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System Software

Programming Models and Runtimes

Fast Multipole Method

The Fast Multipole Method is a hierarchical method with ~ Scheduling on Heterogeneous Architectures

many applications: N-Body simulation, turbulence simulations, Employing StarPU to schedule CPU/GPU tasks

PDE solvers, etc.. It features two parallel flows: ., Towards robust dvhnamic load balancin
1. Far-field computation: consists of 5 kernels (P2M, M2M, y J

M2L. L2L and |_2P) A hint is given by the programmer
! . : . “P2P” phase task t be on GPUs.
2. Near-field computation: consists of one kernel (P2P) pront P T DR DR PR
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= Scheduling on Multicore Architectures
= OmpSs scalability results on a dual Xeon X5670 (12 cores)
argets Targets
Complex scheduling problem. High variability in task runtimes Bgased on ExaFMM code (nhttp://www.bu.edu/exafmm/)
Many parameters aifect the runtime of the tasks: of ST J’q = 100, Plummer Distribution, 80000 bodies
- Input distribution (Cube, Plummer, Sphere, etc) % 7 =" |- FINE operates at interaction level
- Device (CPU, GPU, etc) S 6 - QUEUE, QUEUE-EE & DATAFLOW operate
- Memory locality = at cell level |
- Task granularity (interaction-level, cell-level, ...) 5 - QUEUE-EE & DATAFLOW start execution
- Number of particles per cell (q) 3 during construction of the interaction lists
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O e ——— Multicore scalability depends heavily on:
Load imbalance due to variability in task sizes while simulating a - task granularity
Plummer-like globular star cluster (yellow=running, red=waiting) - executing tasks early and removing global synchronization points

Physis: An Implicitly Parallel
Framework for Stencil Computations

Preliminary Evaluation of

OpenACC Performance

OpenACC is a new directive-based programming language for accelerators.
We focus on OpenACC performance compared with CUDA.

Micro-Benchmarks

Stencil Computations
- lteratively updates grid
t—t 1 points using neighbors
- A fundamental

L+« ¢ 4 4+ ¢+ o computation pattern in
oLl 0oL L scientific simulations

We compared the OpenACC implementations provided by Cray, PGl and CAPS
with CUDA by using Matrix Multiplication and a 7-point stencil while applying
several optimizations.
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: void diffusion(const int x, const int y, const int z, : Cray PG CAPS CUDA Cray PGl CAPS CUDA
| PSGrid3DFloat g1, PSGrid3DFloat g2, | [ I
| float t) { | _ " - -
oty = PSOIGe X v2) | A Real-world CFD Application : UPACS
: +§§gr?gge§91,X-1,¥,Z§+|;§gri_<;gei((gl,x+1,31/,2)) :— UPACS (Unified Platform for Aerospace Computational
+ ridGet(g1,x,y-1,2)+ ridGet(g1,x,y+1,z : : : : :
: +PSGrdGet(gl x v,z-1)1+PSGridGet(g1 x.y.z+1); : —>| Simulations) is a large scale CFD éppllcatlon developed
| PSGridEmit(g2,v/7.0%): | by the Japan Aerospace Exploration Agency.
o _} ________________________ . We ported this application to OpenACC and CUDA,
Performance Results on Tsubame and applied several optimizations to each
-Performance evaluation with the 7-point diffusion kernel implementation. In the naive implementation,
Weak Scaling Strong Scaling OpenACC achieves 80% of the performance of CUDA.
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Download at http://github.com/naoyam/physis prevent achieving high o
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