— TOKyd TlEECH—

System Software

Programming Models and Runtimes

Fast Multipole Method

The Fast Multipole Method is a hierarchical method with ~ Scheduling on Heterogeneous Architectures

many applications: N-Body simulation, turbulence simulations, Employing StarPU to schedule CPU/GPU tasks

PDE solvers, etc.. It features two parallel flows: ., Towards robust dvhnamic load balancin
1. Far-field computation: consists of 5 kernels (P2M, M2M, y J

M2L. L2L and |_2P) A hint is given by the programmer
! . : . “P2P” phase task t be on GPUs.
2. Near-field computation: consists of one kernel (P2P) pront P T DR DR PR
Sources Sources 6 \
O O O O 5 \ %
- < \ =
O D ' \ ©
O Q 3 .
‘IC_U' = \" \ « Time[s]
= L - —
Q. k ‘ A j‘ D .. B |
g ?j- i Psdelédo_ ; ‘ StarPU ‘ StarPU(hint) ha';Sde_l;ngg StarPU
\ \?’» k sreTn Uniform dist. Sphere Surface dist.
SR T % S -
5 @f‘vé‘@ = * Remaining Challenges:
U— -
) //"‘\’\\u D Smarter scheduling / better programming models
© oG =
LL O
= Scheduling on Multicore Architectures
= OmpSs scalability results on a dual Xeon X5670 (12 cores)
argets Targets
Complex scheduling problem. High variability in task runtimes Bgased on ExaFMM code (nhttp://www.bu.edu/exafmm/)
Many parameters aifect the runtime of the tasks: of ST J’q = 100, Plummer Distribution, 80000 bodies
- Input distribution (Cube, Plummer, Sphere, etc) % 7 =" |- FINE operates at interaction level
- Device (CPU, GPU, etc) S 6 - QUEUE, QUEUE-EE & DATAFLOW operate
- Memory locality = at cell level |
- Task granularity (interaction-level, cell-level, ...) 5 - QUEUE-EE & DATAFLOW start execution
- Number of particles per cell (q) 3 during construction of the interaction lists
'C_U 2 | — DATAFLOW pipelines M2L—1L2L—IL2P
3 1
= O 5 4 5 & 7 5 8 w0 W 1
e 1.1) S 111 Q Number of Cores
O e ——— Multicore scalability depends heavily on:
Load imbalance due to variability in task sizes while simulating a - task granularity
Plummer-like globular star cluster (yellow=running, red=waiting) - executing tasks early and removing global synchronization points

Physis: An Implicitly Parallel
Framework for Stencil Computations

Preliminary Evaluation of

OpenACC Performance

OpenACC is a new directive-based programming language for accelerators.
We focus on OpenACC performance compared with CUDA.

Micro-Benchmarks

Stencil Computations
- lteratively updates grid
t—t 1 points using neighbors
- A fundamental

L+« ¢ 4 4+ ¢+ o computation pattern in
oLl 0oL L scientific simulations

We compared the OpenACC implementations provided by Cray, PGl and CAPS
with CUDA by using Matrix Multiplication and a 7-point stencil while applying
several optimizations.

» ° o ° o o o o Matrix Multiplication 7-point stencil
1607 Baseli 20 - M Baselin
3 ® ' 3 - ® ® ® ® 140 = Saseline) — 380 - o .

. glzo _ ® Thread Mapping | B 370 ~ W Thread Mapping -
Physis DSL DSL Translator S 1o | Shared Memory Blocking B % 6o " Register Blocking -
-Dense grid types -Using the ROSE framework g 80 - 2. B
-Intrinsics for manipulating grids -Domain-specific optimizations 52 B g30 =

—) [= 20 - —
-Functions expressing stencils - Automatic parallelization * 5 t‘:. I - 10 -
___________________________ 0 - . . 0 - !
: void diffusion(const int x, const int y, const int z, : Cray PG CAPS CUDA Cray PGl CAPS CUDA
| PSGrid3DFloat g1, PSGrid3DFloat g2, | [I
| float t) { | _ " - -
oty = PSOIGe X v2) | A Real-world CFD Application : UPACS
: +§§gr?gge§91,X-1,¥,Z§+|;§gri_<;gei((gl,x+1,31/,2)) :— UPACS (Unified Platform for Aerospace Computational
+ ridGet(g1,x,y-1,2)+ ridGet(g1,x,y+1,z : : : : :
: +PSGrdGet(gl x v,z-1)1+PSGridGet(g1 x.y.z+1); : —>| Simulations) is a large scale CFD éppllcatlon developed
| PSGridEmit(g2,v/7.0%): | by the Japan Aerospace Exploration Agency.
o _} ________________________ . We ported this application to OpenACC and CUDA,
Performance Results on Tsubame and applied several optimizations to each
-Performance evaluation with the 7-point diffusion kernel implementation. In the naive implementation,
Weak Scaling Strong Scaling OpenACC achieves 80% of the performance of CUDA.
10000 e / 4000 IO But in the optimized
8000 +256X128X128/ 3000)) / |mp|emental'|0n, 2
1.8 -

,, 6000 / 2 5000 30 / OpenACC gives only 40% 16 - I

Q [e) o144 -

gaoo o 5. A : of the performance of ~ £ ave — et bevice

O 2000 4///r / CUDA. E 1 | S ~ mOthers

0 . I — We observe that some §°° [
0 100 200 300 0 50 100 150 TR = . m Convection
Number of GPUs Number of GPUs limitations O.f QpenACC g"z‘ B B ronveet
Download at http://github.com/naoyam/physis prevent achieving high o
pe rformance. OpenACC CUDA OpenACC CUDA OpenMP

(PGI) (PGI) (6-threads)

http://www.gsic.titech.ac.jp/sc12

