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3-D FFT is used in many applications and contributes to reduce the amount of computation. 
Since many large-scale applications are accelerated by GPU clusters today, we need high-
performance, scalable 3-D FFT for them.  The performance is largely depends on the network 
data transfer (MPI and CUDA), because on-board computation is very fast. Multi-GPU 3-D FFT re-
quires all-to-all communication between GPUs, which is a big challenge in large-scale systems. 
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Rail selection No selection

Large-scale InfiniBand network consists of too 
many components. Occasionally some of them 
have problems which result in slow-down of data 
transfers. Even if we could remove all the errors, 
there still be a problem of network congestion that 
comes from load-imbalance of IB routing.
Fortunately, IB network of some GPU-accelerated 
supercomputers have multiple IB rails. In this 
case, we can reduce the network congestion by 
dynamic rail selection.  

Dynamic Rail Selection
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Minimizing Overhead

Usually, applications with 3-D FFT require scalable 
performance in strong-scaling. In all-to-all communi-
cation, this means the message size becomes 
smaller by increasing the number of nodes. 
To minimize the overheads, we use ibverbs, which is 
a low-level API for IB. This allows full control of 
memory buffers, IB devices, and other resources. 
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Using those optimizations, we achieved high 
scalability on TSUBAME 2.0 operating as usual.  
For larger transform sizes, three GPU per node 
case is faster than single GPU per node case. 
Remember that there is load-imbalance be-
tween three GPU on each node. 

Scalability

Scalable 3-D FFT on TSUBAME2.0 Scalable Asynchronous Checkpointing 
• Background: Increasing system failures

o e.g.) TSUBAME2.0@Tokyo Tech
• 962 node failures (Nov 1st 2010 --- April 6th 2012)
• A node failure occurred every 13.0 hours on average

o A parallel file system (PFS) checkpointing overhead

• Objective: Reduce PFS checkpoint overhead
• Proposed method: Implementation and modeling 

an asynchronous checkpointing
o Output to PFS via Staging nodes using RDMA
o Determine the optimal checkpoint interval
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Reliable, but 72x overhead

Lustre checkpoint

XOR checkpoint

TSUBAME2.0 Lustre checkpoint time

Design and Modeling of  Checkpointing System

Estimating E�ciency on TSUBAME2.0 System

Memory Hierarchy Aware Software Stack
In Exa-scale supercomputing systems, the "memory wall" prob-
lem will become even higher, which prevents the realization of 
exa-scale real world simulations. 
The approaches of our new project, “Software Technology that 
Deals with Deeper Memory Hierarchy in Post-petascale Era” are:

(2) To develop new software technology that efficiently uti-
lizes the hybrid memory hierarchy. The area of our research in-
cludes new compiler technology, scalable runtime system and 
application algorithms.

This work performed under the auspices  of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-582242

Improving Network Performance
of TSUBAME2.0

Computing nodes in TSUBAME2.0 are connected by two rails of 
4xQDR InfiniBand network and each rail forms fat-tree topology. 
Theoretically, the network is full-bisection, 
however, the observed performance 
becomes worse when many node 
communicate at once. This affects
the performance of application which
uses collective communications.
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When # of node is < 50,
Injection bandwidth is almost the 
same as its theoretical peak.

Performance degrades when # of node
becomes larger in any cases.
Best performance was about 40% of theoretical one.

Stochastic performance 
degradation is observed,
but resolved by bad link
elimination

Hetero routing strategy made 
injection bandwidth 15% wider.
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We observed collective 
communication's stuck, but 
resolved by eliminating bad links.

Performance improvement by 
employing heterogenious routing 
strategy is not observed.

Core Switch

Edge Switch Edge Switch

We found some degraded links:
● Slower link speed (e.g. 1xQDR)
● Malfunctioning link
            (e.g. excessive retransmit)
By disabling those links, we could
resolve communication stuck
observed in our network.

We also tried changing routing
strategies to avoid packet 
collision in upper tier.
Heterogeneous routing strategy
is introduced not to share the
congested route between rails.
Performance improvement is
observed in injection bandwidth 
test, but no improvement observed 
in collective communication 
performance.

We will continue the research to
provide better communication
performance.

Hybrid Memory Cube (HMC):
DRAM chips are stacked with TSV technology.
It will have advantage in bandwidth over DDR,
but capacity will be smaller.

NAND Flash:
SSDs are already commodity.
Newer products, such as IO-drive have
O(GB/s) bandwidth.
Next-gen non-volatile RAM (NVRAM):
Several kinds of NVRAM such as STT-
MRAM, ReRAM, FeRAM, etc. will be 
available in a few years.

Supported by JST-CREST

App Level Locality-aware Techniques
Temporal blocking, removal of matrix with re-computation...

Locality-aware Compiler
Loop-tiling, loop-fusion, data layout transformation, by using 

dynamic compilation techniques

Hierarchy-aware Scalable Runtime
Data movement over memory hierarchy including remote 

nodes, latency hiding

Upcoming Memory Architecture

DDR only architecture (in 2018--2020)
• 1EFlop/s
• 32PB/s   B/F = 0.032
• 10PB      B/(F/s) = 0.01

Our target (in 2018--2020)
• 1EFlop/s
• 100PB/s   B/F = 0.1 or higher

BW of HMC. Our compiler makes user-visible BW even higher
• 100PB      B/(F/s) = 0.1

Capacity of Flash. With our runtime, Flash can be used 
seamlessly with other memory hierarchy.

~10x worse than in
current architecture!!

(1) To suppose supercomputer architecture with deeper 
memory hierarchy including hybrid memory devices, including 
non-volatile RAM (NVRAM).
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