
http://www.gsic.titech.ac.jp/sc16

Extreme Big Data (EBD) Overview

Increasing GPU OccupancySpGEMM on GPU

Extreme Big Data - Tools and Library
Next Generation Big Data Infrastructure Technologies
Towards Yottabyte / Year

Our project[1], called EBD, aims to achieve the
convergence of extreme supercomputing and big
data in order to cope with explosion of data from
multiple sources such as massive numbers of sen-
sors whose resolution is increasing exponentially,
high resolution simulations generating huge data
results, as well as evolution of social infrastruc-
tures that allow for “opening up of data silos”, i.e.,
data sources being confined within an institution,
much as how scientific data are being handled in
the modern era as common asset openly accessi-
ble within and across disciplines. Our primary
target proxy applications include metagenomics,
social simulation, climate simulation with real-time
data assimilation, and machine learning. Based on
these EBD co-design applications, we define
future EBD convergent SW/HW architecture and
system. We have several on-going collaboration
work with RIKEN AICS, ORNL, LLNL, ETH and
JST Graph CREST / Univ. Kyushu.

[1] S. Matsuoka, et al. “Extreme Big Data (EBD): Next generation big data infrastructure technologies
towards yottabyte/year”, Supercomputing frontiers and innovations, 2014.

We have devised new Sparse General Matrix-Matrix Multiplication
algorithm on GPU, which achieves further speedups and reduces
memory usage so that various matrix data can be applied by
utilizing GPU’ s on-chip shared memory and appropriate assigning
of GPU resources.

Two Phases Algorithm : 1st phase
counts the number of non-zero
elements of output matrix, and 2nd
phase calculates the output matrix
 Reduce memory usage
Grouping rows (2, 4)
 Better utilization of GPU resources
Two ways threads assignments
 Improve the load-balance
Hash table on fast shared memory
 Accelerate (3)counting part and
 (6)calculation part

[1] Dalton et al., “CUSP: Generic parallel algorithms for sparse
matrix and graph computations ver.0.5.1”
[2] NVIDIA, “Nvidia cuda sparse matrix library (cuSPARSE)”
[3] Liu et al., “An Efficient GPU General Sparse Matrix-Matrix
Multiplication for Irregular Data” , IPDPS2014

0
1
2
3
4
5
6
7
8
9

10

M
ax

im
um

 M
em

or
y

Al
lo

ca
tio

n
Ra

tio
co

m
pa

re
d

to
 c

uS
PA

RS
E

CUSP BHSPARSE PROPOSAL

0

5

10

15

20

25

G
FL

O
P

S

CUSP cuSPARSE BHSPARSE PROPOSAL

0

0.5

1

1.5

2

2.5

3

Economics Circuit Epidemiology webbase

G
FL

O
P

S

CUSP cuSPARSE BHSPARSE PROPOSAL

Multi-GPU batch-queue systems usually experience large number
of idle GPUs due to the scattered idle-GPU problem (Fig.1). We
addressed this problem by allowing jobs to utilize remote GPUs and
migrating execution on a remote GPU back to a local GPU as soon
as one becomes available. This method enables the systems to
serve more GPU jobs concurrently while minimizing execution time
penalty caused by remote GPU communication.

Fig.1: Job 1 and Job 2 cannot run concurrently
as Job 2 wants two unoccupied GPUs on the
same node.

Fig.2: The archi tecture of mrCUDA, our
middleware for handling remote GPU migration
on top of rCUDA.

Fig.3: GPU occupancy patternswhen using
FCFS (top) and our method (bottom).

m
ak

es
pa

n
is

 re
du

ce
d

by
 ~

30
%

Fig.4: Distribution of jobs’ lifetime (waiting +
execution time) decrease when using our
method compared with FCFS.

Reference: P.Markthub, A.Nomura, and S.Matsuoka, “Serving More GPU Jobs, with Low Penalty, using Remote GPU
Execution and Migration,” IEEE Cluster 2016.

Speedup is up
to x4.0

10.3% reduction on
average from cuSPARSE

For more details, please visit SC Regular Poster
“Fast Sparse General Matrix-Matrix Multiplication
on GPU with Low Memory Usage”

(2) Group rows by the number of intermediate products

(1) Count the number of intermediate products of each row

(3) Count the number of non-zero elements of each row of output
matrix for all groups with CUDA kernels and streams

(5) Group rows by the number of non-zero elements

(4) Set row pointers of output matrix to store in CSR by Thrust scan

(6) Calculate the output matrix for all groups with CUDA kernels
and streams

a. Calculate values and column indices on hash table
b. Shrink table to hold only non-zero elements
c. Sort by column index in ascending order

This Research is Supported by JST, CREST

Acknowledgments. This research was supported by JST, CREST (Research Area: Advanced Core Technologies for Big Data Integration). Acknowledgments. This research was supported by JST, CREST (Research Area: Advanced Core Technologies for Big Data Integration).

