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Ultra-fast Metagenome Analysis Exhaustive PPl Predictions

Metagenome Analysis Protein-Protein Interactions (PPls)
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Predicting Statistics of a Distributed DL System

Collaborative work with DENSO CORPORATION and DENSO IT LABORATORY, INC
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Algorithms and Tools for Computational Linguistics

Process billion-words scale corpora in-memory, distributed, fast
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Corpus: large Efficient and compact in- Distributed implemen- Compressed Sparse performance distributed
collection of texts tra-node data structure tation with MPI library Row format stored to sparse linear algebra library
based on ternary trees parallel storage in hdf5 for dimensionality reduction
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