy that consists of heterogeneous

memory devices

Hybrid Memory Cube (HMQ):

DRAM chips are stacked with TSV technology.
It will have advantage in bandwidth over DDR,
but capacity will be smaller.

10000

1000

100 SSDs are already commodity.

Newer products, such as I0-drive have
O(GB/s) bandwidth.

. Next-gen non-volatile RAM (NVRAM):
1 10 100 1000 10000 Several kinds of NVRAM such as STT-

Memory size (GB) MRAM, ReRAM, FeRAM, etc, will be
Power budget: ~400W for memory available in a few years.

10

Memory Bandwidth (GB/s)

Highl

For extremely large stencil simula-

Optimized Stencils Larger than GPU Memor

tions, we Iimplemented temporal
blocking (TB) technique and clever
optimizations on GPUs [1][2].

e Eliminating redundant computation

e Reducing memory footprint of TB
algorithm
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7-point stencil on K20X GPU

HHRT: System Software for GPU Memory Swap

For easier programming, we implement-
ed system software, named HHRT (hy-
brid hierarchical runtime) [3].

e HHRT supports user programs written

Execution Model
w/o HHRT (typically)
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ocess’s data  Host memory

in MP| and CUDA with little modification

e Oversubscription based execution model

e HHRT implicitly supports memory

swapping between GPU memory and host
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Integration with Real Simulation Application

We integrated our techniques with

the city airflow simulation.

Original code on

MPI+CUDA was devel-
oped by Naoyuki On-

odera, Tokyo Tech.

We integrated TB into

it and executed on
HHRT.
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Airflow performance on a K20X GPU

8x larger

simulation than
device memory!
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