

Extreme Resilience and Deeper Memory Hierarchy /

Fault Tolerant Infrastructure for Billion-Way Parallelization

Project introduction

Thanks to Supercomputers, the large-scale simulations can be achieved. However, the increasing number of nodes and components will lead to a very high failure frequency. In Exa-scale supercomputers, the MTBF will be no more than tens of minutes, which means computing node doesn't work in effect. We're seeking a solution to the problem.

Lossy Compression for cp./rst.

To reduce checkpoint time, lossy compression is applied to checkpoint data then checkpoint size is reduced.

FMI: Fault Tolerant Messaging Interface

FMI is an MPI-like survivable messaging interface that enables scalable failure detection, dynamic node allocation, fast and transparent recovery.

Overview of Project

On Exa-scale supercomputers, the "Memory Wall" problem will become even more severe, which prevents the realization of *Extreme*ly Fast&Big Simulations.

This project promotes research towards this problem via co-design approach among application algorithms, system software, architecture.

Target Architecture

Deeper memory hierarchy that consists of heterogeneous memory devices

TiOx Pt

Highly Optimized Stencils Larger than GPU Memory

For extremely large stencil simulations, we implemented temporal blocking (TB) technique and clever optimizations on GPUs [1][2].

- Eliminating redundant computation
- Reducing memory footprint of TB algorithm

HHRT: System Software for GPU Memory Swap

For easier programming, we implemented system software, named HHRT (hybrid hierarchical runtime) [3].

- HHRT supports user programs written in MPI and CUDA with little modification
- Oversubscription based execution model
- HHRT implicitly supports memory swapping between GPU memory and host

Hybrid Memory Cube (HMC): DRAM chips are stacked with TSV technology. It will have advantage in bandwidth over DDR, but capacity will be smaller.

NAND Flash:

SSDs are already commodity. Newer products, such as IO-drive have O(GB/s) bandwidth.

Next-gen non-volatile RAM (NVRAM): Several kinds of NVRAM such as STT-MRAM, ReRAM, FeRAM, etc, will be available in a few years.

Integration with Real Simulation Application

We integrated our techniques with the city airflow simulation.

Original code on MPI+CUDA was developed by Naoyuki Onodera, Tokyo Tech. We integrated TB into it and executed on HHRT.

[1] G. Jin, T. Endo, S. Matsuoka. A Parallel Optimization Method for Stencil Computation on the Domain that is Bigger than Memory Capacity of GPUs . IEEE Cluster 2013. [2] G. Jin, J. Lin, T. Endo. Efficient Utilization of Memory Hierarchy to Enable the Computation on Bigger Domains for Stencil Computation in CPU-GPU Based Systems. IEEE ICHPA 2014. [3] T. Endo, G. Jin: Software Technologies Coping with Memory Hierarchy of GPGPU Clusters for Stencil Computations. IEEE Cluster 2014.

PI: Toshio Endo (endo@is.titech.ac.jp), supported by JST-CREST

http://www.gsic.titech.ac.jp/sc15