Pursuing Excellence System Sotware Research (2) **Towards Next-Generation Supercomputing**

Fault tolerant Infrastructure for Billion-Way Parallelization

Asynchronous Checkpointing System

Background: Increasing system failures

- A node failure occurred every 13 hours on average
- overhead (3 hours)

Objective : Reduce PFS checkpoint overhead

TSUBAME2.0 Lustre checkpoint time

Multi-tier Resilient Storage Design

- A burst buffer is a storage space to bridge the gap in latency and bandwidth between node-local storage and the PFS

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-644954

Dealing with Deeper Memory Hierarchy

In Exa-scale supercomputing systems, the "memory wall" problem will become even higher, which prevents the realization of exa-scale real world simulations.

In our project, "Software Technology that Deals with Deeper Memory Hierarchy in Post-petascale Era", we promote research in aspect of "Architecture", "Algorithm" and "System software".

[Architecture]

To suppose supercomputerm architecture with **deeper** memory hierarchy including hybrid memory devices, including non-volatile RAM (NVRAM).

Hybrid Memory Cube (HMC):

DRAM chips are stacked with TSV technology. It will have advantage in bandwidth over DDR, but capacity will be smaller.

NAND Flash

SSDs are already commodity. Newer products, such as IO-drive have O(GB/s) bandwidth.

Next-gen non-volatile RAM (NVRAM): Several kinds of NVRAM such as STT-MRAM, ReRAM, FeRAM, etc, will be available in a few years.

[Algorithm]

To harness hierarchical memory efficiently, we are investigating **locality improvement** of application algorithms. In stencil applications, **temporal blocking** is the key.

Temporal blockin

Simulated Time

Reduction of redundant computation

Cf) James Demmel et al.

3D 7-point stencil on a M2050 GPU

With optimized temporal blocking,

Reduction of buffer utilization [AsHES 13]

200 # of GPUs

Currently, we use TSUBAME2, CPU-GPU hybrid supercomputer as research environment. Here we have memory hierarchy of GPU device memory and Host memory.

²⁵² 27 tiems larger array than GPU memory ²⁵³ is efficiently used (only 30% overhead)!

Good weak scalability

[System Software]

To support real applications to harness hierarchical memory with lower development efforts, system software support is necessary. Our target includes locality aware compiler and scalable memory management runtime.

PI: Toshio Endo. Supported by JST-CREST

http://www.gsic.titech.ac.jp/sc13