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Bayesian principles offer a mathematically rigorous way to fundamentally improve and rethink 

continual learning and adaptive AI systems. However, performing approximate Bayesian inference 

for deep learning and large neural networks is still a challenging open question and requires large 

amounts of compute resources. In this project, we employed TSUBAME3.0 to develop new 

state-of-the-art Bayesian deep learning methods. These lay the foundation for our future work on 

developing robust practical AI systems which can continually learn and update their beliefs by 

performing sequential Bayesian inference.   
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背景と目的 
Current machine-learning and AI systems are 

very rigid and struggle to adapt to new 

situations. Sequential Bayesian inference 

offers a principled way to update the current 

beliefs based on newly observed information. 

However, performing exact Bayesian inference 

for large neural network models is 

computationally intractable. The goal of this 

project was to develop new state-of-the-art 

methods for approximate Bayesian inference. 

These algorithms are expected to enable AI 

systems to become more robust to 

perturbations and continually adapt like 

humans and animals.  

  

概要 
The report is structured in three sections. Each 

section corresponds to an algorithm for 

Bayesian deep learning we researched and 

developed using TSUBAME3.0.  

1. Second-Order Optimization via Bayes 

(SOBA) 

2. The Lie-Group Bayesian Learning Rule 

(LieGroup-BLR) 

3. Sharpness-Aware Minimization as an 

Optimal Relaxation of Bayes (bSAM) 
 

結果および考察 
   

1. Second-Order Optimization via Bayes 

(SOBA) 

 

Most of modern deep learning uses optimizers 

to train deep neural networks. The following 

equations show the update-rule of  the popular 

RMSprop / Adam deep learning optimizer:  

 

 
 

To enable deep learning systems to adapt to 

new situations and continually learn, it is 

essential for these models to know what they 

know. However, these models should also 

understand what they don’t know yet and 

should not be overconfident in such situations. 

Starting from a rigorous mathematical theory, 

we have developed a modification of RMSprop 

which can estimate uncertainty in deep 

learning by computing an approximate 

Bayesian posterior. The algorithm is shown in 

the following equations, where the changes to 

RMSprop/Adam are highlighted in red.  

 

 
 

This method allows the deep learning model to 

be uncertain about its decisions in regions 
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where there is no data, as shown in the 

following Figure 1.  

 

 
Figure 1. When training neural networks, using 

our SOBA optimizer instead of RMSprop allows 

the model to be uncertain in situations where 

there is little observed data. This uncertainty is 

essential to quickly adapt to new beliefs once 

more information is observed.  
 

 

The SOBA optimizer offers state-of-the-art 

performance for Bayesian deep learning. A 

previous version was part of our winning solution 

to the NeurIPS 2021 Challenge on Approximate 

Inference in Bayesian Deep Learning 

(https://izmailovpavel.github.io/neurips_bdl_comp

etition/).   
 

TSUBAME3.0 was essential in developing and 

benchmarking this method. Large computational 

resources are required when training neural 

networks on big datasets such as ImageNet or 

simply to train modern neural network 

architectures. In future projects on sequential 

Bayesian inference for large neural networks, 

SOBA will be one of the key ingredients to obtain 

accurate models with well-calibrated uncertainty.  
 

2. The Lie-Group Bayesian Learning Rule 

(LieGroup-BLR) 
 

Due to its mathematical formulation, the SOBA 

optimizer appears to be restricted to perturb 

the weights with Gaussian noise (see the 

Algorithm before Figure 1). In a follow-up work, 

we found a way to generalize SOBA from 

Gaussian noise to arbitrary noise distributions. 

This is achieved by using the mathematical 

framework of Lie groups (see the following 

Figure 2). 

 

 
 

Figure 2. In approximate Bayesian inference, a 

probability distribution (called the Bayesian 

posterior) is estimated. SOBA is restricted to 

Gaussian distributions, but using the Lie-group 

formalism, we were able to generalize to other 

distributions. The figure shows Uniform, 

Rayleigh and Laplace distributions.  
 

In Figure 3, we compare the LieGroup-BLR to 

SGD and the SOBA optimizer (here called 

“iVON”).  We observe that the additional 

flexibility to choose a non-Gaussian noise 

distribution can sometimes improve the results.  
 

 
Figure 3. The developed Lie-Group 

optimization methods improve the performance 

over traditional SGD optimization in terms of 

accuracy and uncertainty on image classification 

datasets with neural network models. 
 

3. Sharpness-Aware Minimization as an 

Optimal Relaxation of Bayes 
Sharpness-Aware Minimization (SAM) is a 

recent method proposed by Google researchers to 

improve generalization and robustness in deep 

learning. The method has been very influential 

over the last years, accumulating over 500 

citations in a short timespan.  

https://izmailovpavel.github.io/neurips_bdl_competition/
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Figure 4. Sharpness-Aware Minimization 

considers the worst-case perturbation in a 

neighborhood, whereas Bayesian approaches 

average over many random perturbations. 
 

In our recent work we discovered a connection 

of SAM to Bayesian approaches, as illustrated in 

the above Figure 4. This connection enabled us to 

propose a Bayesian-SAM method (called bSAM) 

which extends SAM to obtain uncertainty 

estimates.  
 

We illustrate the uncertainty estimation in 

Figure 5. The decision boundary obtained by 

bSAM is more “blurred out”, especially in regions 

where there is no data. In these regions, the 

model is uncertain about the correct prediction. 
 

 
Figure 5. bSAM extends SAM to obtain 

uncertainty estimates without computational 

overhead.  
 

 
Figure 6. The proposed bSAM method improves 

accuracy and uncertainty estimation when 

compared to SAM.  
 

Using TSUBAME3.0 was essential in 

developing and researching our bSAM method on 

large deep learning models.   
 

まとめ、今後の課題 
In this project, we have developed new 

state-of-the-art methods for approximate 

Bayesian inference (SOBA, LieGroup-BLR and 

bSAM). Our next step is to use these 

algorithms to improve sequential and continual 

learning of AI systems, making them more 

adaptive and robust. Furthermore, future effort 

will be spent on applying the approximate 

Bayesian inference algorithms developed in 

this project on larger problems and machine 

learning models. For instance, we want to show 

that our methods can be useful in large-scale 

settings like large language models.   


