ΤΟΚΥΟ ΤΕΓΗ Peta-scale GPU Applications Pursuing Excellence on TSUBAVE

Phase-field simulation

The mechanical properties of metal materials largely depend on their intrinsic internal microstructures. The phase-field simulation is the most powerful method known to simulate the micro-scale dendritic growth during solidification in a binary alloy.

TSUBAME 2.5 3.406 PFlops (3,968 GPUs+15,872 CPU cores) 4,096 x 5,022 x 16,640

High-productivity framework for weather prediction code ASUCA

Skillful programming techniques are required for obtaining good parallel efficiency on GPU supercomputers. The Japan Meteorological Agency is developing a next-generation high-resolution meso-scale weather prediction code ASUCA. Our framework-based ASUCA has achieved good scalability with hiding complicated implementation and optimizations required for

distributed GPUs, increasing the maintainability. <u>Stencil computation with the framework</u>

- User-written function (C++ functor) that updates a grid point
- ArrayIndex3D represents the coordinate of the point where this function is applied.

struct Diffusion3d {

Diffusion computation

__host___device___ void operator()(const ArrayIndex3D &idx,

Scheme of the GPU-CPU Hybrid method

2011 ACM Gordon Bell Prize

Special Achievements in Scalability and Time-to-Solution

Weak scaling in single precision Mesh size of a subdomain (1GPU + 4 CPU cores): 4096 x 162 x 130

Takashi Shimokawabe, Takayuki Aoki, Tomohiro Takaki, Akinori Yamanaka, Akira Nukada, Toshio Endo, Naoya Maruyama, Satoshi Matsuoka

Peta-Scale Phase-Field Simulation for Dendritid Solidification on the TSUBAME 2.0 Supercompute

stribution of multiple dendrites is ortant for design of solidified product.

3D simulation

Not used memory

2,018,480 particles

Number of GPUs

16,146,720 particles

Dendritic growth in the binary alloy solidification with $4096 \times 1024 \times 4096$ (768) GPUs of TSUBAME2.0)

- float ce, float cw, float cn, float cs, float ct, float cb, float cc, const float *f, float *fn) {
 fn[idx.ix()] = cc*f[idx.ix()] + ce*f[idx.ix<1,0,0>()] + cw*f[idx.ix<-1,0,0>()] + cn*f[idx.ix<0,1,0>()] + cs*f[idx.ix<0,-1,0>()] + ct*f[idx.ix<0,0,1>()] + cb*f[idx.ix<0,0,-1>()]; };
- The functor is executed over all grid points by Loop3D provided by the framework.

Loop3D loop3d(nx+2*mgnx, mgnx, mgnx, ny+2*mgny, mgny, mgny, nz+2*mgnz, mgnz, mgnz); loop3d.run(Diffusion3d(), ce, cw, cn, cs, ct, cb, cc, f, fn);

User-written function Parameters are provided to the user-written function.

Framework-based weather prediction code ASUCA

ASUCA real operation to describe a typhoon over Japan with $5,376 \times 4,800 \times 57$ mesh using 672 GPUs of the TSUBAME 2.5.

Presentation at SC14:

Strong scaling results of ASUCA.

Session: Earth and Space Sciences

Time: 1:30-2:00PM on Tuesday, November 18th, **Room:** 391-92

Authors: T. Shimokawabe, T. Aoki and N. Onodera

Particle simulation

The behavior of granular materials and the fluid dynamics can be simulated by using the particle method based on the short-range interactions such as DEM (Discrete Element Method) or SPH (Smoothed Particle Hydrodynamics). In order to bring the simulation closer to the real phenomena for the purpose of quantitative studies, it is necessary to execute large-scale particle-based simulations on modern high-performance supercomputers.

Dynamic Load Balance among GPUs

Large-scale DEM simulations applied to the practical problems

LES wind simulation

The lattice Boltzmann method (LBM) is a class of CFD methods that solve the discrete-velocity Boltzmann equation. LBM continuously accesses memory with a simple algorithm and is suitable for large-scale computations including complicated objects.

LES lattice Boltzmann method

 $f_i(x + c_i \Delta t, t + \Delta t) = f_i(x, t) - \frac{1}{\tau} (f_i(x, t) - f_i^{eq}(x, t))$

Weak scaling in single precision. Mesh size of a subdomain: 192 x 256 x 256/GPU

• A convey simulation with 4M particles run on 64 GPUs for 200,000 time steps.

• An agitation simulation with 4M particles run on 64 GPUs for 200,000 time steps.

• A golf bunker shot simulation with 16.7 M particles run on 64 GPUs for 104,000 time steps.

Application to the particle-based fluid simulations

• 152 hours are needed for 17,400 steps of the computation with 10 M particles using 64 GPUs.

Snapshot of wind flow using particles in the Shinjuku area

Vertical velocity profile (m/s) in the Shinjuku area (north is left).

Number of grid points : 10,080 × 10,240 × 512 (4,032 GPUs of TSUBAME2.0)

http://www.gsic.titech.ac.jp/sc14