

Big Data Cloud Infrastructure for Big Data Analysis

Inter-Cloud Infrastructure for Big Data Analysis

Building a Testbed Infrastructure on Overlay Cloud

- Using SINET5 network infrastructure (100Gbps Network)
- Cooperation with various computing resources
- Private cloud
- Public cloud
- Supercomputer
- Providing the Science Data Repository
 - Testbed: Peta Bytes class object storage
- Real System: Exa Bytes class object storage

Collaboration work with NII, NIG, Hokkaido Univ. and Kyushu Univ. For more details, Please visit following booths

#2908, "National Institute of Informatics"

#3658, "Hokkaido University"

#3637, "Kyushu University"

Acknowledgments. This research is supported by CREST, JST (Research Area: Advanced Core Technologies for Big Data Integration).

Cloud-Based Burst Buffer for I/O Acceleration

Background

- Cloud storage cannot provide enough I/O throughput for data intensive applications.
- Loose consistency model in cloud storage
- No support of N-1 Concurrent write

Proposal

- Cloud-based Burst Buffer as a new tier in cloud storage hierarchy.
- Several dedicated instances as burst buffers to accelerate access-

System

- The whole system consists of several Sub CloudBBs (SCBB)
- Each SCBB consists of a Master (metadata server) and several IOnodes (data server).
- Fault Tolerance supports

es by buffering intermediate data.

Acknowledgments. This research is supported by CREST, JST (Research Area: Advanced Core Technologies for Big Data Integration).

Cloud for HPC

Backgroud

Cloud platforms exhibit elasticity, flexibility, usability and scalability, which have been attracting users to use these environments as a cost effective measure to run their applications or businesses. However, the feasibility of running high performance computing applications on clouds has always been a concern mainly due to virtualization overheads and high-latency interconnection network.

TSUBAME-KFC • Computation • Communication • Stall 90,000 <

NICAM-DC-MINI: A compute-intensive miniapp from Fiber miniapp suite

Goals

To investigate the potential role of these virtual machines in addressing the needs of HPC and data-intensive workloads
Subame-KFC
Graph500 Benchmark at Scale 26
TSUBAME-KFC

Experimentation

Performance evaluation of applications on AWS C4 instances against the baseline results of a supercomputer, TSUABME-KFC

Poster at SC16:

"Towards Understanding HPC-Big Data Convergence Using Cloud Platforms", Shweta Salaria, Kevin Brown, Hideyuki Jitsumoto, Satoshi Matsuoka * 2 MPI ranks and 12 openmp threads per node achieved the best performance on TSUBAME-KFC. In case of AWS EC2, it was 8 MPI ranks and 12 openmp threads per instance.

TSUBAME-KFC: Intel Xeon E5-2620v2 x2, InfiniBand FDR Amazon EC2 c4.8xlarge instance: Intel Xeon E5-2666v3, 10Gbps Ethernet

Acknowledgments. This research is supported by CREST, JST (Research Area: Advanced Core Technologies for Big Data Integration).

http://www.gsic.titech.ac.jp/sc16