(B 20) KR |HESE

TSUBAME #RF A Fr28FE ZMFA HERES

FIMERES &rE6e . mAEENAER T DEERENT 7V r—a 7L — AU —7
X :High Performance, Highly Productive Application Frameworks

RILEH

Naoya Maruyama

B2 R ERZHRRE
RIKEN Advanced Institute for Computational Science
http://mt.aics.riken.jp/

XX (300 FIEE) ARETEHRIBEETILEXNRELTHREEAEMEMILT SO DRAN LR
IL—LT—IDFEEITI. [IFEETILELTIXE 20 ERICKBE2IRETILEXNREL, IL—LT—HEL
TIX GridTools ZFIMZFLS, TSUBAME2 @ GPU #AUL=MREFHEE TN, IL—LT—VILB4EE
e REDEHMEERT S,

X $% (100 words F2E) / Abstract (100 words) This research is focused on performance
portability for climate models. To that end, we investigate using a high-level framework to enable a
performance portable and highly performant version of an atmospheric icosahedral model. With
GPU-accelerated supercomputers being a strong candidate architecture for exascale, we conduct
experiments using large-scale heterogeneous supercomputers such as TSUBAME2.

Keywords:

&5 L B / Background

Traditionally, climate models are one of the
main class of applications that run on HPC
becoming

systems. Supercomputers are

increasingly complex and divergent in
architectures. As a consequence, one of the main
challenges to advancing climate models, and
other scientific applications at large, 1s to
portability over

guarantee performance

supercomputers that have very different

architectures.

BIZ / Overview

In this project, our target is to navigate the
challenges of achieving performance portability
for climate models. More specifically, we target
NICAM, an icosahedral atmospheric model
chosen as a target application for the current and
next-generation supercomputers in dJapan (.e.

Oakforest-PACS, Tsubame3, and Post-K).

NICAM codebase is more than 50K lines of code.

Hence, maintaining different codebases for
optimized for different target architectures is
infeasible.

To that end, we consider a high-level framework
based on C++ template programming as a
pathway for achieving performance portability
while maintaining a single code base. The
high-level framework, GridTools, provides a
robust and performant backend for GPUs (based

on CUDA), and other architectures.

BWRBIUEE /Results

To evaluate the efficiency of GridTools, we use
a set of kernels extracted from NICAM’s
dynamical core; the costliest component of
NICAM. Figure 1 shows the execution time of
preliminary runs, on a single GPU, of three

kernels: diffusion, divdamp, and vi_rhow_solver.

Benchmark CUDA (Nvidia K20x)

Manual Manual_opt GridTools

(coal, sh_mem,

occu, reg_pres)
Diffusion 5.83 0.575 0.61

(5.23x OMP=10) | (4.93)
Divdamp 35.23 3.15 3.17
(vgrid40_600m _24km) (4.83x OMP=10) | (4.80x)
Vi_rhow_Solver 0.91 0.288 0.311
(vgrida0_600m 24km) (6.14x OMP=10) | (5.69x)

Figure 1: Execution time (Seconds)
The GridTools generated code 1is close in
performance, and speedup over OpenMP CPU
code, to the manually optimized CUDA code. It is
important to note that hand-written
optimizations for CUDA code is a complex task

and requires significant time.

F e, §%NDERE / Summary and Future Plans

Our experimentation with kernels extracted
from NICAM’s dynamical core show that the
high-level framework GridTools can generate code
comparable in performance to manually
optimized code. One main challenge remains to be
porting the entire dynamical core to C++ from the
original Fortran code. Another challenge is the
introduction of convoluted code, typical of
template programming in C++. Finally, a main
point of work is to investigate the performance of
other backends provided by GridTools, namely
OpenMP for Intel’s KNL.

(B 20) KR |HESE

