
Research on Scalable Software
towards Exa-scale System

http://www.gsic.titech.ac.jp/sc12

3-D FFT is used in many applications and contributes to reduce the amount of computation.
Since many large-scale applications are accelerated by GPU clusters today, we need high-
performance, scalable 3-D FFT for them. The performance is largely depends on the network
data transfer (MPI and CUDA), because on-board computation is very fast. Multi-GPU 3-D FFT re-
quires all-to-all communication between GPUs, which is a big challenge in large-scale systems.

0

100

200

300

400

500

600

1 78 15
5

23
2

30
9

38
6

46
3

54
0

61
7

69
4

77
1

84
8

92
5

10
02

10
79

11
56

12
33

13
10

13
87

14
64

15
41

16
18

16
95

17
72

18
49

19
26

Rail selection No selection

Large-scale InfiniBand network consists of too
many components. Occasionally some of them
have problems which result in slow-down of data
transfers. Even if we could remove all the errors,
there still be a problem of network congestion that
comes from load-imbalance of IB routing.
Fortunately, IB network of some GPU-accelerated
supercomputers have multiple IB rails. In this
case, we can reduce the network congestion by
dynamic rail selection.

Dynamic Rail Selection

0

100

200

300

400

500

600

700

800

4 8 16 32 64 128

Ibverbs MPI_Isend,Irecv

of node

Pe
rfo

rm
an

ce
 (G

FL
O

PS
)

Minimizing Overhead

Usually, applications with 3-D FFT require scalable
performance in strong-scaling. In all-to-all communi-
cation, this means the message size becomes
smaller by increasing the number of nodes.
To minimize the overheads, we use ibverbs, which is
a low-level API for IB. This allows full control of
memory buffers, IB devices, and other resources.

Pe
rfo

rm
an

ce
 (G

FL
O

PS
)

50

100

200

400

800

1600

3200

4 8 16 32 64 128

256
384
512
1024

Pe
rfo

rm
an

ce
 (G

FL
O

PS
)

of node

Using those optimizations, we achieved high
scalability on TSUBAME 2.0 operating as usual.
For larger transform sizes, three GPU per node
case is faster than single GPU per node case.
Remember that there is load-imbalance be-
tween three GPU on each node.

Scalability

Scalable 3-D FFT on TSUBAME2.0 Scalable Asynchronous Checkpointing
• Background: Increasing system failures

o e.g.) TSUBAME2.0@Tokyo Tech
• 962 node failures (Nov 1st 2010 --- April 6th 2012)
• A node failure occurred every 13.0 hours on average

o A parallel file system (PFS) checkpointing overhead

• Objective: Reduce PFS checkpoint overhead
• Proposed method: Implementation and modeling

an asynchronous checkpointing
o Output to PFS via Staging nodes using RDMA
o Determine the optimal checkpoint interval

0
0.5

1
1.5

2
2.5

3
3.5

0 256 512 768 1024 1280 1536

PF
S

ch
ec

kp
oi

nt
 ti

m
e

(h
ou

rs
)

of nodes

Reliable, but 72x overhead

Lustre checkpoint

XOR checkpoint

TSUBAME2.0 Lustre checkpoint time

Design and Modeling of Checkpointing System

Estimating E�ciency on TSUBAME2.0 System

Memory Hierarchy Aware Software Stack
In Exa-scale supercomputing systems, the "memory wall" prob-
lem will become even higher, which prevents the realization of
exa-scale real world simulations.
The approaches of our new project, “Software Technology that
Deals with Deeper Memory Hierarchy in Post-petascale Era” are:

(2) To develop new software technology that efficiently uti-
lizes the hybrid memory hierarchy. The area of our research in-
cludes new compiler technology, scalable runtime system and
application algorithms.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-582242

Improving Network Performance
of TSUBAME2.0

Computing nodes in TSUBAME2.0 are connected by two rails of
4xQDR InfiniBand network and each rail forms fat-tree topology.
Theoretically, the network is full-bisection,
however, the observed performance
becomes worse when many node
communicate at once. This affects
the performance of application which
uses collective communications.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200 1400

In
je

cti
on

 B
W

 [M
B/

s]

of Nodes

Random pair 512MiB sendrecv performance

Original

Bad Link Disabled

Hetero Routing Strategy

When # of node is < 50,
Injection bandwidth is almost the
same as its theoretical peak.

Performance degrades when # of node
becomes larger in any cases.
Best performance was about 40% of theoretical one.

Stochastic performance
degradation is observed,
but resolved by bad link
elimination

Hetero routing strategy made
injection bandwidth 15% wider.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0 200 400 600 800 1000 1200 1400

T
im

e
[u

s]

Number of Nodes

1MiB Alltoall Execution Time on TSUBAME2.0

Original
Bad Link Disabled
Hetero Routing Strategy

We observed collective
communication's stuck, but
resolved by eliminating bad links.

Performance improvement by
employing heterogenious routing
strategy is not observed.

Core Switch

Edge Switch Edge Switch

We found some degraded links:
● Slower link speed (e.g. 1xQDR)
● Malfunctioning link
 (e.g. excessive retransmit)
By disabling those links, we could
resolve communication stuck
observed in our network.

We also tried changing routing
strategies to avoid packet
collision in upper tier.
Heterogeneous routing strategy
is introduced not to share the
congested route between rails.
Performance improvement is
observed in injection bandwidth
test, but no improvement observed
in collective communication
performance.

We will continue the research to
provide better communication
performance.

Hybrid Memory Cube (HMC):
DRAM chips are stacked with TSV technology.
It will have advantage in bandwidth over DDR,
but capacity will be smaller.

NAND Flash:
SSDs are already commodity.
Newer products, such as IO-drive have
O(GB/s) bandwidth.
Next-gen non-volatile RAM (NVRAM):
Several kinds of NVRAM such as STT-
MRAM, ReRAM, FeRAM, etc. will be
available in a few years.

Supported by JST-CREST

App Level Locality-aware Techniques
Temporal blocking, removal of matrix with re-computation...

Locality-aware Compiler
Loop-tiling, loop-fusion, data layout transformation, by using

dynamic compilation techniques

Hierarchy-aware Scalable Runtime
Data movement over memory hierarchy including remote

nodes, latency hiding

Upcoming Memory Architecture

DDR only architecture (in 2018--2020)
• 1EFlop/s
• 32PB/s  B/F = 0.032
• 10PB  B/(F/s) = 0.01

Our target (in 2018--2020)
• 1EFlop/s
• 100PB/s  B/F = 0.1 or higher

BW of HMC. Our compiler makes user-visible BW even higher
• 100PB  B/(F/s) = 0.1

Capacity of Flash. With our runtime, Flash can be used
seamlessly with other memory hierarchy.

~10x worse than in
current architecture!!

(1) To suppose supercomputer architecture with deeper
memory hierarchy including hybrid memory devices, including
non-volatile RAM (NVRAM).

Tech PaperTue 2:30pmRoom 255-EF

Tech PaperWed 11:30amRoom 255-BC

