
https://www.gsic.titech.ac.jp/sc20

VCSEL Optical
Launch Pad

VCSEL Optical
Launch Pad

SRAM

Neuromorphic Accelerator

TSV Interposer

Organic Substrate

NVM / Flash

NVM / Flash

NVM / Flash

2.5D DRAM

2.5D DRAM

2.5D DRAM

2.5D DRAM

3D SRAM

3D SRAM

3D SRAM

Dataflow + Scalar Processor

TSV Interposer

Photonic Network
VCSEL-based Multi-Port High Injection

1Tbps x 12 = 12Tbps

Medium Bandwidth 2.5D DRAM
>64GBytes Capacity
~3TB/s Bandwidth

High Capacity  Flash NVM
>1 TBytes Capacity

Low Latency 3D SRAM
>8GBytes Capacity
>10TB/s Bandwidth

3 nm UV fabrication

Research towards 
Future Supercomputer for Everybody

Web-based Interactive Access to Supercomputer Nodes

To achieve higher performance and larger capacity on recent and future architectures, we need to explore next-gen memory hierarchy, 
including heterogeneous devices. Also placement of many-cores and memory devices can be reconsidered; 3D stacking of cores and 
memory chips may go mainstream in HPC/Big-data area.

Exploring Next-Gen Architecture with Complex Memory Hierarchy
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An Example of Future Architecture with 3D Stacking Technology 
and Heterogeneous Memory

Memory access latency from every core 
of Xeon Phi 7285. As the target of 
access, one of MCDRAM modules, 
placed close to core 4, 5 is used.

max: 176.7 (ns)
min: 161.2 (ns) delta: 15.5 (ns)
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  Under the above-mentioned assumptions, understanding memory 
performance will be more challenging for data and address traffic 
routed among many-cores, which may often conform 2D mesh.
  To analyze its effects, we have conducted preliminary measurements 
of memory latency from every core of Xeon Phi. We see 9% difference 
in the current architecture; the effect will be expanded in future 
architecture where chip cores are also stacked.

Understanding Memory Performance Memory Performance Estimation Tool
  Towards high performance node architecture in future, it is important to 
understand application performance, not only synthetic benchmark.
  For this purpose, we are developing an estimation tool of memory 
performance of future architecture, whose features are:
Light weight: it takes history of the entire application execution as input, 
which can be too heavy for cycle-wise simulators.
To support complex structure: it considers placement of many cores
and topology including chip-lets and memory chips.

Deep Learning Technology Dealing with Deeper Memory Hierarchy
Hybrid data and model parallelism
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Deep Compression focuses 
on shrinking model size 
whilst retaining accuracy of 
trained models. In this work, 
pruning and splicing for 
fine-tuning and adversarial 
training as a regularizer re-
sulting in better accuracy 
and up to 91x compression 
rate without compromising 
on any other performance 
loss.

Deep Compression
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3. Direct Access to
Jupyter on Compute Node
via Web Portal

Supercomputers are traditionally designed to execute large and 
non-interactive jobs with a batch scheduler. This style does not 
match the users who want to interact with compute nodes: debug-
ging, visualization, and education of novice users in the classroom.
In TSUBAME3.0 supercomputer, we introduced two new features 
to satisfy such demands:
Interactive use only nodes: We spare four nodes as dedicated 
nodes for shared interactive use. Users can run interactive jobs 
without waiting for job execution, even if the compute nodes are 
filled with batch jobs. Performance might not be optimal as the 
nodes are shared with multiple jobs, but still acceptable for such in-
teractive usage.
Web-based access to Jupyter Lab on compute nodes: Novice 
users can use command-line shell and Python console running on 
high-performance TSUBAME nodes without any complicated 
knowledge of Linux, such as SSH key-pair authentication.

Second order optimization methods 
require the communication of the 
Hessian matrix. The present method 
reduces the communication signifi-
cantly through Kronecker factoriza-
tion and the use of reduce-scatter and 
allgather collectives to swtich be-
tween data parallel and model paral-
lel execution. The optimal implemen-
tation of allreduce operations has the 
same communication pattern, so the 
present method simply inserts the 
computation of the Hessian.




