
https://www.gsic.titech.ac.jp/sc19

Fast Algorithms for HPC and Deep Learning

Large-scale Mesh-based and Particle-based Simulations
Large-scale Granular Simulation

Discrete element method
(DEM) is often used to simu-
late granular dynamics and
its simple algorithm with the
contact interaction is suitable
for GPU computing. Howev-
er, so many particles are in-
cluded and the particle distri-
butions are changing in time
a n d s p a c e . A d y n a m i c
domain decomposition has
to be introduced for multi-

ple-node computing. In a bunker shot, the sand wedge does not hit the golf
ball directly and transferring the force through the sand to the ball in order to
reduce the impact. In this simulation, 16.7 million DEM particles are used to
represent the dynamics of the sands with 256 GPUs.

Adaptive Mesh Refinement for Multi-phase Flows
Simulations for multi-phase flows require

high-resolution grids to capture phenomena
at the interface. By using the adaptive mesh
refinement (AMR) method, which dynamical-
ly adapts high-resolution grids to interfaces,
computational cost and memory usage are
reduced. The spatial distribution of a compu-
tational load change in time; therefore, dy-
namic domain partitioning using a space-fill-
ing curve is introduced for multi-GPU com-
puting to assign an equal number of grid
points to each GPU. The figures show the
large-scale free-surface flow simulations for
the dam-breaking process and correspond-

ing domain decomposition for 64 GPUs.

Dynamic Load Balancing using A Space-filling Curve
For la rge-sca le par t i -

cle-based simulation and
Adaptive Mesh Refinement
(AMR), it is a critical issue
to achieve computational
load balance and equal
memory usage on multiple
compute nodes. A domain
partitioning in terms of a
space-filling curve(SFC) is
one of the promising candi-
dates, and it recognizes a
1-dimensional mapping of

3-dimensional space by cutting with an equal length. Due to the low cost of
SFC domain partitioning, it is suitable for frequent re-partitioning in the simula-
tions of unsteady phenomena.

A Hilbert CurveA Hilbert Curve

A weakly compress-
ible scheme with an in-
terface-adapted AMR
method for incompress-
i b l e g a s - l i q u i d
two-phase flows with-
out solving the Poisson
equation has been de-
veloped. The fully ex-
plicit time integration is

Weak-Compressible Flow Computations for
Gas-Liquid Two-Phase Flows

achieved by solving the pressure evolution equation derived from the com-
pressible Naiver-Stokes equation under the condition of isothermal and
low-Mach number. To reduce volume oscillation, the conservative Allen-Cahn
equation coupled with Level-set method is solved. The results of benchmarks
agree well with those of semi-implicit incompressible solvers and simulated
2D/3D soap bubble forming problems.

Training ImageNet in 2 minutes on 2048 GPUs
Data-parallel training of deep neural

networks suffers from the large-batch
problem, where the generalization gap
increases as the mini-batch size in-
creases proportionally to the number of
GPUs. Using the Kronecker Factoriza-
tion mention on the right, we are able to
use a second order opt imizat ion
method with minimum overhead, which
allows us to retain the convergence
even for extremely large batch sizes.

We trained ImageNet in 2 minutes on 2048 GPUs, using a batch size of
131,072.

Kronecker Factorization in Deep Learning
The use of second order methods for

optimizing deep neural networks
could offer better convergence, but
the calculation of the Hessian is pro-
hibitively expensive. The use of Kro-
necker factorization for the Hessian
matrix is a natural approach since it is
constructed during back-propagation

from the Kronecker product. By using Kronecker factorization, we are able to
use second order optimization in deep learning with minimum overhead. Our
distributed memory implementation switches to model-parallelism during the
calculation of the Kronecker factors and further reduces the overhead to make
the per iteration time competitive with SGD.

TSQR on TensorCores

on the latest GPUs to perform the TSQR much faster than usual. We investi-
gate the amount of performance we can achieve when using different preci-
sion (FP16 and FP32) along with the TensorCore. We find that we can get
close to 15 TFlops for tall matrices.

The compression of H-ma-
trices involves a QR decom-
position of tall and skinny
matrices --TSQR. Since the
goal of the compression is to
perform a low-rank approxi-
mation of the original dense
matr ix , the accuracy re-
quired for this operation is
not so high. This means that
we can use the TensorCores

Data-driven H-matrix Factorization on GPUs
Matrix factorization is dif-

ficult to parallelize due to
its dependency between
the blocks. This difficulty is
amplified by load-balanc-
ing issues when some of
the blocks are low-rank. It
is even more complicated
when the blocks are hier-
archically subdivided.
We tackle this challeng-

Applications on TSUBAME3.0
Fast Algorithms and Large Scale CFD

ing problem of H-matrix factorization and port the code to GPU. We devel-
oped our light-weight scheduler because existing ones like StarPU have too
much overhead at the granularity we want to use it. Our implementation
shows, for the first time, an ideal O(N) scalability on GPUs.

