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« 962 node failures (Nov 15t 2010 --- April 61 2012)
« A node failure occurred every 13.0 hours on average
o A parallel file system (PFS) checkpointing overhead

* Objective: Reduce PFS checkpoint overhead

 Proposed method: Implementation and modeling
an asynchronous checkpointing

o Output to PFS via Staging nodes using RDMA
o Determine the optimal checkpoint interval

Design and Modeling of Checkpointing System

Asynchronous multi-level checkpointing
Asynchronous multi-level checkpointing

Scalable Asynchronous Checkpol

« Background: Increasing system failures
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TSUBAMEZ2.0 Lustre checkpoint time

3-D FFT is used in many applications and contributes to reduce the amount of computation.
Since many large-scale applications are accelerated by GPU clusters today, we need high-
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performance in strong-scaling. In all-to-all communi-
cation, this means the message size becomes
smaller by increasing the number of nodes.

To minimize the overheads, we use ibverbs, which is
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RDAD Read rate control to optimize network usage

PFS checkpoint with 0.5 ~ 2.5% overhead
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a low-level API for IB. This allows full control of
memory buffers, IB devices, and other resources.
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Estlmatmg Efﬁc:encz on TSUBAMEZ2.0 System

comes from load-imbalance of IB routing.
Fortunately, IB network of some GPU-accelerated
supercomputers have multiple IB rails. In this
case, we can reduce the network congestion by
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Computing nodes in TSUBAMEZ2.0 are connected by two ralils of
4xQDR InfiniBand network and each rail forms fat-tree topology.
Theoretically, the network is full-bisection,
however, the observed performance
becomes worse when many node
communicate at once. This affects
the performance of application which
uses collective communications.
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Improving Network Performance
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In Exa-scale supercomputing systems, the "memory wall" prob-

lem will become even higher, which prevents the realization of

exa-scale real world simulations.

"tch The approaches of our new project, “Software Technology that
Deals with Deeper Memory Hierarchy in Post-petascale Era” are:
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(1) To suppose supercomputer architecture with deeper

memory hierarchy including hybrid memory devices, including
non-volatile RAM (NVRAM).
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Hybrid Memory Cube (HMCQ):
DRAM chips are stacked with TSV technology.
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