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Applications on TSUBAME3.0
Fast Algorithms and Large Scale CFD

Fast Algorithms for HPC and Deep Learning

Large-scale Mesh-based and Particle-based Simulations
Large-scale Granular Simulation

Discrete element method 
(DEM) is often used to 
simulate granular 
dynamics and its simple 
algorithm with the contact 
interaction is suitable for 
GPU computing. 
However so many 
particles are included and 
the particle distributions 
are changing in time and 
space. A dynamic domain 

decomposition has to be introduced for multiple-node computing. In a 
bunker shot, the sand wedge does not hit to the golf ball directly and 
transferring the force through the sand to the ball in order to reduce the 
impact. In this simulation, 16.7 millions of DEM particles are used to 
represent the dynamics of the sands with 256 GPUs.

AMR for Multi-phase Flows
Simulations for multi-phase flows 
require high-resolution grids to 
capture phenomena at the interface.  
By using the adaptive mesh 
refinement (AMR) method, which 
dynamically adapts high-resolution 
grids to interfaces, computational cost 
and memory usage are educed. The 
spatial distribution of a computational 
load change in time; therefore, 
dynamic domain partitioning using a 
space-filling curve is introduced for 
multi-GPU computing to assign an 
equal number of grid points to each 
GPU.  The figures show the 

large-scale free-surface flow simulations for the dam-breaking process 
and corresponding domain decomposition for 64 GPUs.

Dynamic Load Balancing using A Space-filling
Curve

For large-scale 
particle-based 
simulation and Adaptive 
Mesh Refinement 
(AMR), it is a critical 
issue to achieve 
computational load 
balance and equal 
memory usage on 
multiple compute 
nodes.  A domain 

partitioning in terms of a space-filling curve(SFC) is one of promising 
candidates and it is recognized that a 1-dimensional mapping of 
3-dimensional space by cutting the equal length. Due to low cost of 
SFC domain partitioning, it is suitable for frequent re-partitioning in the 
simulations of unsteady phenomena.

A Hilbert Curve

Foam formation with 
a stable thin liquid 
film is very difficult to 
simulate using 
conventional 
methods due to the 
limitation of mesh 
resolution that can 
be used. We 

A Large-scale Foam Simulation 
using a Multi-phase Field LBM and AMR

addressed this issue by using a Multi-phase Field Lattice Boltzmann 
Method and Adaptive Mesh Refinement.  Using the Multi-Phase Field 
LBM, we can prevent a “numerical coalesce” phenomenon that leads to 
bubble break-up. Adaptive Mesh Refinement has been introduced so 
that the thin liquid film can be simulated efficiently. Herein, we 
demonstrate a simulation of foam formed from 200 air bubbles using 
our proposed method.

Training ImageNet in 2 minutes on 2048 GPUs
Data-parallel training of deep 
neural networks suffers from the 
large-batch problem, where the 
generalization gap increases as 
the mini-batch size increases 
proportional to the number of 
GPUs. Using the Kronecker 
Factorization mention on the right, 
we are able to use a second order 
optimization method with minimum 

overhead, which allows us to retain the convergence even for extremely 
large batch sizes. We trained ImageNet in 2 minutes on 2048 GPUs, 
using a batch size of 131,072.

Memory Efficient Deep Learning
The size of deep neural networks 
continues to grow rapidly, where 
models like GPT-3 and 
Megatron-LM exceed the memory 
capacity of a single GPU. The trend 
in computer architecture where the 
arithmetic throughput is growing 
faster than memory capacity, 
suggests that memory consumption 
is a critical issue in deep learning.
We reduce the memory usage of 
deep neural networks by scattering, 
recomputing, and offloading the 
model parameters and activations.

Error Correction for TensorCores

previous work. We develop a novel method that also corrects for this 
error, which allows us to exactly match an GEMM in single precision,
while exploiting the compute capability of TensorCores.

TensorCores multiply two 16bit 
matrices and accumulate into a 
32 bit matrix. This conversion to 
16bit results in a significant loss 
in precision. The use of an 
auxiliary 16bit matrix to store 
the mantissa loss is know to 
partially correct this error. 
However, the round-to-zero in 
TensorCore accumulation is 
another source of error that has 
not been accounted for in 

Structured low-rank matrices can 
reduce the complexity of dense 
matrix multiplication and 
factorization from O(N3) to O(N). 
There are many variants of 
structured low-rank matrices, and 
we are investigating the trade-offs 
between computational work, 
parallelism, communication, load 
imbalance to achieve the best 
performance. There are very few 
high performance implementations 
of these type of matrices, which 
result in batched, small, 
rectangular matrix operations.

Structured Low-Rank Matrices


