
https://www.gsic.titech.ac.jp/sc21

Applications on TSUBAME3.0
Fast Algorithms and Large Scale CFD

Fast Algorithms for HPC and Deep Learning

Large-scale Mesh-based and Particle-based Simulations
Large-scale Granular Simulation

Discrete element method
(DEM) is often used to
simulate granular
dynamics and its simple
algorithm with the contact
interaction is suitable for
GPU computing.
However so many
particles are included and
the particle distributions
are changing in time and
space. A dynamic domain

decomposition has to be introduced for multiple-node computing. In a
bunker shot, the sand wedge does not hit to the golf ball directly and
transferring the force through the sand to the ball in order to reduce the
impact. In this simulation, 16.7 millions of DEM particles are used to
represent the dynamics of the sands with 256 GPUs.

AMR for Multi-phase Flows
Simulations for multi-phase flows
require high-resolution grids to
capture phenomena at the interface.
By using the adaptive mesh
refinement (AMR) method, which
dynamically adapts high-resolution
grids to interfaces, computational cost
and memory usage are educed. The
spatial distribution of a computational
load change in time; therefore,
dynamic domain partitioning using a
space-filling curve is introduced for
multi-GPU computing to assign an
equal number of grid points to each
GPU. The figures show the

large-scale free-surface flow simulations for the dam-breaking process
and corresponding domain decomposition for 64 GPUs.

Dynamic Load Balancing using A Space-filling
Curve

For large-scale
particle-based
simulation and Adaptive
Mesh Refinement
(AMR), it is a critical
issue to achieve
computational load
balance and equal
memory usage on
multiple compute
nodes. A domain

partitioning in terms of a space-filling curve(SFC) is one of promising
candidates and it is recognized that a 1-dimensional mapping of
3-dimensional space by cutting the equal length. Due to low cost of
SFC domain partitioning, it is suitable for frequent re-partitioning in the
simulations of unsteady phenomena.

A Hilbert Curve

Foam formation with
a stable thin liquid
film is very difficult to
simulate using
conventional
methods due to the
limitation of mesh
resolution that can
be used. We

A Large-scale Foam Simulation
using a Multi-phase Field LBM and AMR

addressed this issue by using a Multi-phase Field Lattice Boltzmann
Method and Adaptive Mesh Refinement. Using the Multi-Phase Field
LBM, we can prevent a “numerical coalesce” phenomenon that leads to
bubble break-up. Adaptive Mesh Refinement has been introduced so
that the thin liquid film can be simulated efficiently. Herein, we
demonstrate a simulation of foam formed from 200 air bubbles using
our proposed method.

Training ImageNet in 2 minutes on 2048 GPUs
Data-parallel training of deep
neural networks suffers from the
large-batch problem, where the
generalization gap increases as
the mini-batch size increases
proportional to the number of
GPUs. Using the Kronecker
Factorization mention on the right,
we are able to use a second order
optimization method with minimum

overhead, which allows us to retain the convergence even for extremely
large batch sizes. We trained ImageNet in 2 minutes on 2048 GPUs,
using a batch size of 131,072.

Memory Efficient Deep Learning
The size of deep neural networks
continues to grow rapidly, where
models like GPT-3 and
Megatron-LM exceed the memory
capacity of a single GPU. The trend
in computer architecture where the
arithmetic throughput is growing
faster than memory capacity,
suggests that memory consumption
is a critical issue in deep learning.
We reduce the memory usage of
deep neural networks by scattering,
recomputing, and offloading the
model parameters and activations.

Error Correction for TensorCores

previous work. We develop a novel method that also corrects for this
error, which allows us to exactly match an GEMM in single precision,
while exploiting the compute capability of TensorCores.

TensorCores multiply two 16bit
matrices and accumulate into a
32 bit matrix. This conversion to
16bit results in a significant loss
in precision. The use of an
auxiliary 16bit matrix to store
the mantissa loss is know to
partially correct this error.
However, the round-to-zero in
TensorCore accumulation is
another source of error that has
not been accounted for in

Structured low-rank matrices can
reduce the complexity of dense
matrix multiplication and
factorization from O(N3) to O(N).
There are many variants of
structured low-rank matrices, and
we are investigating the trade-offs
between computational work,
parallelism, communication, load
imbalance to achieve the best
performance. There are very few
high performance implementations
of these type of matrices, which
result in batched, small,
rectangular matrix operations.

Structured Low-Rank Matrices

