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邦文抄録（300字程度） 

本研究では，小規模実行によって得た性能メトリクスを用いて大規模実行時の並列アプリケーションの性能メトリ

クスを予測するツールである Extra-Pを関数コール回数予測に応用した場合の評価を行う．我々の実験結果による

と，Extra-Pは 5 つの並列アプリケーションに対して関数コール回数を 2.23%以下の誤差で予測できた．また，我々

は，関数コール回数予測の応用として，関数コール予測の結果をも言いて関数の実行時間を予測する手法を提案

する．我々の実験結果によると，提案手法はさまざまな関数の総実行時間の予測精度を平均 1.41%改善した． 

 

英文抄録（100 words程度） 

In this study, we provide the first evaluation of Extra-P, which is a tool for predicting the performance 

metrics of a parallel application executed at a large scale using the performance metrics of the 

application executed at multiple small scales, in a use case of function call count prediction. Our 

experimental results demonstrated that Extra-P predicted the function call counts for five parallel 

applications within an error of 2.23%. Additionally, we propose a technique to predict the total 

execution time of a function using the call count predicted as a use case of function call count 

prediction. Our experimental results demonstrated that the proposed technique improved the 

prediction accuracy of the total execution time of various functions by 1.41% on average. 
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1. Introduction 

The analysis of the dynamic behavior of parallel 

applications is widely performed by 

supercomputing users for various purposes (e.g., 

performance tuning). Because an application's 

behavior depends on the scale of execution (i.e., 

process count and input data), the collection of 

performance metrics (e.g., function call, and 

memory and cache access counts) usually requires 

the execution of a targeted application combined 

with a profiling tool (e.g., TAU) at a targeted scale. 

However, this approach for collecting the 

performance metrics of large-scale applications 

consumes a large amount of computing time and 

resources. A more cost-effective approach to 

collecting performance metrics is required for 

large-scale applications. 

In this context, various methods for modeling 

the performance of parallel applications have 

been developed. These methods enable us to 

collect the various performance metrics (e.g., 

execution time) of a given application executed at 

a large scale with reasonable computing time and 

resources, by creating their scalability models 

empirically or analytically. Specifically, Extra-P, 

which is the most powerful tool for the 

performance analysis of parallel applications, 

automatically generates a model to provide the 

extrapolated performance from a subset of metric 

data of a given application executed at small 

scales. In previous work, the authors reported 

that Extra-P is very useful for estimating some 

performance metrics (e.g., execution time, 

number of floating-point instructions, and 
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communication message size) of a given 

application executed at a large scale; however, but 

it is still unknown whether Extra-P can be used 

for scalability prediction for the other metrics. In 

particular, the function call count is an important 

metric for understanding the application behavior 

and is widely used for the performance analysis of 

parallel applications; however, to the best of our 

knowledge, researchers have not reported the 

effectiveness of Extra-P in function call count 

prediction. 

In this paper, we show the first evaluation of 

Extra-P for function call count prediction. 

Therefore, as a use case for function call count 

prediction, we propose a method that predicts the 

total execution time of function using the number 

of predicted function calls. Our experimental 

results demonstrated that Extra-P predicted the 

number of function calls with sufficiently high 

accuracy for various functions and our proposed 

method predicted the total execution time of 

various functions with higher accuracy than the 

conventional method. 

We summarize the main contributions of this 

study as follows: 

 We demonstrate that Extra-P is also useful 

for creating models of function call counts. 

 We demonstrate that combining function call 

count prediction is effective in predicting the 

total execution time of functions. 

 We demonstrate that Extra-P greatly reduces 

the cost of collecting the total execution time 

of functions. 

 

2. Background 

2.1.  Profiling 

Profiling parallel applications is widely used for 

performance analysis and tuning in the field of 

high-performance computing. Profiling involves 

the collection of the performance metrics of a 

targeted application. Such metrics include the 

number of function calls and the total execution 

time of functions. To collect performance metrics, 

an instrumentation code is inserted into the 

targeted application using a compiler or dynamic 

library, and the application is then executed on a 

targeted system. Profiling tools, such as TAU and 

Score-P, are available for the insertion of the 

instrumentation code. We note that the 

performance metrics collected through profiling 

are measured values. We believe that the costs 

(computing time and resources) of 

performance-metric collection through profiling 

are high because this approach requires a 

targeted application to be executed on a targeted 

system. Many techniques, such as selective 

instrumentation, have been developed to reduce 

the costs of performance-metric collection; 

however, performance is limited by the execution 

of the application plus the required collection 

overhead. 

2.2. Extra-P 

Extra-P is a performance analysis tool for 

parallel applications that can be used for the 

quick analysis of parallel applications. Extra-P 

extrapolates a performance metric of a targeted 

application executed at a large scale from those of 

the application executed at multiple small scales. 

To accomplish this, Extra-P generates a 

scalability model for the performance metric 

using regression. The independent variables of 

the model are the process count and problem size, 

and the dependent variable is the performance 

metric to be predicted. 

The general form of the model used in Extra-P is 

as follows: 

 

where m is the number of independent variables, 

is an independent variable, and  is a 



（様式 20）成果報告書 

 

regression parameter. n is the number of product 

terms, each of which has a different combination 

of . The exponents  and  

are called the hypotheses and characterize the 

form of the equation. Extra-P users can specify 

the sets of  and  (referred to as I and J, 

respectively) used for the regression from the 

command line interface. 

Using Extra-P, we can collect various 

performance metrics of a targeted application 

without executing the application at a targeted 

scale; however, the performance metrics reported 

by Extra-P are predicted values. Additionally, the 

effectiveness of Extra-P has been proven for a few 

performance metrics (e.g., total execution time of 

a function and communication message size). It is 

still unknown whether Extra-P can also be used 

for function call count prediction. 

 

3. Function Call Count Prediction using Extra-P 

3.1.  Function Call Count and Performance 

Tuning 

 The function call count is helpful for tuning 

the performance of an application. Because 

calling a function has a performance overhead, 

a reduction in the function call count may 

improve overall application performance. For 

example, inlining a function can remove the 

calling overhead from an application, but it 

increases the application code size. The 

function call count is fundamental information 

in performance tuning; therefore, many 

profiling tools support functionality to report 

the call counts of the functions executed. 

The function call count is a dynamic attribute 

of an application. It is usually affected by 

various factors of running applications (e.g., 

inputs, process count, and results of branch 

instructions) and cannot be computed using 

static code analysis. Thus, to obtain the exact 

number of function calls, we require a targeted 

application to be executed at a targeted scale. 

3.2.  Experimental Methodologies 

 In this subsection, we evaluate the accuracy of 

Extra-P in function call count prediction. 

Specifically, we first collect sample data (i.e., call 

counts per function) by executing a targeted 

application at various small scales and then input 

them into Extra-P. Next, Extra-P automatically 

generates an optimal model to predict the 

scalability of the call count for each function. 

Finally, we predict the function call count at a 

large scale with using the model generated and 

compare the result with the measured call count. 

To enable the generation of multi-variable 

models, we use multi-parameter for the modeler 

option in Extra-P. Moreover, we use I = {-1, 0, 1, 2, 

3} for the exponents of the polynomial and use J = 

{0, 1} for the exponents of the logarithm in 

Equation (1). We also set 

force_combination_exponents and 

allow_negative_exponents to True.  

We conducted our experiment on the 

supercomputer TSUBAME3.0. It consists of 540 

compute nodes, each of which has two CPUs 

(Intel Xeon E5-2680 V4). The system and node 

configurations of TSUBAME3.0 are shown in 

Tables 1 and 2, respectively. We used TAU as a 

profiling tool when collecting the actual number 

Table 1. System configuration of 

TSUBAME3.0 

 

Table 2. Node configuration of TSUBAME3.0 

 



（様式 20）成果報告書 

 

of function calls.  

We tested five HPC applications shown on 

TSUBAME3.0. Four out of the five applications 

(i.e., EP, FT, IS, and MG), which we selected from 

the NAS Parallel Benchmark suite, are simple 

and stress particular properties. The remaining 

application, LULESH, is more complex and we 

selected it from the CORAL-2 Benchmark suite. 

The scales used for model generation are 

summarized in Table 3. We executed an 

application for every combination of the scale 

parameters shown in the table and then entered 

all the resulting function call counts into Extra-P 

to generate the models. For example, we executed 

EP at 30 scales (6 types of process counts  5 

types of problem sizes) in total.  

Using the models generated by Extra-P, we 

predicted the function call counts of each 

application for the three types of process counts 

and input data shown in Table 4. We note that 

these targeted scales are larger than the data 

collection scales shown in Table 3. In the next 

section, we focus on the functions executed at all 

the scales listed in Tables 3 and 4. Our 

experimental results exclude a few functions 

executed only at a specific scale. 

We used the following two metrics to evaluate 

prediction accuracy. 

MAPE: The accuracy of a model is often 

evaluated using the mean absolute percent 

error (MAPE), which is the average of the 

absolute error rate between the model's 

output values ( ) and the observed values ( ). 

It can be expressed by the following formula: 

 

where N is the number of data points. 

Weighted MAPE: In the MAPE, the errors in 

each data point contribute to the overall error 

equally; however, the more precise prediction 

of a large function call count is helpful for 

performance tuning. Therefore, we introduce 

the weighted MAPE as the other metric for 

prediction accuracy. The weighted MAPE is a 

weighted average of the absolute error rate by 

the number of function calls and can be 

expressed by the following formula: 

 

where  and  represent the number of 

function calls measured for the function 

$t$ and the total number of function calls 

measured during the execution of a targeted 

application at a given scale, respectively.  

3.3.  Experimental Results 

Table 5 summarizes the fitting errors of the 

function-call-count models generated by Extra-P. 

Table 4. Scales used for prediction 

 

Table 5. Fitting errors in function call count 

prediction 

 

Table 3. Benchmark programs and scales 

used for model generation. Abbreviations in 

italics in the Scales column represent the as 

following: pc=process count, ps=problem size, 

gs=grid size, it=iterations, kc=key count, and 

mv=max value. 
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As shown in the table, Extra-P produced models 

well -fitted to the collected data, in many cases. In 

particular, the function-call-count models 

generated by Extra-P had an error of 1.58% on 

average for FT. A few applications, such as EP 

and IS, had large MAPEs because they included 

some functions that had irregular patterns in the 

function call count. However, the numbers of calls 

for such functions were relatively small. Extra-P 

provided very accurate models for many functions 

that were important to overall performance, even 

in such applications. 

Figure 1 shows the prediction accuracy of the 

generated models for various process counts. The 

x-axis represents the process count, and the 

y-axis represents MAPE or weighted MAPE. We 

note that the y-axis uses the logarithmic scale. 

The five bars on each x-label represent the five 

applications. We used large input data for this 

experiment. 

Figure 1 (a) shows that two out of the five 

applications (i.e., IS, and LULESH) had small 

errors (within 10%). As shown in Table 5, Extra-P 

produced function-call-count models well -fitted to 

these applications so that the generated models 

had high prediction accuracy at the targeted 

scales. 

By contrast, FT and MG had large MAPEs 

because of the inaccuracy of the call-count models 

for some functions. However, this inaccuracy may 

not become a problem in many use cases because 

such functions have relatively small call counts 

and are therefore less important than the other 

functions. Figure 1 (b) exemplifies this. The 

weighted MAPE was up to 2.23%. 

Figure 2 shows the prediction accuracy of the 

 

(b) MAPE 

 

(b) Weighted MAPE 

Figure 2. Accuracy of function call count 

prediction for various input data using large 

process counts 

 

(a) MAPE 

 

(b) Weighted MAPE 

Figure 1. Accuracy of function call count 

prediction for various process counts using 

large input data 
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generated models for various input data. We used 

large process counts for this experiment. Similar 

to Figure 1, the weighted MAPEs of the models 

generated were very small for all combinations of 

applications and input data, whereas the MAPEs 

were large for a few applications. Thus, we 

conclude that Extra-P produced models sufficient 

for practical use in function call count prediction. 

 

4. Combining Function Call Count Prediction and 

Total Execution Time of Functions Prediction 

As described in the previous section, Extra-P 

produced accurate function-call-count models, in 

many cases. In this section, as a use case for 

predicting function call counts, we combine 

function call count prediction with the scalability 

prediction of the total execution time of a 

function. 

4.1.  Predicting the Total Execution Time of 

Functions 

 The prediction of the total execution time of a 

function is often performed to identify a 

scalability bug in a targeted application. As 

shown in previous work, it is the main use case of 

Extra-P. 

The total execution time of function ( ) can be 

expressed as follows. 

 

where  is the function call count and  is the 

i-th total execution time of function F. 

Generally, Extra-P predicts the total execution 

time of function directly. Specifically, we first 

collect the total execution time of each function 

( ) while executing a targeted application at 

various small scales. Next, we enter the collected 

data into Extra-P and then create a total 

execution time of function model for each function. 

Finally, we predict the total execution time of 

function executed at a targeted scale using the 

generated model (the direct method in Figure 3).  

Hereafter, we call this the direct approach 

because we need to distinguish between this 

approach and our approach proposed in the next 

section. 

4.2.  Combined Approach 

Theoretically, the total execution time of 

function can be expressed as follows. 

 

where  is the average execution time of 

function per call. 

Because the execution scales (i.e., process counts 

and input data) have different influences on the 

call count ( ) and total execution time of 

function per call ( ), the direct modeling of  is 

difficult for some functions. For such functions, 

prediction accuracy can be improved by 

developing individual models for  and , and 

then combining the predicted results using the 

models (the combined method in Figure 3). We 

call this the combined approach and use Extra-P 

to model both  and . 

4.3.  Experimental Methodologies 

Many profiling tools report two types of total 

execution time of function. One is inclusive time, 

which includes the time taken by all callees. The 

other is exclusive time, which represents the time 

taken by the targeted function itself. In this study, 

we performed the prediction for both inclusive 

and exclusive time. 

 

Figure 3. Overview of prediction of total 

execution time of functions 
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We used the same experimental system 

described in Section 3.2. We also used the 

benchmark programs and execution scales listed 

in Tables 3 and 4.  

We evaluated the cost of data collection, in 

addition to fitting errors and prediction accuracy. 

We define the cost of collecting data (C) for an 

application (app) executed on M cores as follows: 

 

Because many supercomputing services require 

users to buy points, which are consumed based on 

the product of the computing time and number of 

computing resources. 

Both direct and combined approaches require 

model generation and prediction processes in 

addition to data collection. These two processes 

also consume computing time and resources; 

however, they can be executed very quickly, even 

on a single compute node. Because the costs of 

model generation and prediction are relatively 

small compared with the cost of data collection, 

we ignore them in this study. 

4.4.  Experimental Results 

The fitting errors for the total execution time of 

function models are shown in Table 6. Each entry 

represents the MAPE of all models generated by 

an approach for an application, and the range 

represents the minimum and maximum values in 

the case of computing the MAPE for each function. 

The table shows that the combined approach 

produced models with higher accuracy than the 

direct approach when predicting the exclusive 

time of functions. In particular, compared with 

the direct approach, the combined approach 

reduced the fitting error by 20,302% for FT. This 

is because, with respect to the exclusive time, 

Extra-P can create more precise models for  

and  than .  

Figure 4 shows the accuracy in predicting the 

total execution time of function. The x-axis 

represents the process count, and the y-axis 

represents the MAPE or weighted MAPE. We 

note that the y-axis uses logarithmic scale. We 

used large input data.  

As shown in Figure 4 (a), Extra-P on average 

 

(c) MAPE 

 

(b) Weighted MAPE 

Figure 4. Accuracy of prediction of total 

execution time of functions for various 

process counts using large input data 

Table 6. Fitting errors in the total execution time of function prediction. In "x (y-z)," x is the 

MAPE, and y and z are the minimum and maximum MAPE per function, respectively 
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produced inaccurate models in the total execution 

time of function prediction. The smallest MAPE 

was 58.95+%, even when we used the combined 

approach. In particular, FT had a MAPE of 

10,000,000+% for the large process count. 

Because FT executed many all-to-all 

communication functions and they were called 

from several locations within the code, it was 

difficult for Extra-P to precisely extrapolate the 

performance of such functions. 

By contrast, we observed different properties of 

the models produced by Extra-P in view of the 

weighted MAPE. Figure 4 (b) shows that the 

models achieved very high accuracy (within 1% of 

the weighted MAPE) for four out of five 

applications. Therefore, we consider that the 

models achieved sufficient accuracy in practice. 

Figure 5 shows the prediction accuracy of the 

generated models for various input data. We used 

large process counts. Similar to Figure 4, the 

weighted MAPEs were small, whereas the 

MAPEs were large. The models generated had a 

weighted MAPE of 1.41%, on average. Thus, we 

conclude that Extra-P produced models sufficient 

for practical use in total execution time of 

function prediction. 

Figure 6 shows the cost of collecting the total 

execution time of functions. The x-axes represent 

the number of execution scales to be collected, 

while the y-axes represent costs. The y-axis uses 

the logarithmic scale. The blue lines represent the 

case of predicting the total execution time of 

function and the red lines represent the case of 

collecting the total execution time of function 

based on actual runs (i.e., using profilers). We 

note that the data collection time for the direct 

approach was the same as that for the combined 

approach.  

The figure shows that the cost of predictively 

collecting the total execution time of functions 

was completely constant across the number of 

predicted scales. This is because we ignored 

Extra-P's execution cost, which was relatively 

small compared with the cost of data collection, as 

described in Section 4.3. By contrast, the cost of 

collecting the total execution time of function 

based on actual runs increased gradually as the 

number of predicted scales increased. In 

particular, in the case of collecting the total 

execution time of function at 27 scales, the 

predictive approach reduced the cost of data 

collection by 99% for EP compared with the 

approach of actually-running the application. 

Thus, the predictive approach was effective, 

particularly for collecting the total execution time 

of function at multiple scales. 

 

5. Conclusions 

In this study, we evaluated Extra-P in function 

 

(d) MAPE 

 

(b) Weighted MAPE 

Figure 5. Accuracy of prediction of total 

execution time of functions for various input 

data using large process counts 
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call count prediction. Our experimental results 

showed that Extra-P produced highly accurate 

scalability models for various functions in the 

case of function call count prediction. Additionally, 

we showed that the predicted function call counts 

were helpful for improving the prediction 

accuracy of the total execution time of functions. 

The predicted function call counts may be useful 

for the prediction of performance metrics, with 

the exception of the total execution time of 

functions. 

In future work, we will extend the use case of 

function call count prediction to the prediction of 

other metrics. 

 

Figure 6. Cost of prediction of total execution time of functions 


