TSUBAME 共同利用 平成 24 年度 学術利用 成果報告書

利用課題名 TSUBAME2 GPU によるスピン系のクラスターアルゴリズム・モンテカルロシミュレーション 英文: Cluster algorithm Monte Carlo simulations of spin systems using TSUBAME2 GPU

利用課題責任者 岡部 豊

First name Surname Yutaka Okabe

所属 首都大学東京理工学研究科

Affiliation Graduate School of Science and Engineering, Tokyo Metropolitan University

邦文抄録(300字程度)

格子スピンモデルは、物質内の相転移現象を解析するのに使われる。格子スピンモデルの解析にはよくマルコフ 連鎖モンテカルロ法が用いられており、今日までに多くのマルコフ連鎖モンテカルロ法が提案されている。近年、 GPU による計算の高速化が多くの分野で注目されている。本プロジェクトではマルコフ連鎖モンテカルロ法の一つ、 Swendsen-Wang (SW) マルチクラスターアルゴリズムの複数の GPUを用いたアルゴリズムの開発を行う。本年度 は昨年度作成したプログラムを拡張し、格子スピンモデルの一種、2次元 XY モデルに対して、大規模かつ高速計算 を行った。結果、従来問題とされていた有限サイズ補正の問題を解決し、転移温度に対しても従来よりも一桁精度高 い値の算出に成功した。

英文抄録(100 words 程度)

The classical spin model is one model for understanding mechanisms of phase transition. The classical spin model is often analyzed by using a Markov Chain Monte Carlo simulation, and many algorithms for Markov Chain Monte Carlo simulation have been proposed. In this paper we study the two-dimensional classical XY model by the large-scale Monte Carlo simulation of the Swendsen-Wang multi-cluster algorithm using multiple GPUs on the open science supercomputer TSUBAME 2.0. Simulating systems up to the linear system size L = 65536, we investigate the Kosterlitz–Thouless (KT) transition. The obtained inverse KT temperature KT is 1.11996(6). We estimate the exponent to specify the multiplicative logarithmic correction, -2r, and precisely reproduce the theoretical prediction -2r=1/8

Keywords: Monte Carlo Simulation, classical spin model

背景と目的

多体系の物理的性質を理解するためにモンテカルロ 法が標準的な手法として広く用いられているが、シング ルスピンフリップのモンテカルロ法には転移温度付近で 緩和時間が急激に大きくなる問題があり、これを解消 する一つの手法としてクラスターアルゴリズムが提唱さ れている。しかし、クラスターアルゴリズムの大規模な 計算には様々な問題があり、今までの報告ではクラス ターアルゴリズムは大規模化な計算に適していないと されていた。本プロジェクトでは、格子スピンモデルに 対し、複数の GPU を使った大規模な Swedesn-Wang (SW) クラスターアルゴリズム・モンテカルロシミュレー ションを開発し、クラスターアルゴリズムの大規模化の 基礎の確立と計算の高速化の2つを目的とする。昨年 度はアルゴリズムの考案及び実装を行った[1]。本年度 は昨年度作成したプログラムを拡張させ、実際に問題 となっている系での計算に取り組むことを目指した。具 体的に、格子スピンモデルの一種、2次元XYモデルに 対し、大規模かつ高速なシミュレーションを行うことで今 まで難問とされていた問題を解決した[2]。

2次元XYモデルはKosterlitz-Thouless (KT)転移 [3,4]という独特な相転移を示す。通常の相転移では転 移温度上で相関長が発散するが、KT 転移では転移温 度以下の全ての温度で相関長が発散する。通常の相 転移と比較して、KT 転移での転移温度付近での相関 長は速く発散し

$$\xi(T) \propto \exp\left(\frac{c}{\sqrt{t}}\right) = A \exp\left(\frac{c}{\sqrt{t}}\right)$$
 (1)

のように振る舞う。ここで t=(T TkT)/ TkT、c は定数、

TkT は KT 転移温度である。一方、2 次元 XY モデルの モンテカルロシミュレーション解析には有限サイズによ る対数補正から生じる困難も予想されている[4,5]。KT 転移温度上での磁化率は

$$\chi = \left\langle m^2 \right\rangle_L L^2 \propto L^{2-\eta} \left(\ln L \right)^{-2r} \tag{2}$$

と見積もられる。ここでの L は一辺の格子サイズであり、 $\eta = 1/4$ 、r = 1/16と理論的に予測されている[4]。モンテ カルロシミュレーションを用いた数値解析も多く試みら れているが、対数補正項 rの算出は未だに成功してい ない。対数補正項 rの歴史は参考文献[6]に示されてい る。モンテカルロシミュレーションの解析が成功していな い理由としては計算サイズが小さいことが最大の理由 である。今まで大きいサイズの計算でも L=2048までの 計算しかない[7]。そのため、申請者らは 2 次元 XY モ デルに対して、複数の GPU を用いた L=655536まで の大規模かつ高速計算を行い、この難問の解決を図る ことを試みた。

結果および考察 二次元 XY モデルのハミルトニアンを以下に示す。

$$H = -J \sum_{\langle i, J \rangle} \cos(\theta_i - \theta_j)$$
(3)

ここでの θ_iはサイト *i* での XY スピンの角度を表し、0 から 2πの値をとる。和は全ての最近接格子で行う。格 子としては正方格子をとり、周期的境界条件をとる。

磁化率の式(2)は KT 転移温度上での振る舞いのた め、補正項 rの値を議論するためには KT 転移温度上 でのシミュレーションが必要となる。しかし、KT 転移温 度の値については定まっておらず、昨年度開発した SW クラスターアルゴリズムをそのまま適用出来ない。 そのため、本研究では SW クラスターアルゴリズムを拡 張させた確率変動クラスターアルゴリズム[8]を用いて 計算を行う。確率変動クラスターアルゴリズムはある基 準を定め、その基準に対して温度を変化させるアルゴ リズム である。今回、その基準として helicity modulus[4,9]を用いる。helicity modulus は繰り込み 群方程式から、KT 転移温度上で 2/πから0 に変化す ることが導かれており、数値計算では以下のように定 義される[10,11]。

$$\gamma = \left\langle e \right\rangle - \frac{JL^2}{T} \left\langle s^2 \right\rangle \qquad (4)$$
$$e = \frac{1}{L^2} \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) \qquad (5)$$

$$e = \frac{1}{L^2} \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) \quad (6)$$

ここでの式(4)での < > は温度平均を意味する。この 基準から各サイズの KT 転移温度を求め、有限サイズ スケーリングより、補正項rの値および KT 転移温度に ついての計算を行う。計算を行った格子サイズは *L*=64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536 であり、*L*=8192 以上の格子サイズの計 算に複数の GPUを使用した。各サイズの磁化率と KT 転移温度の値を図 1 に示す。

L	$\beta_{\rm KT}(L)$	<m>L</m>	$10^3 \mathrm{MCS}$
64	1.09167(25)	0.34924(29)	4000
128	1.09788(32)	0.29695(36)	4000
256	1.10224(21)	0.25245(28)	4000
512	1.10530(26)	0.21427(27)	4000
1024	1.10768(19)	0.18195(16)	4000
2048	1.10966(20)	0.15443(26)	4000
4096	1.11097(08)	0.13085(15)	4000
8192	1.11211(27)	0.11086(32)	2000
16384	1.11314(20)	0.09395(25)	1000
32768	1.11389(21)	0.07955(22)	500
65536	1.11457(14)	0.06737(14)	400

図 1: 各サイズの KT 点転移温度と磁化率

図1の括弧は誤差を表している。また、有限サイズスケーリングを用いた各サイズの KT 転移温度の関係式を 式(7)に、また各サイズの補正項の関係式を式(8)にそ れぞれ示し、それぞれの様子を図2,3に示す。

$$\beta_{KT}(L) = \beta_{KT} - \frac{c^2 \beta_{KT}}{\left(\ln bL\right)^2} \qquad (7)$$

$$\ln(\langle m^2 \rangle_L L^{1/4}) = const. - 2r \ln(\ln aL)$$
 (8)

式(7)の b は定数であり、β は温度の逆数である。

図 2: 各サイズの KT 転移温度の有限サイズスケーリ ング

図 3: 各サイズの磁化率の有限サイズスケーリング

図 2 より、KT 転移温度 1/ *T*kr が 1.11996(6)と求ま り、従来の値、1.1199(1) [7]、1.1200(1) [12]よりも一 桁精度高い値の算出に成功した。また、図 3 より対数 補正項 *r*=-1/16 になることが確かめられた。

まとめ、今後の課題

本年度は昨年度作成した複数の GPU を用いた大規 模な SW クラスターアルゴリズムを拡張させ、実際に 問題となっていた 2 次元 XY モデルの計算を行った。こ のモデルの問題を解決するためには大規模かつ高速 な計算が不可欠であり、複数の GPU を使用することで 従来では莫大な時間がかかった計算を高速に計算す ることが出来た。今後はこのような有限サイズ補正のあ るモデルに対しての計算を行なっていく。また、本年度 はこの研究に加え、パーコレーション問題への応用に ついても取り組んだ。

これらの結果については、TSUBAME ESJ Vol.7 の英文および和文の解説記事で報告した。

なお、本研究は大学院生の小村幸浩君との共同研 究である。

参考文献

 Komura, Y. and Okabe, Y. (2013). Comp. Phys. Comm. 184, 40.

[2] Komura, Y. and Okabe, Y. (2012). J. Phys. Soc. Jpn. 81, 113001.

[3] Kosterlitz, J. M. and Thouless, D. J. (1973). J. Phys. C: Solid State Physics 6, 1181.

[4] Kosterlitz, J. M. (1974). J. Phys. C: Solid State Physics 7, 1046.

[5] Janke, W. (1997). Phys. Rev. B 55, 3580.

[6] Kenna, R. (2006). Cond. Mat. Phys. 9, 283.

[7] Hasenbusch, M. (2005). J. Phys. A: Math.Gen. 38, 5869.

[8] Tomita, Y. and Okabe, Y. (2002). Phys. Rev. B 66, 180401(R).

[9] Nelson D. R. and Kosterlitz, J. M. (1977). Phys. Rev. Lett. 39, 1201.

[10] Teitel, S. and Jayaprakash, C. (1983). Phys.Rev. B 27, 598.

[11] Weber, H. and Minnhagen, P. (1988). Phys. Rev. B 37, 5986.

[12] Arisue, H. (2009). Phys. Rev. E 79, 011107.