
3

TSUBAME 2.0 Begins
The long road from TSUBAME1.0 to 2.0 (Part Two)

GPU Computing for Interstellar
Atomic Hydrogen Turbulence
- 11.5 TFlops with 120 GPU on TSUBAME 1.2 -

Fast Fourier Transform using GPU

the lowest mutual common denominator between the end

points, so that communication can be established. However,

when some glitch occurs that compromises a connection,

and due to some reason the established communication is of

much lower specs, it would be more difficult to detect such

anomalies. Automated means of detecting and compensating

for such performance anomalies are strongly required.

(3) In addition, large-scale supercomputers require constant

monitoring by tens to hundreds of thousands of sensors,

as well as proactive means for allocating resources to its

numerous simultaneous users with extremely large-scale

requests---users may submit tens of thousands of jobs at the

same time, for example. If any portion of the job allocation

algorithm embodies O(n2) behavior, then scaling of the

machine would be catastrophic---a 100 times scaling would

manifest in 10,000-fold increase in overheads.

 By all means, it is important not just for operations, but also

from academic Computer Science perspective, to determine how

much we would be on target with the designed performance,

a n d /o r w h at t h e u n e x p e c te d ove r h ea d w o u l d b e. T h e

computational science users would only benefit from the exercise,

as various factors including performance but also reliability and

usability at scale would greatly affect their actual usage.

 With such a set of objectives, a series of large-scale,

whole-machine benchmarks were conducted just before the

operational commencement of TSUBAME2.0 on November 1, 2010,

mostly throughout late October just after the machine was born:

(a) Linpack---the benchmark employed by the famous Top500[1]

supercomputer performance ranking. Basically, it computes

the LU-decomposition of a very large dense matrix. For an

n-by-n matrix, the computational complexity can be given

as 2/3 n3+ O(n2). This means that, the larger we can make

the problem, up to the point where the entire matrix fits within

the memory of the supercomputer, the more ef ficient the

02

The f irst challenges for the newborn TSUBAME2.0, as its

installation was finishing in Oct., 2010, were large-scale benchmarks

that would use the entire machine, such as Linpack. Such all-

machine benchmark s in the early days of supercomputer

inception are fairly commonplace and important for the following

technical reasons:

(1) T h e n u m b e r o f c o m p o n e n t s e m b o d i e d i n a l a r g e

supercomputer such as TSUBAME2.0 is more than several

thousands of factors greater than a standard PC. Even if we

count merely the number of sockets of compute elements,

namely the GPUs and CPUs, TSUBAME embodies over

7000, whereas a standard PCs only would have one or two.

Memory on PCs would usually be a few gigabytes, whereas

TSUBAME2.0 embodies nearly 100 Terabytes, several tens

of thousands greater. For such numerous components to

perform under prolonged stress is one of the most important

factors in attaining stable and reliable operation, as the failure

rates are roughly proportional to the number of components

in the system; that is to say, a PC which only fails once in the

years would fail over 3 times a day if enlarged to the size of

TSUBAME2.0.

(2) At the same time, it is very important to confirm that expected

design performance is being met in reality is especially

important for supercomputers, as slightest deviation could

profoundly deteriorate overall performance of the system.

It is quite common in a supercomputer for a component

which seemingly function but not performing up to its specs

become the critical performance bottleneck. For example,

the Infiniband network employed in TSUBAME has several

speed specs, and the system automatically detunes itself to

The First Cries of a Newborn:
TSUBAME2.0 1

TSUBAME 2.0Begins
The long road from TSUBAME1.0 to 2.0 (Part Two)
Satoshi Matsuoka*
* Global Scientific Information and Computing Center

TSUBAME2.0 is Japan's first muti-petascale supercomputer with multitudes of innovative in architectural and
software features such as extensive use of GPUs, highly scalable and high-bandwidth node and network design,
as well as massive utilization of advanced I/O technologies such as SSD. TSUBAME2.0 had gone into production operation
as of early Nov., 2010; the part two of the article will cover the benchmarking activities conducted just prior to
that event, characterizing the overall performance of the machine in terms of dense compute-bound applications,
power consumption, and high-bandwidth applications . TSUBAME2.0 became the fourth fastest supercomputer
in the world on the Top500, as well as being awarded the "Greenest Production Supercomputer in the World" award on
the Green 500 in Nov. 2011, and at the sametime setting world record on bandwidth intensive ASUCA weather code,
demonstrating its innovative performance and design.

03

computation becomes due to the communication and other

costs becoming relatively minimized. As a result, top-level

supercomputers employ extremely large matrixes namely

n=several million, and subjects the CPUs/GPUs to the ultimately

high workload for a long duration. The solution algorithm is

delicate with no margin of error---even a single numerical

error for its total O(1019~20) operations would result in an error

in the residual check, which would nullify the entire result.

On the other hand, since the communication complexity

being relatively low being O(n2), a reasonable supercomputer

network would incur less than 10% network overhead. An

extremely slow network such as the Gigabit Ethernet would

end up having the network cost being dominant. Finally,

memory bandwidth requirements are also fairly low.

 Although there is no "of f icial" sof t ware for LU-

decomposition, most supercomputers use the HPL(High

Per formance Linpack)[2] which was designed for large

parallel machines. However, on TSUBAME2.0, we employed

a set of heavily customized versions of HPL for heterogeneous

GPU-CPU computation. One was the Heterogeneous Linpack

that we had been developing on Linux over many years at

the Matsuoka Laboratory, and other was the Windows HPC

Linpack which was the result of our collaboration with and

developed by Microsoft, and naturally running on Windows

HPC. The two programs took a very different approaches to

cope with GPU/CPU heterogeneity, and it was quite interesting

to determine which would be advantageous for the future

advancement of GPU computing.

 Also, we conducted precise measurement of power

consumption of TSUBAME for being ranked high on the Green

500[4], as the most important criteria of TSUBAME2.0 was to

become ultimate green supercomputer of the time.

(b) GPU Version of ASUCA---ASCA is the next generation weather

forecast code for extremely large machines, being developed

by Japan's Meteorological Agency. In collaboration with the

Agency, a group at Professor Aoki's laboratory succeeded

in full porting of ASUCA on a multi-GPU heterogeneous

supercomputing environment [5][6]. The principal computational

kernel of ASCA is a finite difference transport code, requiring

extremely high memor y and network bandwidth, quite

contrasting to Linpack. Previously, such high-bandwidth

application had been perceived to be best served by custom-

design, high-end vector supercomputers; so it was deemed

important that such code would perform extremely well on

TSUBAME2.0, whose chief compute element, GPU, embodies

extremely high bandwidth as a modern-day vector processor

Indeed we expected ASUCA on GPUs to achieve world's

top-level performance on TSUBAME2.0, as the theoretical

memory bandwidth of TSUBAME2.0 is approximately six

times greater than the Earth Simulator, and ASUCA on GPU

was demonstrating to be quite efficient and scalable on

our preliminary tests on TSUBAME 1.2. Such tremendous

per formance was expected to allow real-time weather

prediction at unprecedented resolution and precision.

(c) Also, a set of benchmarks were performed as a part of

acceptance test of TSUBAME2.0.

The whole-machine benchmarks were commenced in mid-

October 2010, immediately after the initial deployment tests of

TSUABME2.0 were completed. We first commenced the Linpack

efforts spearheaded by the two teams running two different

heterogeneous Linpack programs as described above in (a).

Due to the unprecedented load imposed on the machine not

possible on initial tests, we found a number of minor problems as

expected, and resolved the issues one by one to attain stability.

The Linux team at Tokyo Tech. and the Windows HPC team sent

from Microsoft took turns running their respective benchmarks.

Both were very closely matched, but in the end the Linux team's

heterogeneous edged the latter (Figure 1). It is important to note

however that, under slightly different conditions it would have

been be quite possible that the results could have been the

opposite.

 As a result, TSUBAME2.0 recorded 1.192 Petaflops, achieving

approximately 52% of the theoretical peak performance. This is

lower than the typical 70-90% achieved by Linpack on CPU-based

supercomputers. However, it is not technically correct in simply

assuming that GPU-based machines are inherently less efficient

compared to CPU-based ones. For our particular case, the lower

efficiency is due to combination of the following performance

degradation factors:

1. Firstly, the current NVIDIA Fermi GPU as employed in

TUBAME2.0 embodies a set of design bottlenecks that are not

fundamental to GPU computing but rather results of particular

design decisions. Although sufficient for graphics as well as for

high-bandwidth applications where the GPUs are being used

in the similar manner as traditional vector processors, for dense

matrix multiply (Level 3 BLAS) which is the principal kernel of

Linpack, we only achieve 70-75% efficiency. This is substantially

TSUBAME2.0 Linpack
---"The Greenest Production Supercomputer
 in the World" 2

lower than the efficiency achieved by CPUs that exhibit more

than 90% efficiency. However, with architectural as well as

algorithmic improvements we expect future GPUs to match

CPU efficiency in this regard, if not greatly exceed it.

2. For our Heterogeneous Linpack on Linux, CPUs are not utilized

for BLAS kernel computation; however, the Top500 results

mandate us to incorporate the CPU peak performance in

determination of the theoretical peak performance of the

machine. For TSUBAME2.0, the two CPUs on each compute

node (Intel Xeon Westmere 2.93Ghz) constitute approximately

8% of the peak performance, which we lose when we compute

measured versus theoretical performance ratio. By all means

we could conceive an algorithm that does utilize the CPU, and

in fact we did so for TSUBAME1.2[3], but that particular version

proved to be less efficient due to various issues such as load

balancing.

3. Our Heterogeneous Linpack effectively utilizes GPUs as a matrix

multiply engine, where we send the sub-matrices of the matrix

which is stored in CPU memory in stream pipelined fashion,

perform the multiplication, and stream the matrix back. For

normal applications where we typically transfer data in bulk to

the CPU, dense computing algorithms such as matrix multiply

where the compute overhead is O(n3) as opposed to the

transfer overhead being O(n2), enlarging the matrix size n for

pragmatic applications would hide most of the transfer latency.

However, for HPL the sub-matrix size is rather small, with n

being 100~1000, resulting in non-negligible transfer overhead.

 The combination of all the factors above results in

approximately 30% overhead. With advances in the GPU/CPU

architecture as well as algorithms to utilize them efficienctly we

believe that the overhead could be effectively eliminated. By all

means they are subject of future research.

 On the 36th edition of the Top 500 which was announced

during IEEE/ACM Supercomputing held in New Orleans, USA

during November, 2011, TSUBAME2.0 was ranked to be number 4

in the world; this was higher than TSUBAME1.2's initial appearance

in June 2006, which had been 7th in the world. The exhibited

1.192 Petaflops was six times greater than the second ranking

machine in Japan. Moreover, on the Green500, which ranks

supercomputers based on their power efficiency, the average

power consumption of 1243.80KW during the Top500 run resulted

in 958.35 Flops/W, which ranked TSUBAME2.0 to be second in the

world on its initial November announcement. More importantly,

TSUBAME2.0 was recognized to be the "Greenest Production

Supercomputer in the World" (Figure 2), as other top machines on

the Green500 were largely prototypes in nature.

04

TSUBAME 2.0Begins
The long road from TSUBAME1.0 to 2.0 (Part Two)

Figure 1 TSUBAME2.0 Linpack Execution Output.
 Here we see that the Linpack run involved the matrix of n= 2.5 million squared elements ,
 and the run was completed in 2.4 hours, resulting in 1.192 Petaflops which ranked
 TSUABME2.0 to be fourth fastest in the world on the Nov. 2011 edition of the Top500.
 Notice that the residual computation is within the proper error bounds
 which is a required property of the run.

 T h e h i g h r a n k i n g s o f T SUA B M E 2 . 0 o n b o t h l i s t s

simultaneously have an important technological significance.

According to the current rules, it is difficult for a machine to be

high on both lists; in practice, the top supercomputers of the

Top500 are extremely large-scale production supercomputers,

whereas the top rank s of the Green500 are smaller-scale

prototypes and/or special-purpose machines (Figure 3). Only

TSUBAME2.0 is ranked within world's top five on both lists.

Here are why such difficulty exists:

(1) Since the top supercomputers on the Top500 are large scale,

general-purpose production machines worth 10s to 100s of

millions of dollars; as a result they typically embody numerous

elements that are necessary for production runs but will be

detrimental to power efficiency. For example, such machines

incorporate 100s of terabytes of memory which is necessary

for practical high bandwidth/memory applications, but does

not contribute much to increasing the performance of Linpack.

On large machines DRAM power consumption could be as

much as 20-30% of the entire machine. On the other hand, to

shoot for power efficiency on Linpack the best strategy would

be to have rather small memory, but this would limit the

scope of the machine to a very small number of specialized

(typically compute intensive) applications.

(2) The top rank s of Top500 of ten is of ex treme logistical

importance for computing centers and even countries, and as a

result, all other factors could become sacrificed just to go up a

notch in the rankings, including power efficiency in the Linpack

algorithm and settings. On the other hand, if one would shoot

for top ranks of the Green 500, going down in rankings on the

Top500 would not matter---all that matters would be that the

machine being on the Top500. Such difference of objectives

are difficult to coexist especially at the tops of each list.

(3) The Top500 runs of Linpack involve matrix size of n=a few

million, with tens of thousands of processor cores. Unfortunately,

by the nature of the algorithm Linpack is inhererently more

efficient on smaller machines. For example, one typically sees

5-10% drop in performance just by going multi-node, with

increasing overhead with large to machine size [3].

 Despite such disadvantageous, TSUBAME2.0 being ranked

highly on both lists was the reason for the award in Figure 2. By all

means this was not achieved by simple employment of GPUs,

as other GPU machines did not achieve similar results. Rather this

was the result of years of basic research on low power, high

performance computing at Tokyo Tech. GSIC, including the JST-

CREST Ultra Low Power HPC (ULP-HPC) project.

Figure 3
The top ranking machine of November 2010 Top500 and
Green500 and their corresponding rankings on the other list.
(At the very end of 2010 a revised list which ranks Japan
NAO's Grape-DR to be ranked 2+ on the Top500 at 1448.03 and
Top500 being 383; this did NOT change the status of
TSUBAME2.0 being the most power efficient production
supercomputer in the world.)

05

Figure 2 November 2011 Green 500 Special Award for
 "Greenest Production Supercomputer in the World"

(Top500 rank)

US IBM Research BG/Q Prototype (116)

Japan Tokyo Tech/HP/NEC TSUBAME 2.0 (4)

US NCSA Hybrid Cluster Prototype (403)

Japan Riken “K” Supercomputer
Prototype (170)

Germany Julich etc.
IBM QPACE SFB TR (207-209)

Japan NAO Grape-DR Prototype (383)
(Added in Dec.)

#1

#2

#3

#4

#5-7

#2+

：

：

：

：

：

：

：

：

：

：

：

：

1684.20

 958.35

933.06

828.67

773.38

1448.03

The Green 500
Performance/Power Efficiency

(Green500 rank)

China Defense Univ.
Dawning Tianhe 1-A (11)

US ORNL Cray XT5 Jaguar (81)

China Shenzen SC Nebulae (13)

Japan Tokyo Tech. HP/NEC
TSUBAME2.0 (2)

US LLBL Cray XE6 Hopper (30)

JAEA Fujitsu (95)

#1

#2

#3

#4

#5

#33
 (#2 Japan)

：

：

：

：

：

：

：

：

：

：

：

：

2.56 PetaFlops

1.76 Petaflops

1.27 PetaFlops

1.19 PetaFlops

1.054 PetaFlops

0.191 Petaflops

The Top 500
Absolute Performance

TSUBAME2.0 World Rankings
(Nov. 2010 Announcement Top500 and Green500)

Although Linpack/Top500 is a significant metric for supercomputer

performance measurement, for numerous applications that

are largely memory or network bandwidth bound the Top500

numbers are not effective metrics. That is to say, for many

important simulation applications such as computational fluid

dynamics, structural simulations, and even modern apps such

as Internet page rankings, how much ef fective bandwidth

is achieved governs the overall performance, not how much

Flops, and as a result, the baseline availability of theoretical

peak bandwidth as well as the ease at which major fraction of

the peak bandwidth could be achieved, become the dominant

performance factor. Unfortunately, in recent supercomputer

architec tural trends, the amount of available bandwidth

relative to the machine size, as well as its ratio to compute,

is on constant decrease due to various physical limitations.

Vector supercomputers of the past, such as the Cray X series

and the NEC SXes were built precisely for this purpose in

mind, i.e., increase the memory bandwidth during the days

where achieving high compute flops was technologically difficult,

resulting in high computational efficiency as a result.

 Such glory days are over, and in fact we must really re-

think our notion of efficiency for modern machines in terms

of efficiency over the dominant performance bottlenecks, in

this case the memory/network bandwidth, but not compute.

So, the true "efficiency" metric is how much the application is

utilizing the memory/network bandwidth in the system relative

to the theoretical peak available, and has no correlations to the

peak FLOPS of the machine.

 In fact, in this regard we must point out that high

computational efficiency that was apparently achieved in such

classic vector machines were rather artificial and misleading,

the result of technological trend of the times, and is not an

effective metric in the modern times. That is to say, for such

ve c tor machines that under-provisione d the computing

resources do not properly exploit the available opportunity

presented by dense problems and the available locality (e.g.,

due to the lack of cache memory), and as a result, its efficiency

might se em ar ti f icial ly high, but the result ing absolute

performance being relatively low in relevance to the size/cost

of the machine.

 Exactly the same argument applies to GPUs versus CPUs,

but often the same mistake mistakes are made. As had been

mentioned in part one of this article, GPUs exhibit extremely

high memory bandwidth per socket compared to CPUs, but

at the same time, also embody much higher (and effectively

overprovision) compute as well . In fac t, on TSUBAME2.0,

the per-socket peak compute capabil it y of each GPU is

approximately 7 times that of CPU, but at the same time,

measured effective memory bandwidth is also 6-7 times per

socket. So if CPU-based implementation on TSUBAME2.0 would

be obtaining 5% of peak, then it is likely that a GPU-based

implementation would be obtaining similar computational

efficiency, while being 6-7 times faster with the same number

of sockets.

 This in ef fec t allows us to largely conjec ture that

TSUBAME2.0 would be comparable to x86 CPU-based machines

of similar peak performance, or those with socket counts that

are 7 times greater, if no artificial bottlenecks are imposed as

was the case for Linpack. That is to say TSUBAME2.0 with 4200

GPU and 2800 CPU sockets would be roughly equivalent to

a 30,000 socket / 200,000 core x86 CPU-based supercomputer,

which would largely equal the size of ORNL Jaguar. In fact we

can expect that Jaguar would have advantage in compute

but might not perform as well on high bandwidth code, as

the older-generation x86 it employs is much less efficient in

memory but similar in FLOPs utilization.

 The ASUCA benchmark was important in this regard

to determine if such performance estimations would hold

for high-bandwidth applications. In par ticular, since finite

difference solvers for transport codes are known to be mostly

pure memor y-bandwidth limited, the issues are whether

(1) GPUs would be able to ef ficiently utilize the available

memory bandwidth, (2) whether we could achieve 6-7 times

speedup per socket as discussed above, and finally (3) how the

performance would compare as a whole machine to Jaguar in

executing the same or at least very similar weather code.

 For details of the ASUCA code itself the readers are

referred to [5]; the results achieved largely confirmed our

conjec tures (1)-(3) above. The GPU version of ASUCA on

TSUBAME2.0 scaled up to 3990 GPUs[6] almost linearly in weak

scaling (the problem size proportionally increasing relative

to the machine size), and achieved 145 TeraFlops in single

precision, and 76.1 TeraFlops in double precision (Figure 4). The

per-socket performance is approximately 6 times that of CPUs,

confirming our conjecture in real, production-level code.

06

TSUBAME 2.0Begins
The long road from TSUBAME1.0 to 2.0 (Part Two)

Memory and Network Benchmarking
in a Real Application
--- GPU Porting of ASUCA Weather Code and
 its World Record Performance

3

 Moreover, the previous world record holder was the

WRF code, a similar weather code to ASUCA, on Jaguar at

approximately 50 TeraFlops (double precision); so ASUCA was

even faster, by a factor of 10 on a socket-to-socket basis,

we might attribute this to less efficient memory bus of the

older-generation AMD processors in Jaguar, but since the

applications are dif ferent, this result should be taken as

preliminary, and more rigorous benchmarking should be done

using the same applications under a controlled environment.

T here were several other benchmark s that were run on

TSUBAME2.0, including I/O, to confirm that the machine was

running correctly, after which the production operation began

in early November, 2010 as planned. At the time of this writing

numerous users are using TSUBAME2.0 daily imposing high loads.

Large-scale applications that utilize 5000 CPU cores or 1200 GPUs

(that are maximally allocatable under normal operations) are

fairly commonplace. Applications that utilize other aspects of

the system for large-scale data processing, such as the SSD and

the LUSTRE parallel filesystem, are also substantially increasing

in number. Combined, the performance and scaling leap from

TSUBAME1.2 is very apparent, and users seem to be enjoying

the massive capability and relatively forgiving characteristics of

TSUBAME2.0

 However, to best utilize the capability of TSUBAME2.0, one

must utilize its most advanced features. For example, in order to

best utilize the available memory bandwidth the use of GPUs are

a must, but not only this involves programming in extension of C

namely the CUDA language, but also involves fairly sophisticated

hybrid programming involving MPI and CUDA in CPUs and

GPUs. Also GPU performance is more sensitive to algorithms,

programming methods, and data layouts, mandating more careful

tuning process to optimize the performance. This also applies

to other aspects of the system. Fortunately for TSUBAME2.0

networking is less troublesome as the network is configured as a

full-bisection network, allowing the compute nodes to be much

less sensitive to its placement, but for I/O effective hybrid use of

SSDs and LUSTRE is sometimes required.

 From a broader perspective, supercomputers composed

from CPUs that consists of large many-core / multithread / vector

processor, combined with a small number of low latency scalar

cores in proximity, interconnected with multi-rail high-bandwidth

network and I/O capabilities would be the next trend in large

scale supercomputer as a continuum to TSUBAME2.0 architectural

trend. By all means in the not so distant future the two types

of cores would be bonded on the same die, sharing memory.

Such would alleviate many of the complexities as currently being

experienced in hybrid architectures such as TSUBAME2.0 today.

This would allow tremendous number of applications scale to be

petaflop-class, be it compute or memory bound, as we have seen

for Linpack and ASUCA, but with much less effort. In effect, in the

most advanced large-scale GPU applications we are observing

07

Figure 4 ASUCA Benchmarking on TSUBAME2.0 (1).
 Notice that performance scales
 almost linearly to 3990 GPUs.

Figure 5 ASUCA Benchmarking on TSUBAME2.0.
 The per-socket performance difference is
 approximately factor of six,
 confirming the relative difference
 in peak achievable memory bandwidth.

Final Words : Let More Petascale
Applications Begin! 4

the future, where petascale performance is being achieved with

substantial effort, but will be quite the norm, allowing high-end

science and engineering to progress much faster than in the past.

We will continue to strive in TSUBAME2.0 to demonstrate such

possibilities, and prepare for TSUBAME3.0 to be designed and

become operational in 2014, with possibly yet another great leap

in performance.

References

[1] The Top500 Supercomputing Sites http://www.top500.org/

[2] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary. "HPL - A Portable

Implementation of the High-Performance Linpack Benchmark

for Distributed-Memory Computers v.2.0", http://www.netlib.

org/benchmark/hpl/

[3] Endo, T.; Nukada, A.; Matsuoka, S.; Maruyama, N. "Linpack

Ev aluation on a Sup ercomputer with Hetero gene ous

Accelerators", Proc. IEEE Parallel & Distributed Processing (IPDPS)

2010, the IEEE Press, Apr. 2010, pp.1-8.

[4] The Green 500 http://www.green500.org/

[5] Tak ashi Shimok awab e and Tak ay uk i Aok i . "Mult i - GPU

Computing for Next Generation Weather Forecasting", The

TSUBAME E-Scinece Jounal, vol. 2, GSIC Center, Tokyo Institute

of Technology, Nov. 2010, pp.11-15.

[6] T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano, T. Endo, A.

Nukada, N. Maruyama, and S. Matsuoka. "An 80-Fold Speedup,

15.0 TFlops, Full GPU Acceleration of Non-Hydrostatic Weather

Model ASUCA Produc tion Code", Proc. 2010 ACM/IEEE

Supercomputing, The ACM Press, Nov. 2010, pp.1-11.

08

TSUBAME 2.0Begins
The long road from TSUBAME1.0 to 2.0 (Part Two)

First, we would like to mention the JHPCN Program (Joint Usage

/ Research Center for Interdisciplinary Large-Scale Information

Infrastruc tures) through which we gained access to the

machine located in Tokyo Institute of Technology. JHPCN is a

network consisting of eight university-owned supercomputer

facilities in Japan. We’ve been using TSUBAME since 2009

through this program.

 We applied to the JHPCN program as the joint research

between Takayuki Muranushi at The Hakubi Center, Kyoto

Univer sit y and Tsu yoshi Hamada at Nagas ak i Adv ance d

Computing Center, Nagasaki University. Hamada leads the

development and operation of GPU cluster DEGIMA (DEstination

of GPU Intensive Machines). Also there is a small GPU cluster

TenGU (Tenmon GPU Cluster) in Kyoto University. It was useful to

have access to these different types of computers for different

stages of the code development. Joint research brought helpful

communications with the researchers of var ying fields for

code development and research. Also we had many technical,

administrative and clerical supports from Tokyo Institute of

Technology and JHPCN staffs.

We have prepared several themes at the beginning of the

JHPCN program. In this section we will describe one of the

themes, “Numerical Simulation and Analysis of The Two-Phased

Hydrogen Gas Turbulence in Molecular Cloud Forming Region.”

As introduced in the first chapter, this study contributes to the

Takayuki Muranushi *
*The Hakubi Center, Kyoto University

We have performed three-dimensional hydrodynamic simulations to study
the thermal instability of the interstellar medium. The instability is powered by phase-transition of
the atomic hydrogen gas and is one of the sources for turbulence in the interstellar atomic hydrogen gas.
We have also performed clump-detection and spectra analyses, as well as three-dimensional visualizations.
The analyses revealed multi-scale turbulent cascade connecting
the supersonic compressive turbulence at the large scale to the well-known Kolmogorov turbulence.
Such finding was enabled by the massive computational power of the GPU cluster supercomputers.

My favorite word to describe our profession is “armchair

astronaut.” Human beings have sent astronauts to the Moon and

unmanned probes to the end of the Solar System. But to visit

the neighboring stars and collect the evidences will remain a

very hard job for next generations. To overcome the limitations

and understand the mystery of the universe, we have to collect

the observational evidences sitting on the Earth, and carefully

construct the reasoning based on the scientific laws. Computer

simulations are powerful tools for us. They help us understand

how the rich structures are formed out of the simple laws, and

how the structures will look like to our limited eyes. The beautiful

visualizations of today’s advanced simulations make us feel like

travelling the universe while sitting on armchairs.

 What we have studied using TSUBAME is one of the

processes that will determine the mass of the stars. Stars are

born from fragmentation and condensation of the interstellar gas

in the galaxy, which is as thin as one Hydrogen atom per cubic

centimeter. If the typical stars are ten times lighter, the nuclear

fusion won’t ignite and our galaxy will remain dark. If they are

ten times heavier, they will much more rapidly burn Hydrogen

than they do today and our galaxy will be filled with black holes.

The mechanism that sets the adequate initial masses for the stars

--- is the interstellar turbulence driven by the thermal instability.

 Interstellar hydrogen has two stable phases determined by

the balance of various heating and cooling processes such as star

irradiation and molecular line emission. Triggered by supernova

shock waves, the interstellar medium makes phase transits from

the warm, low density phase to numerous clumps of the cold,

high density phase. It takes several more stories until stars and

planetary systems are formed from these clumps. There are lots

of detective works left to do in the universe.

Introduction 1 On the JHPCN program 2

GPU Computing for Interstellar
Atomic Hydrogen Turbulence
― 11.5 TFlops with 120 GPU on TSUBAME 1.2 ―

Simulating the Interstellar Medium 3

09

study of the interstellar medium, one of the various themes in

astrophysics.

 In the galaxy compressive and anisotropic turbulences

of the interstellar medium are obser ved. Considering the

radiative equilibrium, the atomic interstellar hydrogen gas has

bistable equations of state. It is much different from that of the

ideal gas and has two stable phases, differing hundred times

in density (Field et al, 1969[1].) However, observed interstellar

turbulence is described by the homogeneous, isotropic and

incompressive Kolmogorov turbulence spectra (power law index

of the velocity field αv =11/3.) Still, some observations report

significant deviations from the Kolmogorov turbulence (αv=3.87

±0.11) (Chepurnov et.al, 2010[2].) Understanding this turbulence

has been one of the grand challenges for interstellar physics,

requiring simulations of the resolutions of the order 10003. The

use of GPU computer lets us simulate the turbulence for time

much longer than before keeping the high resolutions, and draw

out more detailed information on the turbulent statistics.

 The basic equations to be simulated are the following

Navier-Stokes equations coupled with the heating and cooling

formulae.

For the heating term Γ and the cooling term Λ, numerous

heating and cooling processes contribute (e.g. Koyama & Inutsuka,

2000[3].) Based on that, we use the following fitting formula

proposed by Inoue & Inutsuka (2008)[4]:

Quantities are nondimensionalized based on the following three

scales typical to the interstellar phenomena:

 This means that the sound speed of the gas is about

10km per second, as fast as the speed of a rocket escaping the

Earth. Still, it takes about one hundred thousand years to cross

a parsec (approximately 3.62 light years) with this sound speed.

The simulation region (Figure 1) was 20 parsec each side, and we

have simulated eight sound-crossing times to have the enough

data to study the statistics of the turbulence. The total simulation

corresponds to whopping sixteen million physical years. It is, still

just an instance in the cosmological scales of time.

Figure 1
A visualization of the
14403 simulation performed
on TSUBAME GPU Cluster
at Tokyo Institute of
Technology.

GPU Computing for Interstellar
Atomic Hydrogen Turbulence
― 11.5 TFlops with 120 GPU on TSUBAME 1.2―

10

 Our code can be classified like “MPI GPU Full-Godunov

2nd order MUSCL 3- dimensional uniform mesh　Navier-

Stokes equations solver”. Godunov method is proposed by a

Russian Mathematitian Godunov(1959) [5], and its higher-order

extensions are established by efforts of e.g. van Fig. The idea

of Godunov’s method is to apply the analytic solutions of the

Riemann problems (hydrodynamic problem starting with two

constant initial conditions separated by a wall) to each mesh

boundary. This is necessary treatment to sharply resolve the

shock fronts. The second order version costs about 3000 floating

operations per mesh update. Here, GPU’s high computation

capability comes in handy.

 Of course this code can handle multiple GPUs via MPI

framework. We have implemented checkponiting capabilities,

to overcome the accidental abort of the computing devices

and also overcome the time-limit applied to the job-queues

on supercomputers. We have also implemented irreversibly

compressed data outputs for movie visualizations.

 We have carried out most of our code development

and tuning on DEGIMA. On DEGIMA about 800 NVIDIA GT200

GPU chips are available, and 576 of them was connected via

InfiniBand.It has 514.9Tflops single precision peak performance,

and can handle 1769'4720 threads at most. Total amount of the

video memory was 460GB, total bandwidth was 64.454TB/s. On

DEGIMA we have recorded 40.91Tflops sustained performance on

12803 resolution simulations.

 Next, we have carried out long-run cariculations using

GPU supercomputer TSUBAME. We have reserved TSUBAME three

times: July 6-9,　July 20-23, August 20-24. The hpc1tes2 queue

we have used consisted of 120 NVIDIA GT200 GPU chips and had

124.2Tflops single precision peak performance. The maximum

number of threads available was 122’880. Total amount of the

video memory was 480GB and its bandwidth 1.224TB/s. It costed

132’000 yen. Thus we obtained 14403 resolution simulated data

for about 8 sound crossing times, sufficient for the statistical

analyses of the turbulence. Also we obtained about 200 snapshot

data for the movie. The sustained performance was 11.5Tflops.

Because we have achieved so high resolutions, the analyses and

visualization of the data became challenging tasks and we had to

develop new tools for them. For example, each of the snapshot

data was about 60GB, which is larger than the memory capacity

of typical personal computer. So we have invented algorithms

that consume memory only proportional to the 2-dimensional

cross section of the data, and make minimum number of access

and only sequential access to the disk, while performing the

desired tasks.

 For example, in clump detection analysis we need to detect

high density regions of the gas (Clump) and its surrounding

media (Veil), calculate their physical properties such as density,

sound speed, relative motion, and perform statistical analysis on

them. A naïve implementation for connected component finding

algorithm in three-dimensional grid will require random access on

the 3D grid. We have developed a new algorithm that performs

the above analysis within only (constant)×(two-dimensional cross

section) memory and twice sequential access of the whole data.

The algorithm enabled clump detection analysis in practical time

on PCs while keeping the main data on the disk.

The analysis revealed that the Cold Neutral Medium (CNM)

motion was actually faster than CNM sound speed. However,

each CNM clump is surrounded by unstable medium. The CNM

motion was slower than the sound speed of the surrounding

medium. This suggests that incompressive, Kolmogorov aspect of

the turbulence can be explained by the CNM motion subsonic in

the unstable media.

Analyses and Visualization 4

Figure 2
The Clump Detection Analysis.
The horizontal axis is detected clump mass.
The vertical axis is the clump speed relative to
its surroundings (veil) in Mach numbers. We have found that
clump motion is supersonic in terms of its own sound speed,
but is subsonic in terms of veil sound speed.

11

 To study the turbulence, we have performed spectra

analyses of the 14403 simulation by the following algorithm.

First, create two-dimensional projection for each of the three

axes while scanning the snapshot once. Next, perform two-

dimensional Fourier analysis of the velocit y f ield. Finally,

reconstruct the turbulent spectra using the same method used

in reconstructing the astronomical observation. This algorithm

shortened the time required in Fourier analyses to practical

level and also meaningful in comparing the simulated data with

observations.

 The spectra of the simulated turbulence showed the three-

stage structure that consists of supersonic turbulence regime,

Kolmogorov-like turbulence regime, and numerical dissipation

regime (Figure 3). Overall fit of the density and velocity power

spectra showed significantly agreement with that of Chepurnov

et.al. 2010’s (αv=3.87±0.11) (αε=3.0±0.1.) Supersonic turbulence

regime has softer, and Kolmogorov regime has harder velocity

power spectrum. These findings indicated that non-Kolmogorov

turbulence observed like in Chepurnov et.al. may be explained as

superposition of the supersonic and Kolmogorov turbulences.

 To v i s u a l i z e t h e s i m u l a t i o n a s m o v i e s , w e h a v e

implemented an renderer that can create perspective or parallel

projection plots of various physical quantities with only one or

several times of sequential access to the data. We can clearly see

in the movie the violent displacement of the shock front and

episodic penetration of streaming flows (Figure 1.)

 Also in collaboration with O yamada Lab. in Kyoto

University, specialists of large -scale data visualization, we

have made large and high-resolution visualization using the

40-side tiled display (Figure 4). We have also created a movie

of our simulation on TSUBAME with Prof. Aoki’s help for use in

advertisement of TSUBAME.

 We are continuing the research on this theme, changing

conditions and performing more analyses, to draw out more

physical knowledge.

Based on the experiences earned in the development and

operation of the hydrodynamics code on multi- GPUs, we

begun development of magnetohydrodynamic (MHD) codes

from August. MHD is one of the basic equations to describe

behavior of ionized gas, plasma. Magnetic field takes the essential

roles in many active astrophysical phenomena including accretion

disks, jet activities, the Sun, and the Earth magnetosphere.

MHD is also used to control plasma e.g. in nuclear fusion

reactors studies. Use of GPGPUs in magnetohydrodynamics

will accelerate simulations, and make more high-resolution

simulations possible in those fields of science. It will also

help in engineering connected to our daily lives such as solar

activity prediction and design of spacecrafts.

 Current version of the code is second-order in space

and time. We have adopted HLLD scheme by Miyoshi & Kusano

2005[7] for MHD Riemann solvers. As we develop the MHD code

we have performed various tests, and confirmed that our code

reproduces the known test results (Figure 5).

 From the development experiences of the multi-GPU

hydrodynamics codes, we have learned that simple C-like

coding style will require too many repetitions of lines and

Figure 3 The result of velocity spectrum analysis.

Figure 4 A visualization on 40-side tiled display
　　　　 in collaboration with Oyamada Lab.
　　　　 at Kyoto University.

GPU Computing for Interstellar
Atomic Hydrogen Turbulence
― 11.5 TFlops with 120 GPU on TSUBAME 1.2―

12

From Hydrodynamics to
Magnetohydrodynamics 5

inacceptable. CUDA has C++ capabilities; but we have also

learned limitations of abstractions in C++ style. So we have

designed Cprb (https://github.com/nushio3/cprb,) a simple code

generator for C-like programming languages. Cprb is written in

Haskell and one can meta-program C++ codes in ruby style. We

are writing current version of MHD code in Cprb; it is very fluent.

We hope that Cprb contribute a step in search for new schemes

of parallel programming.

 I would definitely like to solve the mysterious discharge

phenomena in protoplanetary disks. Say, it ’s study of space

thunderstorms that come after studying space clouds. I have in

fact proposed a discharge mechanism powered by collisional

charging of ice particles in protoplanetary disks (Muranushi,

2010 [8]) --- the mechanism similar to lightning on Earth. Also

Inutsuka-Sano (2005) [9] proposed a discharge mechanism arising

from elementary processes of Resistive MHD. The paper above

treated lightning in a one-zone model, but recently Okuzumi

has predicted three-dimensional instability arising from the

mechanism. To study how these phenomena will be active and

saturate, we need three-dimensional Resistive MHD simulations,

possibly coupled with dust component and chemistry. I would

continue to develop codes, making use of the advanced

computing techniques, to meet such goals.

Acknowledgments

Takayuki Muranushi’s research is supported by The Hakubi Center

of Kyoto University. We are deeply grateful to Tsuyoshi Hamada,

Takayuki Aoki and many others for useful advices on coding.

We are also grateful to people working for JHPCN (Joint Usage /

Research Center for Interdisciplinary Large-Scale Information

Infrastructures) Program through which this work was made

possible.

References

[1] Field G. B., Goldsmith D. W., Habing H. J., (1969), Astrophysical

Journal Letters, 155, L149+

[2] Chepurnov A., Lazarian A., (2010), Astrophysical Journal, 710,

853

[3] Koyama, H., & Inutsuka, S. (2000), Astrophysical Journal, 532,

980

[4] Inoue, T. & Inutsuka, S. (2008), Astrophysical Journal, 687:303-

310

[5] Godunov, S. K. (1959), Matematicheskii Sbornik, 47, 271-306

[6] van Leer, B. (1979) Journal of Computational Physics 32, 101-136

[7] Miyoshi & Kusano, Journal of Computational Physics 208 (2005)

315–344

[8] Muranushi, T. (2010), Monthly Notices of the Royal Astronomical

Society. 401, 2641–2664

[9] Inutsuka & Sano, The Astrophysical Journal, Volume 628, Issue 2,

pp. L155-L158 (2005)

Figure 5
An MHD shock-tube test problem,
corresponding to Miyoshi & Kusano
2005[7] Fig. 8. Equations of MHD is
integrated upto t = 0.1 with initial conditions
(ρ, p, vx, vy, vz, By, Bz) = (1, 1, 0, 0, 0, 1, 0) on the left,
(ρ, p, vx, vy, vz, By, Bz) = (0.125, 0.1, 0, 0, 0, -1, 0) on the right,
and Bx = 0.75. Each of the figure above contains 256 meshes.

13

Akira Nukada*
*Global Scientific Information and Computing Center, Tokyo Institute of Technology

Fast Fourier Transform (FFT) is one of the most important computations used in various fields
from multimedia to large-scale simulation.
Therefore, speed-up of the FFT computation benefits many people.
TSUBAME 2.0 compute nodes equips GPUs which accelerates
many kinds of computations. In this column, latest status of GPU FFT is presented.

GPU has very high floating point operation performance as

well as high memory bandwidth, which is a large advantage for

memoryintensive computations. Indeed, many real applications in

high-performance computing areas are categorized as memory-

intensive computations.

The Discrete Fourier Transform (DFT) is used in many fields

of science and engineering. This is a transformation between

physical or time space and frequency space. DFT is used not

only in large-scale simulations such as Molecular Dynamics, but

also in commodity multimedia applications like audio and video

encoding/decoding.

 DFT calculates N outputs Y(k) from N input values X(k) as

described below:

 X(k) and Y (k) are f loating-point complex numbers.

The computation of all outputs requires O(N2) floating-point

operations. However, this computation includes many redundant

operations when N is L multiplied by M. To clarify it, the formula

is transformed as follows.

Introduction 1

Fast Fourier Transform 2
 The first line and third line correspond to L-point DFT and

M-point DFT, respectively. The second line is called multiplication

by twiddle factors. Thus, an N-point DFT can be divided into L

M-point DFTs and M L-point DFTs and some additional operations.

This is the base of Fast Fourier Transform (FFT) algorithm to

calculate DFT efficiently. This transformation can be applied

recursively. If N is a highly composed number, the number of

floating-point operations can be reduced to O(N logN). In this

case, the computation of DFT is now memory-bound.

 Actually, FFT is well known as one of the most memory-

intensive computation in typical benchmark applications. Each

compute nodes of TSUBAME 2.0 has two Intel Xeon X5670

Processors (Westmere-EP 2.93GHz, six cores), which provides

32GB/s with triple-channel DDR3-1333 memory. However, this

bandwidth is not sufficient for the computation of FFT.

 TSUBAME 2.0 compute node has three GPUs (NVIDIA Tesla

M2050) in addition to the CPUs. The memory bandwidth of the

GPUs is about 150GB/s which is more than four times as much

as that of CPUs. The GPU is a main computation resource of

TSUBAME 2.0.

Fast Fourier Transform
using GPU

14

15

One of the latest trends in HPC is generalpurpose computation

using GPU (GPGPU). Current GPUs have sufficient programmability

to implement not only graphics operations but also more generic

computations efficiently. Thus, now GPU is recognized as a

powerful, inexpensive, low-power computation resource.

 In 2006, one of the major GPU vendor NVIDIA introduced

CUDA, which is a new GPU architecture and programming tools

for GPGPU. Since it is much easier than prior conditions, many

of compute intensive applications especially in HPC area were

ported to GPU using CUDA and achieved drastic speed-ups.

 In general, graphics operations do not require high

accurac y. Therefore, GPU suppor ted only single-precision

floating-point operations. For this reason, porting applications

to GPU is always involved with accuracy issues. But latest GPUs

support double-precision floatingpoint operations which enables

compatible computations with the latest CPUs.

 The advantage of GPU computing is not only the high

performance floating-point operations. GPU has also high memory

bandwidth to transfer the data required in the computation. The

memory bandwidth of the Tesla M2050 GPUs is about 150GB/s,

which corresponds to more than four times as much as CPU. This

will be a strong advantage for FFT computations.

Figure 1 shows the performance of FFT using a CPU or a GPU

on TSUBAME 2.0 compute nodes. Performance is calculated in

GFLOPS, where the number of floating-point operations required

in computing an N-point FFT is assumed to be 5N logN.

 We used Intel MKL Library 10.2.5 and FFTW 3.1.2 as FFT

libraries using CPU. Both of them are installed on TSUBAME 2.0

system by default. To measure the performance, all of the six cores

of a CPU are used by multi threading. For FFT library for GPUs, we

used NVIDIA’s CUFFT library 3.1 and our NukadaFFT library 1.0. The

CUFFT library is provided as a part of the CUDA toolkit packages as

well as BLAS library and so on.

 Performance of FFTW library is almost the same as that

of MKL library. Of course, their implementation is quite different

from each other. However, the achieved performance is basically

limited by the memory access.

 On the other hand, the performance of NukadaFFT library

is much higher than CUFFT library.

This means, the FFT routines in double precision is not well

optimized yet. Actually, its performance in single precision is very

high. Of course, the performance using GPU is much higher than

that using CPU.

Performance of FFT
using CPU or GPU 4GPGPU 3

Figure 1
This graph shows performance (GFLOPS) of
128-point, 256-point, and 512-point FFT
with batch=65,536, in double precision.
Intel MKL Library 10.2.5 and FFTW library 3.1.2
use a six-core CPU (Westmere-EP, 2.93GHz),
and NVIDIA CUFFT library 3.2 and
NukadaFFT library 1.0
use a GPU (NVIDIA Tesla M2050).

 T here can be many k inds of GPU implementation

to compute FFTs. To achieve high performance, we have to

implement programs for each transform size.

 GPU model is another large fac tor. When we were

developing the essential part of the NukadaFFT library, neither

Tesla M2050 nor GeForce GTX 480 existed. The development

was done on older-generation GPUs such as GeForce GTX 280.

Now the library shows competitive performance even on next

generation GPUs. This is because of the auto-tuning features of

the library.

 The auto-tuning strategy used in this library is exhaustive.

The library generates many kinds of FFT routines, executes them,

and selects the best one. We employ three tuning parameters as

follows.

Factorization The key of the FFT algorithm to reduce the number

of floating-point operations is the factorization of the transform

size. Factorizing to prime numbers does not always show good

results. In case of GPU implementation, it is better that the gap

between the largest and smallest factors is small. Otherwise, the

SIMDization for GPU wastes many computation resources.

Number of threads It is important to exploit the high memory

bandwidth of GPUs. It depends not only on the access patterns

but also on the number of threads running simultaneously. We

need to choose the best number of threads.

Shared memory access pattern CPU implementation of FFT uses

cache memory to store temporal data which will be used again

immediately. GPU implementation uses onchip shared memory

to exchange the data between threads. The shared memory can

be accessed simultaneously by multiple threads since it consists

of multiple banks. Therefore, we have to select the access pattern

carefully to avoid a bank conflict. To do this, the library inserts

padding automatically in specific patterns.

 In the case of TSUBAME 2.0 compute nodes, Tesla M2050

GPU has about 4.6 times theoretical peak memory bandwidth

than CPU. However, the speed-up by using GPU reaches about

seven times in FFT computation. This is because there is a large

gap between theoretical peak and achieved memory bandwidth.

The memory bandwidth of the GPU is about 150GB/s, however

the achieved memory bandwidth in FFT is only 82GB/s. Since the

memory of the Tesla GPU is protected by ECC, additional data

transfer of ECC code consumes a part of the memory bandwidth.

Writes to the GPU memory is slower than reads from the GPU

memory. In case of FFT computation, about 50% of memory

access is write access. This degrades the data transfer efficiency.

This is common in the case of CPU. Simple memor y copy

operation can achieve slightly less than 20GB/s, and the data

transfer ratio in FFT computation is less than 12GB/s.

There are many kinds of GPU products. The number of CUDA-

capable GPU models already exceeds a hundred including

GeForce series, Quadro series, Tesla series, ION series and mobile

GPUs. Table 1 shows specificaions of some major GPU models

we used. Although the performance of GPUs rapidly increase

year by year, they vary in number of cores, performance, memory

bandwidth, etc.

 GeForce series are designed for gaming and desktop

use, and have high memory bandwidth. On the other hand,

Tesla series are designed for high performance computing. Their

doubleprecision performance is much higher than GeForce

series. The memory capacity is also larger, and protected by

ECC. Needless to say, the Tesla series is selected for TSUBAME 2.0

compute nodes.

Table 1 The specifications of major CUDA-capable GPUs.

Auto-tuning 5

16

Fast Fourier Transform using GPU

17

 Although the time spent for the auto-tuning essentially

depends on the transform size, GPUs, CPUs, and so on, we

observed it completes within a minute in most cases. Generally,

applications repeatedly calls FFT functions with the same

transform sizes. In such a case, the length of the auto-tuning time

is acceptable enough. By default, the results of the autotuning

procedure, that is, the best parameters selected will be stored in

the database file. Therefore, applications start computation using

them immediately them, except on the first time.

 It is not true that GPU applications always require auto-

tuning features to achieve high performance. In many cases, the

GPU model used for the GPU application are limited and the

same kernel can achieve good performance for all of them. Auto-

tuning mechanism is important especially for libraries which will

be publically available because these libraries should work on

varying GPU models with acceptable performance.

We introduced the latest status of FFT computation using GPUs.

In case of the CPUs and GPUs on TSUBAME 2.0 compute nodes,

the use of GPU resulted in about 7 times speedup due to the

high memory bandwidth of the GPUs. This is not only for FFT but

also many kinds of memory-intensive computations like CFDs.

Needless to say, GPUs also accelerate many compute-intensive

applications. In the near future, we hope many new applications

will be ported to GPUs.

 NukadaFFT library is still updated frequently. The latest

version is available at the following

URL. http://matsu-www.is.titech.ac.jp/˜nukada/nufft/

Acknowledgments

This work is partially supported by Core Research of Evolutional

Science and Technology (CREST) program of Japan Science and

Technology Agency (JST) “ULP-HPC: Ultra Low-Power, High-

Performance Computing via Modeling and Optimization of Next

Generation HPC Technologies”, by Microsoft Technical Computing

Initiative “HPC-GPGPU: LargeScale Commodity Accelerated

Clusters and its Application to Advanced Structural Proteomics”,

by NVIDIA CUDA Center of Excellence Program, and by MEXT

Grant-in-Aid for YoungScientists (A) 22680002.

References

[1] James W. Cooley and John W. Tukey, “An Algorithm for the

Machine Calculation of Complex Fourier Series”, Math. Comput.

Vol. 19, pp. 297-301, 1965.

[2] Charles Van Loan, “Computational frameworks for the fast

Fourier transform”, SIAM Press, Philadelphia, PA, 1992.

[3] Matteo Frigo and Steven G. Johnson, “ The Design and

Implementation of FFTW3”, Proceedings of the IEEE, Vol. 93,

No. 2, pp. 216–231, 2005. special issue on ”Program Generation,

Optimization, and Platform Adaptation”.

[4] Akira Nukada, Yasuhiko Ogata, Toshio Endo, and Satoshi

Matsuoka, “Bandwidth Intensive 3-D FFT kernel for GPUs

using CUDA”, In Proceedings of the ACM/IEEE conference

on Supercomputing (SC08), Austin, IEEE Press, Pages 1- 11,

November 2008.

[5] Akira Nukada and Satoshi Matsuoka, “Auto-Tuning 3-D FFT

Library for CUDA GPUs”, In Proceedings of the ACM/IEEE

conference on Supercomputing (SC09), Portland, ACM, Page

1-10, November 2009.Summary 6

● TSUBAME e-Science Journal No.3
Published 02/25/2011 by GSIC, Tokyo Institute of Technology ©
ISSN 2185-6028
Design & Layout: Kick and Punch
Editor: TSUBAME e-Science Journal - Editorial room
 Takayuki AOKI, Toshio WATANABE, Masakazu SEKIJIMA,
 Thirapong PIPATPONGSA, Fumiko MIYAMA
Address: 2-12-1 i7-3 O-okayama, Meguro-ku, Tokyo 152-8550
Tel: +81-3-5734-2087　Fax: +81-3-5734-3198
E-mail: tsubame_j@sim.gsic.titech.ac.jp
URL: http://www.gsic.titech.ac.jp/

