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Extreme Big Data (EBD) Overview

Increasing GPU OccupancySpGEMM on GPU

Extreme Big Data - Tools and Library
Next Generation Big Data Infrastructure Technologies
Towards Yottabyte / Year 

Our project[1], called EBD, aims to achieve the 
convergence of extreme supercomputing and big 
data in order to cope with explosion of data from 
multiple sources such as massive numbers of sen-
sors whose resolution is increasing exponentially, 
high resolution simulations generating huge data 
results, as well as evolution of social infrastruc-
tures that allow for “opening up of data silos”, i.e., 
data sources being confined within an institution, 
much as how scientific data are being handled in 
the modern era as common asset openly accessi-
ble within and across disciplines. Our primary 
target proxy applications include metagenomics, 
social simulation, climate simulation with real-time 
data assimilation, and machine learning. Based on 
these EBD co-design applications, we define 
future EBD convergent SW/HW architecture and 
system. We have several on-going collaboration 
work with RIKEN AICS, ORNL, LLNL, ETH and 
JST Graph CREST / Univ. Kyushu.

[1] S. Matsuoka, et al. “Extreme Big Data (EBD): Next generation big data infrastructure technologies 
towards yottabyte/year”,  Supercomputing frontiers and innovations, 2014.

We have devised new Sparse General Matrix-Matrix Multiplication 
algorithm on GPU, which achieves further speedups and reduces 
memory usage so that various matrix data can be applied by 
utilizing GPU’ s on-chip shared memory and appropriate assigning 
of GPU resources.

Two Phases Algorithm : 1st phase 
counts the number of non-zero 
elements of output matrix, and 2nd 
phase calculates the output matrix
     Reduce memory usage
Grouping rows (2, 4)
     Better utilization of GPU resources
Two ways threads assignments
     Improve the load-balance
Hash table on fast shared memory
     Accelerate (3)counting part and 
    (6)calculation part

[1] Dalton et al., “CUSP: Generic parallel algorithms for sparse 
matrix and graph computations ver.0.5.1”
[2] NVIDIA, “Nvidia cuda sparse matrix library (cuSPARSE)”
[3] Liu et al., “An Efficient GPU General Sparse Matrix-Matrix 
Multiplication for Irregular Data” , IPDPS2014
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Multi-GPU batch-queue systems usually experience large number 
of idle GPUs due to the scattered idle-GPU problem (Fig.1). We 
addressed this problem by allowing jobs to utilize remote GPUs and 
migrating execution on a remote GPU back to a local GPU as soon 
as one becomes available. This method enables the systems to 
serve more GPU jobs concurrently while minimizing execution time 
penalty caused by remote GPU communication.

Fig.1: Job 1 and Job 2 cannot run concurrently 
as Job 2 wants two unoccupied GPUs on the 
same node. 

Fig.2:  The archi tecture of  mrCUDA, our 
middleware for handling remote GPU migration 
on top of rCUDA.

Fig.3: GPU occupancy patternswhen using 
FCFS (top) and our method (bottom).
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Fig.4: Distribution of jobs’ lifetime (waiting + 
execution time) decrease when using our 
method compared with FCFS.

Reference: P.Markthub, A.Nomura, and S.Matsuoka, “Serving More GPU Jobs, with Low Penalty, using Remote GPU 
Execution and Migration,” IEEE Cluster 2016.

Speedup is up 
to x4.0

10.3% reduction on 
average from cuSPARSE

For more details, please visit SC Regular Poster
“Fast Sparse General Matrix-Matrix Multiplication 
on GPU with Low Memory Usage”

(2) Group rows by the number of intermediate products

(1) Count the number of intermediate products of each row

(3) Count the number of non-zero elements of each row of output 
matrix for all groups with CUDA kernels and streams

(5) Group rows by the number of non-zero elements

(4) Set row pointers of output matrix to store in CSR by Thrust scan

(6) Calculate the output matrix for all groups with CUDA kernels 
and streams

a. Calculate values and column indices on hash table
b. Shrink table to hold only non-zero elements
c. Sort by column index in ascending order
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