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Fast Algorithms for HPC and Deep Learning

Large-scale Mesh-based and Particle-based Simulations
Large-scale Granular Simulation

Discrete element method 
(DEM) is often used to simu-
late granular dynamics and 
its simple algorithm with the 
contact interaction is suitable 
for GPU computing. Howev-
er, so many particles are in-
cluded and the particle distri-
butions are changing in time 
a n d  s p a c e .  A d y n a m i c  
domain decomposition has 
to be introduced for multi-

ple-node computing. In a bunker shot, the sand wedge does not hit the golf 
ball directly and transferring the force through the sand to the ball in order to 
reduce the impact. In this simulation, 16.7 million DEM particles are used to 
represent the dynamics of the sands with 256 GPUs.

Adaptive Mesh Refinement for Multi-phase Flows
Simulations for multi-phase flows require 

high-resolution grids to capture phenomena 
at the interface.  By using the adaptive mesh 
refinement (AMR) method, which dynamical-
ly adapts high-resolution grids to interfaces, 
computational cost and memory usage are 
reduced. The spatial distribution of a compu-
tational load change in time; therefore, dy-
namic domain partitioning using a space-fill-
ing curve is introduced for multi-GPU com-
puting to assign an equal number of grid 
points to each GPU. The figures show the 
large-scale free-surface flow simulations for 
the dam-breaking process and correspond-

ing domain decomposition for 64 GPUs.

Dynamic Load Balancing using A Space-filling Curve
For  la rge-sca le  par t i -

cle-based simulation and 
Adaptive Mesh Refinement 
(AMR), it is a critical issue 
to achieve computational 
load balance and equal 
memory usage on multiple 
compute nodes. A domain 
partitioning in terms of a 
space-filling curve(SFC) is 
one of the promising candi-
dates, and it recognizes a 
1-dimensional mapping of 

3-dimensional space by cutting with an equal length. Due to the low cost of 
SFC domain partitioning, it is suitable for frequent re-partitioning in the simula-
tions of unsteady phenomena.

A Hilbert CurveA Hilbert Curve

A weakly compress-
ible scheme with an in-
terface-adapted AMR 
method for incompress-
i b l e  g a s - l i q u i d  
two-phase flows with-
out solving the Poisson 
equation has been de-
veloped. The fully ex-
plicit time integration is 

Weak-Compressible Flow Computations for
Gas-Liquid Two-Phase Flows

achieved by solving the pressure evolution equation derived from the com-
pressible Naiver-Stokes equation under the condition of isothermal and 
low-Mach number. To reduce volume oscillation, the conservative Allen-Cahn 
equation coupled with Level-set method is solved. The results of benchmarks 
agree well with those of semi-implicit incompressible solvers and simulated 
2D/3D soap bubble forming problems.

Training ImageNet in 2 minutes on 2048 GPUs
Data-parallel training of deep neural 

networks suffers from the large-batch 
problem, where the generalization gap 
increases as the mini-batch size in-
creases proportionally to the number of 
GPUs. Using the Kronecker Factoriza-
tion mention on the right, we are able to 
use a second order  opt imizat ion 
method with minimum overhead, which 
allows us to retain the convergence 
even for extremely large batch sizes. 

We trained ImageNet in 2 minutes on 2048 GPUs, using a batch size of 
131,072.

Kronecker Factorization in Deep Learning
The use of second order methods for 

optimizing deep neural networks 
could offer better convergence, but 
the calculation of the Hessian is pro-
hibitively expensive. The use of Kro-
necker factorization for the Hessian 
matrix is a natural approach since it is 
constructed during back-propagation 

from the Kronecker product. By using Kronecker factorization, we are able to 
use second order optimization in deep learning with minimum overhead. Our 
distributed memory implementation switches to model-parallelism during the 
calculation of the Kronecker factors and further reduces the overhead to make 
the per iteration time competitive with SGD.

TSQR on TensorCores

on the latest GPUs to perform the TSQR much faster than usual. We investi-
gate the amount of performance we can achieve when using different preci-
sion (FP16 and FP32) along with the TensorCore. We find that we can get 
close to 15 TFlops for tall matrices.

The compression of H-ma-
trices involves a QR decom-
position of tall and skinny 
matrices --TSQR. Since the 
goal of the compression is to 
perform a low-rank approxi-
mation of the original dense 
matr ix ,  the accuracy re-
quired for this operation is 
not so high. This means that 
we can use the TensorCores 

Data-driven H-matrix Factorization on GPUs
Matrix factorization is dif-

ficult to parallelize due to 
its dependency between 
the blocks. This difficulty is 
amplified by load-balanc-
ing issues when some of 
the blocks are low-rank. It 
is even more complicated 
when the blocks are hier-
archically subdivided.
We tackle this challeng-
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ing problem of H-matrix factorization and port the code to GPU. We devel-
oped our light-weight scheduler because existing ones like StarPU have too 
much overhead at the granularity we want to use it. Our implementation 
shows, for the first time, an ideal O(N) scalability on GPUs.


