
（様式 20）成果報告書

TSUBAME共同利用 令和 4年度 学術利用 成果報告書

利用課題名 MPIアプリケーションにおけるプロファイルおよびトレース予測手法の評価

英文： Evaluation of a Method for Predicting Profiles and Traces of MPI Applications

利用課題責任者 三輪忍

First name Surname Shinobu Miwa

所属 電気通信大学

Affiliation The University of Electro-Communications

URL http://www.hpc.is.uec.ac.jp/miwa_lab/index.html

邦文抄録（300字程度）

本研究では，小規模実行によって得た性能メトリクスを用いて大規模実行時の並列アプリケーションの性能メトリ

クスを予測するツールである Extra-Pを関数コール回数予測に応用した場合の評価を行う．我々の実験結果による

と，Extra-Pは 5 つの並列アプリケーションに対して関数コール回数を 2.23%以下の誤差で予測できた．また，我々

は，関数コール回数予測の応用として，関数コール予測の結果をも言いて関数の実行時間を予測する手法を提案

する．我々の実験結果によると，提案手法はさまざまな関数の総実行時間の予測精度を平均 1.41%改善した．

英文抄録（100 words程度）

In this study, we provide the first evaluation of Extra-P, which is a tool for predicting the performance

metrics of a parallel application executed at a large scale using the performance metrics of the

application executed at multiple small scales, in a use case of function call count prediction. Our

experimental results demonstrated that Extra-P predicted the function call counts for five parallel

applications within an error of 2.23%. Additionally, we propose a technique to predict the total

execution time of a function using the call count predicted as a use case of function call count

prediction. Our experimental results demonstrated that the proposed technique improved the

prediction accuracy of the total execution time of various functions by 1.41% on average.

Keywords: Extra-P, parallel applications, function call count, evaluation

1. Introduction

The analysis of the dynamic behavior of parallel

applications is widely performed by

supercomputing users for various purposes (e.g.,

performance tuning). Because an application's

behavior depends on the scale of execution (i.e.,

process count and input data), the collection of

performance metrics (e.g., function call, and

memory and cache access counts) usually requires

the execution of a targeted application combined

with a profiling tool (e.g., TAU) at a targeted scale.

However, this approach for collecting the

performance metrics of large-scale applications

consumes a large amount of computing time and

resources. A more cost-effective approach to

collecting performance metrics is required for

large-scale applications.

In this context, various methods for modeling

the performance of parallel applications have

been developed. These methods enable us to

collect the various performance metrics (e.g.,

execution time) of a given application executed at

a large scale with reasonable computing time and

resources, by creating their scalability models

empirically or analytically. Specifically, Extra-P,

which is the most powerful tool for the

performance analysis of parallel applications,

automatically generates a model to provide the

extrapolated performance from a subset of metric

data of a given application executed at small

scales. In previous work, the authors reported

that Extra-P is very useful for estimating some

performance metrics (e.g., execution time,

number of floating-point instructions, and

（様式 20）成果報告書

communication message size) of a given

application executed at a large scale; however, but

it is still unknown whether Extra-P can be used

for scalability prediction for the other metrics. In

particular, the function call count is an important

metric for understanding the application behavior

and is widely used for the performance analysis of

parallel applications; however, to the best of our

knowledge, researchers have not reported the

effectiveness of Extra-P in function call count

prediction.

In this paper, we show the first evaluation of

Extra-P for function call count prediction.

Therefore, as a use case for function call count

prediction, we propose a method that predicts the

total execution time of function using the number

of predicted function calls. Our experimental

results demonstrated that Extra-P predicted the

number of function calls with sufficiently high

accuracy for various functions and our proposed

method predicted the total execution time of

various functions with higher accuracy than the

conventional method.

We summarize the main contributions of this

study as follows:

 We demonstrate that Extra-P is also useful

for creating models of function call counts.

 We demonstrate that combining function call

count prediction is effective in predicting the

total execution time of functions.

 We demonstrate that Extra-P greatly reduces

the cost of collecting the total execution time

of functions.

2. Background

2.1. Profiling

Profiling parallel applications is widely used for

performance analysis and tuning in the field of

high-performance computing. Profiling involves

the collection of the performance metrics of a

targeted application. Such metrics include the

number of function calls and the total execution

time of functions. To collect performance metrics,

an instrumentation code is inserted into the

targeted application using a compiler or dynamic

library, and the application is then executed on a

targeted system. Profiling tools, such as TAU and

Score-P, are available for the insertion of the

instrumentation code. We note that the

performance metrics collected through profiling

are measured values. We believe that the costs

(computing time and resources) of

performance-metric collection through profiling

are high because this approach requires a

targeted application to be executed on a targeted

system. Many techniques, such as selective

instrumentation, have been developed to reduce

the costs of performance-metric collection;

however, performance is limited by the execution

of the application plus the required collection

overhead.

2.2. Extra-P

Extra-P is a performance analysis tool for

parallel applications that can be used for the

quick analysis of parallel applications. Extra-P

extrapolates a performance metric of a targeted

application executed at a large scale from those of

the application executed at multiple small scales.

To accomplish this, Extra-P generates a

scalability model for the performance metric

using regression. The independent variables of

the model are the process count and problem size,

and the dependent variable is the performance

metric to be predicted.

The general form of the model used in Extra-P is

as follows:

where m is the number of independent variables,

is an independent variable, and is a

（様式 20）成果報告書

regression parameter. n is the number of product

terms, each of which has a different combination

of . The exponents and

are called the hypotheses and characterize the

form of the equation. Extra-P users can specify

the sets of and (referred to as I and J,

respectively) used for the regression from the

command line interface.

Using Extra-P, we can collect various

performance metrics of a targeted application

without executing the application at a targeted

scale; however, the performance metrics reported

by Extra-P are predicted values. Additionally, the

effectiveness of Extra-P has been proven for a few

performance metrics (e.g., total execution time of

a function and communication message size). It is

still unknown whether Extra-P can also be used

for function call count prediction.

3. Function Call Count Prediction using Extra-P

3.1. Function Call Count and Performance

Tuning

 The function call count is helpful for tuning

the performance of an application. Because

calling a function has a performance overhead,

a reduction in the function call count may

improve overall application performance. For

example, inlining a function can remove the

calling overhead from an application, but it

increases the application code size. The

function call count is fundamental information

in performance tuning; therefore, many

profiling tools support functionality to report

the call counts of the functions executed.

The function call count is a dynamic attribute

of an application. It is usually affected by

various factors of running applications (e.g.,

inputs, process count, and results of branch

instructions) and cannot be computed using

static code analysis. Thus, to obtain the exact

number of function calls, we require a targeted

application to be executed at a targeted scale.

3.2. Experimental Methodologies

 In this subsection, we evaluate the accuracy of

Extra-P in function call count prediction.

Specifically, we first collect sample data (i.e., call

counts per function) by executing a targeted

application at various small scales and then input

them into Extra-P. Next, Extra-P automatically

generates an optimal model to predict the

scalability of the call count for each function.

Finally, we predict the function call count at a

large scale with using the model generated and

compare the result with the measured call count.

To enable the generation of multi-variable

models, we use multi-parameter for the modeler

option in Extra-P. Moreover, we use I = {-1, 0, 1, 2,

3} for the exponents of the polynomial and use J =

{0, 1} for the exponents of the logarithm in

Equation (1). We also set

force_combination_exponents and

allow_negative_exponents to True.

We conducted our experiment on the

supercomputer TSUBAME3.0. It consists of 540

compute nodes, each of which has two CPUs

(Intel Xeon E5-2680 V4). The system and node

configurations of TSUBAME3.0 are shown in

Tables 1 and 2, respectively. We used TAU as a

profiling tool when collecting the actual number

Table 1. System configuration of

TSUBAME3.0

Table 2. Node configuration of TSUBAME3.0

（様式 20）成果報告書

of function calls.

We tested five HPC applications shown on

TSUBAME3.0. Four out of the five applications

(i.e., EP, FT, IS, and MG), which we selected from

the NAS Parallel Benchmark suite, are simple

and stress particular properties. The remaining

application, LULESH, is more complex and we

selected it from the CORAL-2 Benchmark suite.

The scales used for model generation are

summarized in Table 3. We executed an

application for every combination of the scale

parameters shown in the table and then entered

all the resulting function call counts into Extra-P

to generate the models. For example, we executed

EP at 30 scales (6 types of process counts 5

types of problem sizes) in total.

Using the models generated by Extra-P, we

predicted the function call counts of each

application for the three types of process counts

and input data shown in Table 4. We note that

these targeted scales are larger than the data

collection scales shown in Table 3. In the next

section, we focus on the functions executed at all

the scales listed in Tables 3 and 4. Our

experimental results exclude a few functions

executed only at a specific scale.

We used the following two metrics to evaluate

prediction accuracy.

MAPE: The accuracy of a model is often

evaluated using the mean absolute percent

error (MAPE), which is the average of the

absolute error rate between the model's

output values () and the observed values ().

It can be expressed by the following formula:

where N is the number of data points.

Weighted MAPE: In the MAPE, the errors in

each data point contribute to the overall error

equally; however, the more precise prediction

of a large function call count is helpful for

performance tuning. Therefore, we introduce

the weighted MAPE as the other metric for

prediction accuracy. The weighted MAPE is a

weighted average of the absolute error rate by

the number of function calls and can be

expressed by the following formula:

where and represent the number of

function calls measured for the function

t and the total number of function calls

measured during the execution of a targeted

application at a given scale, respectively.

3.3. Experimental Results

Table 5 summarizes the fitting errors of the

function-call-count models generated by Extra-P.

Table 4. Scales used for prediction

Table 5. Fitting errors in function call count

prediction

Table 3. Benchmark programs and scales

used for model generation. Abbreviations in

italics in the Scales column represent the as

following: pc=process count, ps=problem size,

gs=grid size, it=iterations, kc=key count, and

mv=max value.

（様式 20）成果報告書

As shown in the table, Extra-P produced models

well -fitted to the collected data, in many cases. In

particular, the function-call-count models

generated by Extra-P had an error of 1.58% on

average for FT. A few applications, such as EP

and IS, had large MAPEs because they included

some functions that had irregular patterns in the

function call count. However, the numbers of calls

for such functions were relatively small. Extra-P

provided very accurate models for many functions

that were important to overall performance, even

in such applications.

Figure 1 shows the prediction accuracy of the

generated models for various process counts. The

x-axis represents the process count, and the

y-axis represents MAPE or weighted MAPE. We

note that the y-axis uses the logarithmic scale.

The five bars on each x-label represent the five

applications. We used large input data for this

experiment.

Figure 1 (a) shows that two out of the five

applications (i.e., IS, and LULESH) had small

errors (within 10%). As shown in Table 5, Extra-P

produced function-call-count models well -fitted to

these applications so that the generated models

had high prediction accuracy at the targeted

scales.

By contrast, FT and MG had large MAPEs

because of the inaccuracy of the call-count models

for some functions. However, this inaccuracy may

not become a problem in many use cases because

such functions have relatively small call counts

and are therefore less important than the other

functions. Figure 1 (b) exemplifies this. The

weighted MAPE was up to 2.23%.

Figure 2 shows the prediction accuracy of the

(b) MAPE

(b) Weighted MAPE

Figure 2. Accuracy of function call count

prediction for various input data using large

process counts

(a) MAPE

(b) Weighted MAPE

Figure 1. Accuracy of function call count

prediction for various process counts using

large input data

（様式 20）成果報告書

generated models for various input data. We used

large process counts for this experiment. Similar

to Figure 1, the weighted MAPEs of the models

generated were very small for all combinations of

applications and input data, whereas the MAPEs

were large for a few applications. Thus, we

conclude that Extra-P produced models sufficient

for practical use in function call count prediction.

4. Combining Function Call Count Prediction and

Total Execution Time of Functions Prediction

As described in the previous section, Extra-P

produced accurate function-call-count models, in

many cases. In this section, as a use case for

predicting function call counts, we combine

function call count prediction with the scalability

prediction of the total execution time of a

function.

4.1. Predicting the Total Execution Time of

Functions

 The prediction of the total execution time of a

function is often performed to identify a

scalability bug in a targeted application. As

shown in previous work, it is the main use case of

Extra-P.

The total execution time of function () can be

expressed as follows.

where is the function call count and is the

i-th total execution time of function F.

Generally, Extra-P predicts the total execution

time of function directly. Specifically, we first

collect the total execution time of each function

() while executing a targeted application at

various small scales. Next, we enter the collected

data into Extra-P and then create a total

execution time of function model for each function.

Finally, we predict the total execution time of

function executed at a targeted scale using the

generated model (the direct method in Figure 3).

Hereafter, we call this the direct approach

because we need to distinguish between this

approach and our approach proposed in the next

section.

4.2. Combined Approach

Theoretically, the total execution time of

function can be expressed as follows.

where is the average execution time of

function per call.

Because the execution scales (i.e., process counts

and input data) have different influences on the

call count () and total execution time of

function per call (), the direct modeling of is

difficult for some functions. For such functions,

prediction accuracy can be improved by

developing individual models for and , and

then combining the predicted results using the

models (the combined method in Figure 3). We

call this the combined approach and use Extra-P

to model both and .

4.3. Experimental Methodologies

Many profiling tools report two types of total

execution time of function. One is inclusive time,

which includes the time taken by all callees. The

other is exclusive time, which represents the time

taken by the targeted function itself. In this study,

we performed the prediction for both inclusive

and exclusive time.

Figure 3. Overview of prediction of total

execution time of functions

（様式 20）成果報告書

We used the same experimental system

described in Section 3.2. We also used the

benchmark programs and execution scales listed

in Tables 3 and 4.

We evaluated the cost of data collection, in

addition to fitting errors and prediction accuracy.

We define the cost of collecting data (C) for an

application (app) executed on M cores as follows:

Because many supercomputing services require

users to buy points, which are consumed based on

the product of the computing time and number of

computing resources.

Both direct and combined approaches require

model generation and prediction processes in

addition to data collection. These two processes

also consume computing time and resources;

however, they can be executed very quickly, even

on a single compute node. Because the costs of

model generation and prediction are relatively

small compared with the cost of data collection,

we ignore them in this study.

4.4. Experimental Results

The fitting errors for the total execution time of

function models are shown in Table 6. Each entry

represents the MAPE of all models generated by

an approach for an application, and the range

represents the minimum and maximum values in

the case of computing the MAPE for each function.

The table shows that the combined approach

produced models with higher accuracy than the

direct approach when predicting the exclusive

time of functions. In particular, compared with

the direct approach, the combined approach

reduced the fitting error by 20,302% for FT. This

is because, with respect to the exclusive time,

Extra-P can create more precise models for

and than .

Figure 4 shows the accuracy in predicting the

total execution time of function. The x-axis

represents the process count, and the y-axis

represents the MAPE or weighted MAPE. We

note that the y-axis uses logarithmic scale. We

used large input data.

As shown in Figure 4 (a), Extra-P on average

(c) MAPE

(b) Weighted MAPE

Figure 4. Accuracy of prediction of total

execution time of functions for various

process counts using large input data

Table 6. Fitting errors in the total execution time of function prediction. In "x (y-z)," x is the

MAPE, and y and z are the minimum and maximum MAPE per function, respectively

（様式 20）成果報告書

produced inaccurate models in the total execution

time of function prediction. The smallest MAPE

was 58.95+%, even when we used the combined

approach. In particular, FT had a MAPE of

10,000,000+% for the large process count.

Because FT executed many all-to-all

communication functions and they were called

from several locations within the code, it was

difficult for Extra-P to precisely extrapolate the

performance of such functions.

By contrast, we observed different properties of

the models produced by Extra-P in view of the

weighted MAPE. Figure 4 (b) shows that the

models achieved very high accuracy (within 1% of

the weighted MAPE) for four out of five

applications. Therefore, we consider that the

models achieved sufficient accuracy in practice.

Figure 5 shows the prediction accuracy of the

generated models for various input data. We used

large process counts. Similar to Figure 4, the

weighted MAPEs were small, whereas the

MAPEs were large. The models generated had a

weighted MAPE of 1.41%, on average. Thus, we

conclude that Extra-P produced models sufficient

for practical use in total execution time of

function prediction.

Figure 6 shows the cost of collecting the total

execution time of functions. The x-axes represent

the number of execution scales to be collected,

while the y-axes represent costs. The y-axis uses

the logarithmic scale. The blue lines represent the

case of predicting the total execution time of

function and the red lines represent the case of

collecting the total execution time of function

based on actual runs (i.e., using profilers). We

note that the data collection time for the direct

approach was the same as that for the combined

approach.

The figure shows that the cost of predictively

collecting the total execution time of functions

was completely constant across the number of

predicted scales. This is because we ignored

Extra-P's execution cost, which was relatively

small compared with the cost of data collection, as

described in Section 4.3. By contrast, the cost of

collecting the total execution time of function

based on actual runs increased gradually as the

number of predicted scales increased. In

particular, in the case of collecting the total

execution time of function at 27 scales, the

predictive approach reduced the cost of data

collection by 99% for EP compared with the

approach of actually-running the application.

Thus, the predictive approach was effective,

particularly for collecting the total execution time

of function at multiple scales.

5. Conclusions

In this study, we evaluated Extra-P in function

(d) MAPE

(b) Weighted MAPE

Figure 5. Accuracy of prediction of total

execution time of functions for various input

data using large process counts

（様式 20）成果報告書

call count prediction. Our experimental results

showed that Extra-P produced highly accurate

scalability models for various functions in the

case of function call count prediction. Additionally,

we showed that the predicted function call counts

were helpful for improving the prediction

accuracy of the total execution time of functions.

The predicted function call counts may be useful

for the prediction of performance metrics, with

the exception of the total execution time of

functions.

In future work, we will extend the use case of

function call count prediction to the prediction of

other metrics.

Figure 6. Cost of prediction of total execution time of functions

