TSUBAME 共同利用 令和3年度 学術利用 成果報告書

利用課題名 二酸化炭素の分離回収におけるゼオライト構造の最適化

英文: Optimization of zeolite structure for CO₂ separation

利用課題責任者 池田歩

Ayumi Ikeda

所属 産業技術総合研究所

National Institute for Advanced Industrial Science and Technology (AIST) https://www.aist.go.jp/

邦文抄録(300字程度)

二酸化炭素吸着に適したゼオライト構造を探索するため、二酸化炭素の分子径に近い細孔径をもつゼオライト について、第一原理計算に基づく密度汎関数理論(DFT)計算を利用して、二酸化炭素の吸着エネルギーを 算出した。まず、ゼオライトの組成(Si/Al比)ごとに、最安定エネルギーを計算し、各組成のゼオライト中に二 酸化炭素を存在させたときのエネルギーを計算した。この結果、算出したチャバザイト型ゼオライトの CO2 吸着 エネルギーは、実験値と良好に一致することを確認した。これより、DFT 計算を利用することで、分子動力学法 やモンテカルロ法と異なり、ノンパラメータでゼオライトに対する CO2 吸着エネルギーが算出できることを示した。

英文抄録(100 words 程度)

Searching for zeolite structures suitable for carbon dioxide adsorption, we used DFT calculations based on the first-principles calculations to calculate the adsorption energy of carbon dioxide for zeolites with pore diameters close to the molecular diameter of carbon dioxide. First, the structure-optimized energy was calculated for each zeolite composition, and then the energy of carbon dioxide in zeolite structure was calculated. As a result, the calculated CO_2 adsorption energy of chabazite zeolite was confirmed to be in good agreement with the experimental value. This shows that the DFT calculation can calculate the CO_2 adsorption energy for zeolite with non-parameters.

Keywords: DFT calculation, CO₂ adsorbent, zeolite

背景と目的

カーボンニュートラルの実現には、省エネルギーな CO2 分離回収技術が必要である。分離回収プロセスで 使用される CO2 分離材料は、CO2分離回収プロセスの 省エネルギー性能に大きな影響を及ぼす。ここでは、 CO2 分離材料としてゼオライトに注目する。ゼオライト は、直径が 1 ナノメートル未満の細孔を有する結晶性 無機材料であり、その CO2吸着性能は細孔容積と組成 によって決定される。細孔容積は骨格構造に依存し、 組成は骨格内のアルミニウム含有量や対カチオンによ って変化することが知られている。本研究では、第一 原理計算に基づく DFT 計算(RSDFT)を利用して、ゼ オライト中の Al やカチオンの安定位置の特定、CO2吸 着エネルギーの算出を行う。本研究により、DFT 計算 によって、ゼオライトの構造及び組成が CO2 との相互 材用に及ぼす影響を解明できれば、固体 CO2 吸着材 料の設計指針を確立でき、吸着材開発の加速化を期 待している。

概要

本研究では、TSUBAME を利用して第一原理計算 に基づく DFT 計算(RSDFT)を実行できる環境を整え た。数種のゼオライトについて、アルミニウム含有量を 変えた際の最も安定な構造とそのエネルギーCO2 をゼ オライト骨格内に配置したときのエネルギーを計算し、 その差から吸着エネルギーを算出した。この結果、 0.38 nm の細孔をもつチャバザイト型ゼオライトの CO2 吸着エネルギーが実験値と良好に一致することを示し た。

結果および考察

はじめに、8員環をもつチャバザイト型ゼオライトにつ

いて、アルミニウム(Al)原子とナトリウムイオンの安定 位置を決定した。図 1 は、チャバザイト型ゼオライトの 骨格構造を示す。チャバザイト型ゼオライトのユニット セルの組成は Na_xAl_xSi_{36-x}O₇₂とし、Al 原子数 x=1, 2 (Si/Al 比=35, 17) で計算した。Si/Al 比=35 (ユニット セル内の Al 原子 1 個) のチャバザイト型ゼオライトに ついて、Al 原子を二重6員環と4員環の交点に配置し たとき、ナトリウムイオンが 4 員環より 6 員環近傍にあ る方が-0.53 eV 安定であった。Al 原子とナトリウムイオ ンの距離に着目すると、ナトリウムイオンを4員環近傍 に配置した場合、距離が近いほど構造最適化エネルギ ーは低くなり、安定であることが分かった。一方、ナトリ ウムイオンを二重6員環近傍に配置した場合、Al 原子 とナトリウムイオンの距離が構造最適化エネルギーに 有意な差を与えなかった。以後、二重6員環近傍にナト リウムイオンを配置した場合について考える。

Si/Al 比=17 (ユニットセル内の Al 原子 2 個) のとき、 ナトリウムイオンが 6 員環近傍かつ各イオンが最も離 れた位置にあるとき、もっともエネルギーが低くなった。

図1 チャバザイト型ゼオライトの構造[1]

次に、チャバザイト型ゼオライトに対する CO₂ の吸着 エネルギーを算出した。式(1)に、CO₂ の吸着エネルギ 一つまり、吸着熱 *ΔH*adsと DFT 計算から得られるエネ ルギーの関係を示す。

$$\Delta H_{\rm ads} = E_{\rm zeolite+CO_2} - \left(E_{\rm zeolite} + E_{\rm CO_2}\right) \qquad \dots (1)$$

ここで、*E*_{zeolite} は構造最適化したゼオライト構造のエネ ルギー、*E*_{zeolite+CO2} は CO₂ を配置して構造最適化した ゼオライト構造のエネルギー、*E*_{CO2} は CO₂ 分子がもつ エネルギーを表す。

Si/Al 比=35 (ユニットセル内の Al 原子 1 個) のとき、 Al 原子とナトリウムイオンの位置が CO₂ 吸着熱に与え る影響を検討した (表 1)。このとき、 CO_2 は二重6員環 に対して垂直に配置して計算した。表1より、二重6員 環の上面にナトリウムイオンが存在する場合(A,B)、ナ トリウムイオンが二重6員環内にある場合(C)と比較 して CO_2 吸着エネルギーは高いことが分かった。ここで、 実験値の CO_2 吸着熱は37.4 kJ mol⁻¹だったことから、 現実のチャバザイト型ゼオライト膜中のナトリウムイオ ンはAやBの構造に近い可能性があると推察した。

表 1 Al 原子と Na イオンの位置が CO₂ 吸着エネルギ ーに与える影響 (Si/Al 比=35, 黄: Na イオン, 赤: Al)

	А	В	С
二重6員環近傍の AI原子とNaイオン			
CO ₂ 吸着エネル ギー[kJ mol ⁻¹]	37.4	41.4	21.6

次に、Si/Al比の異なるチャバザイト型ゼオライトについ て CO₂ の吸着熱を DFT 計算により求めたところ Si/Al=3~∞において実験結果とよく一致することが明 確になった。

まとめ、今後の課題

DFT 計算を利用することで、力学パラメータ無しで、 チャバサイト型ゼオライトに関する CO2吸着エネルギー および拡散係数を算出できるようになった。今後、吸着 等温線を描画するため、圧力依存性と温度依存性を表 現することが課題である。

Reference

 Ch. Baerlocher and L.B. McCusker, Database of Zeolite Structures: http://www.iza-structure.org/databases/