
5

SC’11 Special Issue
Gordon Bell Prize
　Special Achievements in Scalability and Time-to-Solution
　Honorable Mention

Graph500 Ranking No.3

3 Technical Papers

ht tp : //www.gsic.titech.ac.jp /TSUBAME_ESJ

SC’11 Special Issue

ACM Gordon Bell Prize:
Special Achievements in Scalability and Time-to-Solution

& SC'11 Technical Paper

Peta-scale Phase-Field Simulation for Dendritic
Solidification on the TSUBAME 2.0 Supercomputer
Takashi Shimokawabe Takayuki Aoki Tomohiro Takaki Akinori Yamanaka
Akira Nukada Toshio Endo Naoya Maruyama Satoshi Matsuoka

ACM Gordon Bell Prize: Honorable Mention

Large scale biofluidics simulations on TSUBAME2
Massimo Bernaschi Mauro Bisson Toshio Endo
Massimiliano Fatica Satoshi Matsuoka Simone Melchionna Sauro Succi

SC’11 Special Issue

03

10

Graph500 Ranking No.3

Graph500 Challenge on TSUBAME 2.0
Toyotaro Suzumura Koji Ueno

SC'11 Technical Paper

Physis: A High-Level Stencil Framework for
Heterogeneous Supercomputers
Naoya Maruyama Tatsuo Nomura Kento Sato Satoshi Matsuoka

SC'11 Technical Paper (Achieving a Perfect Score)

FTI: high performance Fault Tolerance
Interface for hybrid systems
Leonardo Bautista-Gomez Dimitri Komatitch Naoya Maruyama Seiji Tsuboi
Franck Cappello Satoshi Matsuoka Takeshi Nakamura

17

26

21

The phase - f ie ld model is der ived f rom non- equi l ibr ium

statistical mechanics and can describe meso-scale phenomena

that occur on a mid-scale between the molecular and macro

scales. The phase-field model introduces a “continuous-order

parameter,” i.e., a phase-field variable, to describe whether a

material is solid or liquid. The phase field takes a value of 0

in the liquid phase and 1 in the solid phase. Interfaces between

solid and liquid phases are treated as dif fuse ones described

by localized regions, where the parameter changes smoothly

between the two f ixed values. The inter face positions are

represented by . Thanks to this approach, the phase-field

method can describe the locations of the interfaces without

using a traditional interface-tracking method and carry out the

same calculations throughout a computational domain.

 The dendritic solidification process in a binary alloy is

simulated by solving the phase-field equation and the diffusion

Phase-field model 2

Takashi Shimokawabe*　Takayuki Aoki**　Tomohiro Takaki***　Akinori Yamanaka****　
Akira Nukada** Toshio Endo**　　Naoya Maruyama**　Satoshi Matsuoka**
* Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology
** Global Scientific Information and Computing Center, Tokyo Institute of Technology
*** Graduate School of Science and Technology, Kyoto Institute of Technology　 **** Graduate School of Engineering, Tokyo Institute of Technology

The development of new strong and light materials contributes

greatly to transportation systems with high fuel efficiency and

realization of a “low-carbon” society. The strength of a metal strongly

depends on its microstructure, which is, in turn, determined by the

solidification process of the metal (see Fig .1). However, determining

material properties (such as strength) requires millimeter-scale

macroscopic study.

 The phase-field model [1] is a physical theory describing

the evolution of complicated material morphologies on the “meso-

scale,” namely, between the molecular scale and the macroscopic

scale of materials. It is a powerful numerical tool for studying the

dynamics of phase transformations such as solidification. The

derived equations are partial differential equations in time and

space and often discretized by FDM (finite-difference method) or

FEM (finite element method). The phase-field equations include

many complex nonlinear terms, and the amount of computations

per mesh or element becomes large compared to normal stencil

applications. Furthermore, the phase-field model assumes a

narrow-thickness interface between liquid phase and solid phase,

so the time integration requires high spatial resolution and short

time step, and phase-field simulations remain restricted to two-

or small three-dimensional computations due to their large

computational cost.

 In this study, we carry out a large-scale phase-field

simulation for the aluminum-silicon dendritic growth during

directional solidification on the GPU supercomputer TSUBAME

2.0. The simulation code is developed in CUDA, and almost all the

capability of TSUBAME 2.0 is used for the simulation, which uses a

domain decomposition and inter-node communications with an

MPI library. Such large-scale phase-field simulation has not been

done before and will have a big impact on material science.

Introduction 1

Peta-scale Phase-Field Simulation for Dendritic
Solidification on the TSUBAME 2.0 Supercomputer

Figure 1 Images of a material microstructure

To realize a low-carbon society, it is indispensable to develop new strong and light materials. The material
microstructure controlling the mechanical property is determined in the solidification process. The phase-field
model is a meso-scale physical theory describing phase transformations such as solidification. Realistic prediction of
material solidification requires a millimeter-scale simulation heretofore impossible with supercomputers. The phase-
field equation was discretized by using the finite-difference method, and a simulation code in CUDA was developed.
A large-scale solidification simulation of an aluminum-silicon alloy was carried out with 4,000 GPUs on TSUBAME 2.0
and achieved 2.0 petaflops in single precision. The ACM Gordon Bell Award - Special Achievement in Scalability and
Time-to-Solution was awarded for this achievement in 2011.

3

SC’11 Special Issue

where and are the diffusion coefficients in the bulk solid

and liquid phases , respectively. Solid concentration and liquid

concentration satisfy .

Figure 2 Spatial access patterns of neighbor points
required for time integration.

(a) Stencil of phase-field variable.

equation of the solute concentration. The time integration of the

phase field is described by the following equation, which takes into

account the anisotropy of interfacial energy:

where , , , , and represent the gradient

coefficient that describes interface anisotropy, the mobility of the

phase field, the height of the potential energy barrier, the entropy

of fusion and undercooling, respectively. The two functions

and are given as and ,

respectively.

 The time integration of the solute concentration is

derived by the following diffusion equation:

T he t ime inte gr at ion of the phase f ie ld and the so lute

concentration given by Equations (1) and (2) are carried out by the

second-order finite-difference scheme for space and the first-order

forward Euler-type finite-difference method for time on a three-

dimensional regular computational grid. The simulation code is

written in CUDA to run on GPUs. All variables are allocated on GPU

video memory (also called global memory in CUDA), which virtually

eliminates all the CPU-GPU data transfers through a PCI-Express

bus during simulation runs. The spatial patterns of the neighbor

points of phase field and solute concentration that are

required to solve the discretized governing equations at the

center point (i, j, k) of the grid are, respectively, shown in Figures 2

(a) and (b). In one time step , 19 neighbor elements of and seven

neighbor elements of are used with the governing equations to

update the phase field value and concentration value at the center

point; thus, 26 elements must be read from the memory and two

updated values must be written back to the memory for each point

of the grid.

Single-GPU implementation 3

(b) Stencil of concentration variable.

4

We describe our strategies of multi-GPU computation. Using

multiple GPUs is necessary for high-performance computing of

large-size problems. In addition to the intrinsic parallel-processing

capabilities of GPUs, it is necessary to do parallel computing by

using a large number of distributed GPUs. We decompose the

whole computational domain in both the y- and z-directions (i.e.,

2D decomposition) and allocate each subdomain to one GPU.

We have chosen this method because 3D decomposition, which

is better in terms of reducing communication amount, tends to

degrade GPU performance due to complicated memory access

patterns in the y-z plane for data exchanges between the GPU

and CPU. Similar to conventional multi-CPU implementations,

multi-GPU implementation requires boundary-data exchanges

between subdomains. Because a GPU cannot directly access the

global memory of other GPUs, host CPUs are used as bridges

for data exchange. For inter-node cases, this data exchange is

composed of the following three steps: (1) data transfer from the

GPU to the CPU by using CUDA APIs, (2) data exchange between

nodes with the MPI library, and (3) data transfer back from the

CPU to the GPU by using CUDA APIs.

 Unlike in conventional multi-CPU computation, in multi-

GPU computing, data-communication time with neighbor GPUs

is not ignored in the total execution time, especially in large-scale

computation, since the performance of the GPU is higher than

that of the CPU. To achieve higher performance, it is important to

hide communication overheads by overlapping communication

with computation. In this study, we implement the following three

methods for multi-GPU computing: (a) GPU-only method, (b)

Hybrid-YZ method, and (c) Hybrid-Y method.

(a) GPU-only method: This basic method (which is used as a

reference) computes all subdomains without applying any specific

optimization. After that, the boundary regions of subdomains are

exchanged between GPUs by using the above three steps.

(b) Hybrid-YZ method: By dividing each subdomain into five

regions, which are two y-boundaries, two z-boundaries and an

inside region, we can overlap communication for the boundary

data exchange with the computation of the inside region. A similar

overlapping technique has been described in previous reports [2].

In this technique, separate GPU kernels are invoked for separate

regions. Instead of dividing a GPU kernel, in this study, we let CPU

cores compute four y- and z-boundary regions, while the inside

 The computation in the phase-field model involves a

large number of memory accesses. It is thus highly effective to

reduce access to the global memory. In GPU computing, a key

factor in performance improvement is how threads and blocks are

assigned to actual calculation. The elements of the computational

domain of size nx × ny × nz are calculated as follows. First, as

shown in Figure 3, the given domain is divided into pieces of size

64 × 4 × 32. Our kernel function is invoked on a GPU, and each

thread block (which has 64 × 4 × 1 threads) handles each piece.

Each thread calculates 32 elements by marching in the z direction;

a thread that corresponds to (i, j) updates grid points (i, j, k), where

k varies from k0 to k0 + 31, and k0 is a multiple of 32 (i.e., k0 = 0, 32,

64, ..., nz − 32).　When a thread computes a point in the k + 1-th

plane, some elements to be referred to in this computation have

already been accessed by that thread in the previous k-th plane

computation. Such data are reused by holding them in registers,

thereby reducing global memory accesses. On the other hand, on-

chip shared memory is not used to store data shared by several

neighbor threads; instead, the L1/L2 cache available on Fermi GPUs

including M2050 is relied on.

Optimization of multi-GPU computing 4

Figure 3 Layouts of CUDA threads and blocks.

ACM Gordon Bell Prize: Special Achievements in Scalability and Time-to-Solution & SC'11 Technical Paper

Peta-scale Phase-Field Simulation
for Dendritic Solidification on the TSUBAME 2.0 Supercomputer

5

region is computed by GPU. We observed that CPUs often become

bottlenecks by taking longer time to do computation of all

boundaries and communications than the GPU computation time.

(c) Hybrid-Y method: This method is a slightly modified method

from the (b) method. It reduces CPU loads by assigning only the

y-boundaries to CPUs instead of both y- and z-boundaries. The

GPU can compute the z-boundaries effectively, since it accesses

consecutive addresses of the global memory.

 Since each node of TSUBAME 2.0 has three GPUs and 12

CPU cores (two 6-core Xeon CPUs), we assign four cores to each of

the three GPUs. Each subdomain is thus cooperatively computed

by a single GPU and four CPU cores. Multi cores are exploited by

using OpenMP.

SC’11 Special Issue

Figure 4 Schematic diagram
of the GPU-only method.

Figure 5 Schematic diagram of the Hybrid-YZ method.

Figure 6 Schematic diagram of the Hybrid-Y method.

6

We show the performance of (a) the GPU-only method, (b) the

Hybrid-YZ method, and (c) the Hybrid-Y method, all using multiple

M2050 GPUs of the GPU-rich supercomputer TSUBAME 2.0 at the

Global Scientific Information and Computing Center of the Tokyo

Institute of Technology. In this study, we simulate solidification of

aluminum–silicon (Al–Si) alloy.

 An image of the solidification process of the alloy observed

at the world’s largest synchrotron radiation facility, SPring- 8, by

Hideyuki Yasuda, a professor at Osaka University, and his research

group, is shown in Figure 7 (a) . Results of the phase-field simulation

using a 4096 × 128 × 4096 mesh are shown in Figure 7 (b) . Although

the alloy systems in the images differ, the growth process obtained

by the simulation agrees well with the observed one.

Performance of multi-GPU computing 5

Figure 7(a) Solidification process of an alloy observed
 at SPring-8 (courtesy of Professor Yasuda).

Figure 8 Results for strong scaling of multi-GPU
 computation in single precision.

Figure 7(b) Solidification growth simulated
 by the phase-field model using GPUs.

 To measure the performance of the GPU computation,

we count the number of floating-point operations in the C/C++-

based phase-field simulation code by running it on a CPU with

a performance counter provided by PAPI (Performance API). The

obtained count and GPU elapsed time are used for evaluating the

performance of the GPU computing. Figure 8 shows the results

on strong scaling, which show variation of the performance

with the number of GPUs for a fixed total mesh size. This figure

compares the strong-scaling characteristics of the three proposed

methods i.e., (a), (b), and (c). We perform simulations in single

precision for three different mesh sizes: 5123, 10243, and 20483. It is

clear from the figure that the overlapping methods, (b) Hhybrid-

YZ method and (c) Hhybrid-Y method, both work effectively in

hiding communication overhead as expected, resulting in an

improvement of overall performance when a small number of

GPUs are used. When the number of GPUs is larger, the volume

that each GPU handles becomes smaller, and the percentage

of the boundary region computed by the CPU in the whole

computational domain increases. Eventually, the GPU computation

is no longer able to hide the communication cost. In the case of the

Hybrid-YZ method, method (b), we observed that the CPUs often

become bottlenecks by taking a longer time to do their operations

than the GPU computation time especially when the number of

GPUs is larger. Since the Hybrid-Y method alleviates this bottleneck,

it achieves a significantly improved performance compared with

that of the GPU-only method.

 Next, we show the weak scaling results, which show how

the performance of the three methods varies with the number of

GPUs for a fixed mesh size per GPU. Each GPU handles a domain

of 4096 × 160 × 128 for single precision. In demonstrating weak

Peta-scale Phase-Field Simulation
for Dendritic Solidification on the TSUBAME 2.0 Supercomputer

ACM Gordon Bell Prize: Special Achievements in Scalability and Time-to-Solution & SC'11 Technical Paper

7

Figure 9 Results on weak scaling of multi-GPU
 computation in single precision.

Figure 10 Electrical power consumption of
the 2-petaflops phase-field simulation
running on TSUBAME 2.0.

Figure 11 Large-scale simulation of dendritic
solidification of aluminum–silicon alloy.

 Figure 11 demonstrates the dendritic growth during

binary-alloy solidification using a mesh size of 4096 × 1024 × 4096

on TSUBAME 2.0. As an initial condition, 32 nuclei are put on the z

= 0 plane. This simulation will allow us to clarify the mechanisms of

competitive growth between parallel dendrites. Evaluating these

mechanisms is important to design and control the mechanical

properties of solidified products.

SC’11 Special Issue

scalability, the Hybrid-Y method has achieved extremely high

performance in single precision (Figure 9), namely, reaching

2.000 petaflops, specifically 1.975 petaflops by the GPU and 0.025

petaflops by CPU, for a 4096 × 6480 × 13000 mesh using 4,000

GPUs along with 16,000 CPU cores. This is the first peta-scale result

as a real stencil application we know to date.

 Figure 10 shows that electric power consumption of

TSUBAME 2.0 when the simulation achieved 2 petaflops, namely,

44.5% of the efficiency to the peak performance, using 4,000 GPUs

along with 16,000 CPU cores. The 2-petaflops simulation consumed

electric power of 1.36 MW for all computational nodes and networks

on TSUBAME 2.0. The simulation thus achieved 1468 Mflops/W.

These results show that the simulation results were obtained by

small electric power consumption.

8

A large-scale GPU simulation of the dendritic growth during binary-

alloy solidification was carried out on the basis of a phase-field

model. An extremely high performance of 2.0 petaflops in single

precision was achieved on 4,000 GPUs of TSUBAME 2.0, in spite of

a stencil application, which is hard to extract high performance.

The computation reached 44.5 % of the peak performance and

simultaneously high efficiency from the viewpoint of electrical

power consumption. It means that we have the computational

result on TSUBAME 2.0 with smaller energy compared to

conventional supercomputing. It is concluded that a GPU

supercomputer is available for various practical stencil applications.

Acknowledgements

The peta-scale simulation was executed as a TSUBAME Grand

Challenge Program 2011 spring and we express our special

thanks to have a chance to use the whole TSUBAME resources.

This research was supported in part by Grant-in-Aid for Scientific

Research (B) 23360046 from The Ministry of Education, Culture,

Sports, Science and Technology (MEXT), two CREST projects, "ULP-

HPC: Ultra Low-Power, High Performance Computing via Modeling

and Optimization of Next Generation HPC Technologies" and

"Highly Productive, High Performance Application Frameworks for

Post Petascale Computing" from Japan Science and Technology

Agency (JST), and JSPS Global COE program "Computationism as a

Foundation for the Sciences" from Japan Society for the Promotion

of Science (JSPS).

References

[1] R . Kobayashi : Model ing and numer ical s imulat ions of

dendritic crystal growth. Physica D, Nonlinear Phenomena,

63(3-4), 410 - 423 (1993)

[2] Tak ay uk i Ao k i , S ato i O gaw a , Ak in o r i Yamanak a : GPU

Computing for Dendritic Solidification based on Phase-Field

Model, TSUBAME e-Science Journal, Vol.1, pp.5-8, Global

Scientific Information and Computing Center, Tokyo Tech (2010

September)

[3] A . Ya m a n a k a , T. Ao k i , S . O g aw a , a n d T. Ta k a k i : G PU -

accelerated phase-field simulation of dendritic solidification

in a binary alloy. Journal of Crystal Growth, 318(1):40 - 45 (2011).

The 16th International Conference on Crystal Growth (ICCG16)/

The 14th International Conference on Vapor Growth and

Epitaxy (ICVGE14)

Summary 6
[4] T. Shimokawabe, T. Aoki, T. Takaki, A. Yamanaka, A. Nukada,

T. Endo, N. Maruyama, and S. Matsuoka : Peta-scale Phase-

Field Simulation for Dendritic Solidification on the TSUBAME

2 .0 Supercomputer, in Proceedings of the 2011 ACM/IEEE

International Conference for High Performance Computing,

Networking, Storage and Analysis, SC’11, IEEE Computer

Society, Seattle, WA, USA, Nov. 2011.

Peta-scale Phase-Field Simulation
for Dendritic Solidification on the TSUBAME 2.0 Supercomputer

ACM Gordon Bell Prize: Special Achievements in Scalability and Time-to-Solution & SC'11 Technical Paper

9

Multi-scale simulations of real-life biofluidic problems entail simulating suspensions composed by hundreds of
millions of bodies interacting with each other and with a surrounding fluid in complex geometries. One such
example is the simulation of blood flow through the human coronary arteries, with spatial resolution comparable
with the size of red blood cells, and physiological levels of hematocrit (the red blood cell volume fraction).
We developed a methodology such that hemodynamic simulations exhibit excellent scalability on the TSUBAME2
installation, achieving an aggregate sustained performance of hundreds of Teraflops. The result demonstrates
the capability of predicting the evolution of biofluidic phenomena of clinical significance, by using a suitable
combination of novel mathematical models, computational algorithms, hardware technology and code tuning.

Massimo Bernaschi* Mauro Bisson* Toshio Endo**
Massimiliano Fatica*** Satoshi Matsuoka** Simone Melchionna* Sauro Succi*
* CNR-IAC, Istituto Applicazioni Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy
** Global Scientific Information and Computing Center, Tokyo Institute of Technology
*** Nvidia Corp. Santa Clara, CA, USA

Transport phenomena are ubiquitous in living systems, underlying

muscle contraction, digestion, the nourishment of cells in the body,

blood circulation, to name but a few. Blood is a reference biofluid,

being the carrier of those biological components that fuel the

most basic physiological functions, such as metabolism, immune

response and tissue repair.

 Building a detailed, realistic representation of blood

and the vasculature represents a formidable challenge since the

computational model must combine the motion of the fluid within

an irregular geometry, subject to unsteady changes in flow and

pressure driven by the heartbeat, as coupled to the dynamics of

red and white blood cells and other suspended bodies of biological

relevance.

 Large-scale hemodynamic simulations have made

substantial progress in recent years[1–3], but until now the coupling

of f luid dynamics with the motion of blood cells and other

suspended bodies in vessels with realistic shapes and sizes, has

remained beyond reach. Owing to non-local correlations carried

by the flow pressure, the global geometry plays a significant role

on local circulation patterns, most notably on the shear stress

at arterial walls. Wall shear stress is a recognized trigger for the

complex biomechanical events that can lead to atherosclerotic

pathologies. Accurate and reliable hemodynamic simulations of the

wall shear stress may provide a non-invasive tool for the prediction

of the progression of cardiovascular diseases.

 We illustrate here the first multiscale simulation of

cardiovascular flows in human coronary arteries reconstructed from

computed tomography angiography. The coronary arteries form

the network that supply blood to the heart muscle and span the

entire heart extension. Spatial resolution extends from 5 cm down

to 10 μ m, where a red blood cell has a diameter of about 8 μ m.

The simulations involve up to a billion fluid nodes, embedded in a

bounding space of about a three hundred billion voxels, with 10-450

million suspended bodies, as shown in Fig. 1. They are performed

with the (MUlti PHYsics/multiscale) MUPHY code, which couples

Lattice Boltzmann method for the fluid flow and a specialized

version of Molecular Dynamics for the suspended bodies[4,5]. The

simulation achieves an aggregate performance in excess of 600

Teraflops, with a parallel efficiency of more than 90 percent on 4000-

GPU of the TSUBAME2 system.

 Our work presents a number of unique features, both at

the level of high-performance computing technology and in terms

of physical/computational modeling. The extreme complication

of the irregular geometries demands that the workload be evenly

distributed across the pool of as many as 4000 GPU of the TSUBAME2

supercomputer. The resulting domain-partitioning problem, even

at the mere level of the fluid computation, poses a formidable

challenge. On top of this, the application adds the further constraint

of keeping a good workload balance also for the Molecular

Dynamics (MD) component of the multiscale methodology.

 Complex and large-scale geometries, such as the one

considered here, are rare in the literature. By leveraging large-scale

parallel architectures, this work demonstrates the feasibility of

cardiovascular simulations of unprecedented size that do not rely on

any geometrical regularity of the computational domain.

Introduction 1

Large scale biofluidics simulations
on TSUBAME2

Figure 1 Geometry of the simulated
coronary arteries, with the
underlying level of red
blood cells embedded in
the Lattice Boltzmann mesh.

10

Living matter is typically composed of two main components: a

generic liquid, given by an aqueous solution, plasma, cytosol, etc.,

and suspended bodies, such as bioparticles, cells, proteins, DNA,

etc. , that move within the embedding solvent. We have developed

the MUPHY[4,5] software to simulate such generic conditions.

 As compared to the previous versions of MUPHY[4,5], the

current simulation framework handles the numerical solution of

the motion of a generic fluid and suspended bodies. Within this

vision, MUPHY represents a major effort to design a computational

infrastructure for biofluidics research based on the use of a library

of solvents and solutes. A non-exhaustive list of functionalities

includes: selection of Newtonian versus non-Newtonian rheological

response; selection of dif ferent kernels for the collision, to

reproduce from molecular hydrodynamics to stochastic frictional

dynamics; inclusion of stochastic fluctuations; selection of solutes

as disconnected particles or forming polymer and molecules;

suspended bodies with polymorphic hydrodynamic shapes;

selection of different body-body forces; scale-adaptive body-

fluid coupling mechanisms; handling of irregular confining media

and tissues. Within this range of options, biofluids are modeled

in multiple ways and the multiscale/multiphysics behavior of

biological or physiological systems can be studied accordingly.

 MUPHY leverages two computational engines. The first

one handles the motion of the generic fluid within the hydro-

kinetic formulation embodied by the Lattice Boltzmann (LB)

method: collision-driven mechanisms reproduce the dynamics

of fluids in the continuum (in contrast to the direct macroscopic

description of fluid motion via the Navier-Stokes equations). The

second engine handles the motion of Lagrangian bodies by using

a technique that shares several technical aspects with Molecular

Dynamics (MD). However, the nature of the suspended bodies

is non- conventional and requires a substantial extension of the

basic MD technique. Finally, the coupling between fluid and

moving particles takes place via specifically designed kernels based

on kinetic modeling, again significantly distinct from stresslet,

boundary-integral and other methods based on macroscopic

hydrodynamics. The end result of the computational environment

is a fully time-explicit simulation technique that offers strategic

advantages for the study of biofluids under realistic conditions, in

particular: i) employing geometries with irregular boundaries, such

as in the case of the blood vasculature; ii) describing non-trivial

rheology, as emerging from the underlying particle dynamics; iii)

Multiscale biofluidics 2
enabling scale-specific hydrodynamic interactions at sub-mesh

spacing resolution; iv) avoiding the detailed representation of the

fluid-body dividing interface.

 The last two points are crucial to boost the performances

of the simulations and to guarantee numerical stability of the dual

method, in particular as related to the stiff forces exerted on the fluid

by the immersed bodies. The framework employs either a single

or a multiple timestep algorithm to handle stiff forces. It should be

stressed that the LB method is largely tolerant towards the presence

of rapidly varying forces and allows simulating dense suspensions

from creeping flow conditions up to Reynolds number in the order

of 1000. This strategic asset allows covering a wide range of physical

phenomena in real-world physiological conditions, enabling to

reproduce highly non-local rheological response that cannot be

assimilated to a continuum governed by constitutive relations.

2-1 Lattice Boltzmann/Molecular Dynamics

The LB method[10] is based on the evolution of the singlet distribution

representing the probability of finding, at mesh location x and at

time t, a “fluid particle” traveling with a given discrete speed. “Fluid

particles” represent the collective motion of a group of physical

particles (often referred to as populations). The hydrodynamic fluid-

body coupling is based on specific roto-translational kernels that

represent either rigid entities moving in the fluid as impenetrable

bodies, soft vesicles, or a combination thereof.

 The fluid-body hydrodynamic interaction is constructed

according to the transfer function centered on the ith particle and

having spherical or ellipsoidal symmetry and compact support,

with a hydrodynamic shape that can be smaller than the mesh

spacing[6]. The fluid-particle coupling requires the computation of

convolutions over the mesh points {x} and for each configuration of

the N suspended bodies.

 While, in principle, the calculation of hydrodynamic

interactions grows cubically with the system size, the concurrent

evolution of fluid and bodies provides a strategic algorithmic

advantage. In fact, the LB method features a computational

cost which scales linearly with the number of mesh points M,

that is, O(M)=O(N/c), for a fixed solute concentration c = N/M.

By employing the link-cell method to compute the direct forces

among bodies, the particle dynamics also shows O(N) complexity.

Thanks to the fact that the solvent-mediated particle-particle

interactions are localized and explicit, the LB-MD coupling scales

linearly with the number of mesh elements and suspended

bodies. However, hydrodynamic coupling represents the most

time-consuming component of the methodology due to the

large overhead arising from the O(100) number of mesh points

enclosed in the particle support and scattered access to memory.

ACM Gordon Bell Prize: Honorable Mention

Large scale biofluidics simulations
on TSUBAME2

11

SC’11 Special Issue

The MUPHY (MUlti PHYsics/multiscale) code was originally written

in Fortran 90 by using MPI for the parallelization[4]. For a flexible

and efficient handling of complex geometries, MUPHY makes

use of an indirect addressing scheme that not only limits the

memory requirements to the bare minimum, but also facilitates

the achievement of a good load balancing and the selection of the

most suitable communication pattern depending on the platform

in use. MUPHY was originally developed for the IBM BlueGene

architecture[7], a system characterized by thousands of relatively

slow PowerPC processors connected by a high performance custom

network. On BlueGene/P we achieved an excellent scalability up

to the largest configuration available to us (294,912 cores)[11]. The

obtained total performance was, in that case, in the range of tens

of TeraFlops, with limited room for further improvements since

our code cannot exploit the SIMD-like operations of the PowerPC

architecture (those operations require stride-one access whereas

both the LB and the MD components of MUPHY have a “scattered”

data access pattern). In the meantime, the steadily increasing

computing power of modern GPUs motivated us to develop a

version of MUPHY targeted to clusters of GPUs[7].

 A multi-GPU code resorts to parallelism at two levels:

intra- and inter- GPU. Unlike the case of codes developed for clusters

of traditional multi-core systems that can be implemented either

in a hybrid (e.g., OpenMP+MPI) or in a simple distributed memory

layout (counting on the avail- ability of highly efficient MPI libraries

for shared memory systems), for a multi-GPU platform, a hybrid

paradigm is the only choice. This is not the only difference that

needs to be taken into account: on a traditional multi-core platform

the parallelism is limited to a few threads, at most tens on high-end

systems. On a GPU hundreds of threads are required to keep the

hardware busy, so that a much finer-grain parallelization is required.

Finally, albeit the combination of latest generation Nvidia GPUs and

CUDA drivers offers the chance to copy data from/to the global (i.e.,

main) memory of GPU to/from the global memory of another GPU

sitting on the same system, GPUs can not, in general, exchange data

with each other without using the CPU.

 At first glance, the passage through the CPU introduces

an overhead in the communication among the GPUs but, by using

the CUDA concepts of stream and asynchronous memory copies, it

is possible to overlap data transfers between GPU and CPU memory

with the execution of kernels (functions in the CUDA jargon) on

the GPU. Moreover, also the execution of functions running on the

MUPHY 3
CPU (like MPI primitives) may be concurrent with the execution of

kernels on the GPU. As a result, the CPU should be seen as a MPI co-

processor of the GPU.

3-1 Domain decomposition

The geometry used in our simulations is highly irregular, as shown

in Figure 1, and partitioning in subdomains handled by the available

computing resources represents a major challenge in itself. In

a previous attempt to solve this issue, we used the third-party

software PT-SCOTCH, the parallel version of the SCOTCH graph/

mesh partitioning tool[12], in order to distribute the computational

load in an even manner. The graph-based procedure utilizes a graph

bisection algorithm and it is completely unaware of the geometry

of the computational domain. We then realized that the lack of

geometrical information degrades the quality of the partitioning as

the number of partitions increases, in which case the subdomains

reduce to highly irregular shapes with large contact areas each other

that increase the communication overhead. An optimal solution

was found by combining the graph-based partitioning with a

flooding-based approach (also known as graph-growing method)

according to the following procedure: the mesh is first partitioned,

by using PT-SCOTCH, in a fixed number of subdomains (256). Then

each subdomain is further divided by using a flooding algorithm.

 In MUPHY, the communication pattern is set up at run

time. Each task determines the neighboring tasks owning mesh

points that need to be accessed during the simulation, regarding

the non-local streaming of populations in the LB algorithm, the

migration of particles and calculation of inter-domain forces for

the particle dynamics. During this pre-processing step, we employ

mainly MPI collective communication primitives whereas, in the

remainder of the execution, most communications are point-to-

point and make use of the following scheme: the receive operations

are always posted in advance by using corresponding non-blocking

MPI primitives, then the send operations are carried out. Finally,

each task waits for the completion of its receive operations, by using

the MPI wait primitives.

 For the Lattice Boltzmann component, only the evaluation

of global quantities (e.g. , the momentum along the x, y, z directions)

is carried out by using MPI collective (reduction) primitives. Also for

the Molecular Dynamics component most of the communications

are point-to-point but, here, the irregularity of the geometry and, as

a consequence, of the corresponding domain decomposition results

in other issues, as detailed out in the next subsection.

12

3-2 Parallel Molecular Dynamics

In most parallel Molecular Dynamics applications the geometry of

the spatial domain is regular and simple Cartesian decompositions

are applied such that each task has (approximately) the same

number of particles. In an irregular domain, this strategy would

produce two distinct domain decompositions: one for the LB

(as described above) and one for the particle dynamics. As a

consequence, the same subdomain might belong to two or more

processors for the LB and for the MD components and consequently

the interaction between particles and fluid would become highly

non-local with a complex and expensive communication pat- tern.

We then decided to resort to a domain decomposition strategy

where the MD parallel domains and the LB parallel domains

coincide. In this way, each computational task performs both the LB

and MD calculations and the inter- actions of the particles with the

fluid are quasi-local. The underlying LB mesh serves the purpose

of identifying particles that belong to the domain via a test of

membership: a particle with position R belongs to the domain if

the vector of nearest integers coincides with a mesh point of the

domain. Since an even number of bodies is expected to populate

the domains, a pretty good load balancing of the MD parts is

granted by the mesh partitioning.

 We have developed a novel parallelization strategy

suitable for domains with irregular geometry. Among others,

a major issue regards the identification of particles that reside

next to the subdomain frontiers and that interact with intra- and

interdomain particles. Our solution[8] relies on the notion of cells,

cubes with side greater or equal to the interaction cutoff, that

tile the whole irregular domain handled by a computational task

(see Fig.2). This representation allows the processors to perform

an efficient search of both interdomain and intradomain pairs of

particles and to reduce data transfers by exchanging a limited

superset of both the particles actually involved in the evaluation of

forces among interdomain pairs and the particles moving across

domains.

 The final component of our multiscale application

deals with the fluid-particle coupling. Each suspended particle

experiences hydrodynamic forces and torques arising from the

fluid macroscopic velocity and vorticity, smeared over a domain

made of 4×4×4 mesh points. Analogously, mesh points experience

a momentum transfer arising from the surrounding particles.

These non-local operations require multiple communication steps

such that each processor owning a given particle, exchanges

hydrodynamic quantities with the surrounding domains.

 Par t ic le - f luid coupl ing is a non- local operat ion

involving the interaction between particles and mesh nodes

inside the frontier cells of neighboring domains. For this reason,

the coupling is done by exploiting the cell tiling, analogously

to the computation of inter-domain forces. In order to compute

the forces/torques acting from the fluid to the particles, each

processor exchanges particles inside the frontier cells with its

neighbors. Finally, forces and torques associated to the external

particles are exchanged back with neighboring processors and,

on the receiving side, the external contributions are distributed

to the frontier particles. This approach is particularly efficient as

compared to other strategies. For example, by exchanging the

mesh points located inside frontier cells in place of particles,

one could lower the number of exchanged data to a single

communication step. However, such alternative would impose

a large communication overhead since all mesh nodes near the

interfaces among domains should be exchanged.

 Finally, regarding the computation of the momentum

transfers exerted from the particles to the fluid, it is carried out by

exchanging the frontier particles as in the particle-on-fluid case

but without a second data exchange.

Figure 2 Tiling of an irregular domain in external,
 frontier and internal cells, and selective
 exchange with neighboring domains.

ACM Gordon Bell Prize: Honorable Mention

Large scale biofluidics simulations
on TSUBAME2

13

SC’11 Special Issue

Results 4
In our benchmarks, we measure the total runtime for the

simulation together with the breakdown between computation

and communication. All simulations include about 1 billion lattice

sites for the fluid, within a bounding box having a total of almost

300 billion nodes, and 450 million Red Blood Cells (RBC). We choose

the fluid-body coupling parameters such that a single RBC carries

a hydrodynamic shape with linear size of 4 μ m and 8 μ m for the

smallest and largest principal directions of the globule, respectively,

and corresponding to a hematocrit level of 58% .

 Most computations are performed in single floating

point precision with only few reduction operations carried out in

double precision. Each GPU thread is responsible for the update, in

the LB phase, of a number of mesh nodes that depends on the total

number of available GPU (the thread configuration is fixed on each

GPU). For instance, with 512 GPU, each thread is in charge of 8 mesh

nodes. For the MD phase, interactions among the particles are

processed on a per-particle basis. In this case, the grid of threads is

directly mapped onto the arrays of particles. Threads are assigned

to particles according to a global id and the search for interacting

pairs proceeds for each thread in an independent fashion. Each

thread scans the cell neighbors and, for each interacting pair, it

computes the contribution to the total force. The obtained results

provide a fundamental check of the reliability of the code up to

physiological levels of hematocrit.

 Fig.3 (Upper panel) shows the elapsed t ime per

simulation-step, as well as the breakdown for the LB and MD

components separately. A few comments are in order. At first, the

performance of the Lattice Boltzmann component of MUPHY on

a single GPU is in line with other, highly tuned, CUDA LB kernels.

Secondly, the elapsed time decreases significantly with the number

of cores, with a speed-up of 12.5 between the 256 and 4000 GPU

configurations, corresponding to a parallel efficiency around 80% .

The calculation of the MD direct forces features an efficiency as

high as 95% . The LB component performs in an optimal way, with

a work share that stays always below 4% .

 The results show that the combination of asynchronous

communication and overlap between communication and

computation, significantly alleviates the lack of support for the

direct exchange of data among GPUs.

 Fig.3 (Lower panel) shows the total parallel efficiency

referred to either 256 GPUs, if the available memory allows

simulating the hematocrit level, or 512 GPUs for higher levels

of hematocrit. The efficiency features superlinear scaling for a

number of GPUs up to 1024, whereas at the largest number of

GPUs available the efficiency slightly lowers to ≃ 80% .

The excellent scalability should be ascribed to the optimal

load balancing obtained with our hybrid graph partitioning/

flooding scheme for the multi-branched arteries. Although the

distribution of red blood cells over a test case of 1200 domains

shows a broad distribution of values, the execution time for both

the aggregate MD and the LB component is compact. The result

is a direct consequence of the minimal extension of contact

regions among domains that optimizes the share between

computations and communications.

 Fig.4 shows the distribution of the time spent in

communication for a run employing 4000 GPUs. On average, most

of the tasks (∼3000 out of 4000) spend about 50% of the total time

in communication. This result confirms that the asynchronous

communication scheme in use works at sustained rate, and the

CPU actually plays the role of MPI co-processor of the GPU, where

most of the computations take place.

 For 1334 nodes of the TSUBAME2 (4000 MPI tasks), we

estimate a (weighted) average performance of slightly less than

600 TeraFlops (see Fig. 5 for the corresponding breakdown). Just

to convey the flavor of the practical impact of this application,

the above performance corresponds to simulating a complete

heartbeat at microsecond resolution and fully inclusive of red

blood cells, in 48 hours time on the full TSUBAME2 system.

Figure 3 Upper Panel: Elapsed time per timestep.
 Lower Panel: Parallel efficiency.

14

In the context of computational biofluidics, we have performed

the first large-scale simulation of the entire heart-sized coronary

system on a world-class cluster of GPUs. The hemodynamic

system consists of a realistic representation of the complex human

arterial geometry at the spatial resolution of red-blood cells. The

computational environment involves one-billion fluid nodes,

embedded in a bounding space of one trillion voxels and coupled

with the concurrent motion of hundreds of millions of red-blood

cells. We achieved a close to 600 Teraflops performance on the

4000 GPU configuration of the TSUBAME2 supercomputer, with a

parallel efficiency in excess of 90 percent, performing about 2000

billion lattice updates per second concurrently with the simulation

of the dynamics of up to 450 million red blood cells.

 T h e a b o v e a c c o m p l i s h m e n t r e s u l t s f r o m t h e

development of several unique features, in terms of both high-

performance technology and physical/computational modeling.

We are not aware of any previous implementation dealing with

non-idealized geometries. The present work represents a major

progress in the predictive capabilities of computer simulations for

real-life biofluidic research, with special, yet not exclusive, focus on

cardiovascular clinical practice.

Acknowledgements

This research was carried out as a TSUBAME Grand Challenge

Program.

We thank E. Kaxiras, C.L. Feldman, A.U. Coskun, F.J. Rybicki, A.G.

Whitmore, G. Amati, F. Pozzati and F. Schifano for numerous

discussions.

References

[1] D.A. Vorp, D.A. Steinman, C.R. Ethier, Comput. Sci. Eng., pp. 51

(2001).

[2] A. Quarteroni, A. Veneziani, P. Zunino, SIAM J. Num. Analysis,

39, 1488 (2002).

[3] L. Grinberg, T. Anor, E. Cheever, et al., Phil. Trans. Royal Soc. A,

367 1896 2371 (2009).

[4] M. Bernaschi, S. Melchionna, S. Succi et al., Comp.Phys. Comm.,

180, 1495, (2009).

[5] S. Melchionna, M. Bernaschi, S. Succi et al, Comp.Phys. Comm.,

181, 462, (2010).

[6] S . Melchionna, Macromol . Theor y Sim. , DOI: 10 .10 0 2 /

mats.201100012 (2011).

Summary 5

Figure 4 Distribution of the percentage of total time
spent in MPI running with 4000 tasks.

Figure 5 Breakdown of computational components
and relative performances.

ACM Gordon Bell Prize: Honorable Mention

Large scale biofluidics simulations
on TSUBAME2

15

SC’11 Special Issue

[7] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi and E. Kaxiras,

Concurrency and Computation: Practice and Experience, DOI:

10.1002/cpe.1466 (2009).

[8] M. Bisson, M.Bernaschi, S.Melchionna, Commun. Comput.

Phys., 10, 1071 (2011).

[9] S. Melchionna, J. Comput. Phys. 230, 3966 (2011).

[10] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics

and Beyond, Oxford University Press, USA (2001).

[11] A. Peters et al., Proceedings of Supercomputing 2010, New

Orleans, 2010.

[12] http://www.labri.fr/perso/pelegrin/scotch

16

Graph500 is a new benchmark that ranks supercomputers by executing a large-scale graph search problem.
Our early study reveals that the provided reference implementations by the Graph500 benchmark are not scalable
in a large-scale distributed environment. For the Graph500 benchmark on TSUBAME 2.0, we ran our highly scalable
BFS method that divides adjacent matrix - representing large-scale graph - with 2D partitioning and distributes the
portion to all the processors. In contrast to traditional 1D partitioning, this can greatly reduce the communication
exchange. With the optimization method, we successfully solved BFS (Breadth First Search) for large-scale graph with
236（68.7 billion）vertices and 240（1.1 trillion）edges for 10.955 seconds with 1366 nodes and 16392 CPU cores. This
record corresponds to 100.366 GE/s, which was the 3rd-ranked score in the latest ranking announced in SC2011.

Toyotaro Suzumura*/** Koji Ueno*

*Graduate School of Information Science and Engineering, Tokyo Institute of Technology
**IBM Research – Tokyo

Large-scale graph analysis is a hot topic for various fields of study,

such as social networks, micro-blogs, cyber security, protein-protein

interactions, and the connectivity of the Web. The numbers of

vertices in the analyzed graph networks have grown from billions

to tens of billions and the edges have grown from tens of billions to

hundreds of billions. Since 1994, the best known de facto ranking

of the world’s fastest computers is TOP500, which is based on a

high performance Linpack benchmark for linear equations. As an

alternative to Linpack, Graph500 [1] was recently developed. We

con-ducted a thorough study of the algorithms of the reference

implementations and their performance in an earlier paper [2]. Based

on that work, we implemented a scalable and high-performance

implementation of an optimized Graph500 benchmark for large

distributed environments. In this paper, we give an overview of the

Graph500 benchmark in Section 2 and its basic parallel algorithm

called level-synchronized BFS in Section 3. Our proposed scalable

BFS method is described in Section 4 and the performance

evaluation is shown in Section 5, and then give a conclusion in

Section 6.

In this section, we give an overview of the Graph500 benchmark [1].

In contrast to the computation-intensive benchmark used by

TOP500, Graph500 is a data-intensive benchmark.

 It does breadth-first searches in undirected large graphs

generated by a scalable data generator based on a Kronecker

graph [16]. The benchmark has two kernels: Kernel 1 constructs an

undirected graph from the graph generator in a format usable by

Kernel 2. The first kernel transforms the edge tuples (pairs of start

and end vertices) to efficient data structures with sparse formats,

such as CSR (Compressed Sparse Row) or CSC (Compressed Sparse

Column). Then Kernel 2 does a breadth-first search of the graph

from a randomly chosen source vertex in the graph.

 The benchmark uses the elapsed times for both kernels,

but the rankings for Graph500 are determined by how large the

problem is and by the throughput in TEPS (Traversed Edges Per

Second). This means that the ranking results basically depend on

the time used by the second kernel.

 After both kernels have finished, there is a validation

phase to check if the result is correct. When the amount of data

is extremely large, it becomes difficult to show that the resulting

breadth-first tree matches the reference result. Therefore the

validation phase uses 5 validation rules. For example, the first rule

is that the BFS graph is a tree and does not contain any cycles.

 There are six problem classes: toy, mini, small, medium,

large, and huge. Each problem solves a different size graph defined

by a Scale parameter, which is the base 2 logarithm of the number

of vertices. For example, the level Scale 26 for toy means 226 and

corresponds to 1010 bytes occupying 17 GB of memory. The six

Scale values are 26, 29, 32, 36, 39, and 42 for the six classes. The

largest problem, huge (Scale 42), needs to handle around 1.1 PB

of memory. As of this writing, Scale 38 is the largest that has been

solved by a top-ranked supercomputer.

Introduction 1

GRAPH500 Benchmark 2

Graph500 Challenge on TSUBAME 2.0

17

SC’11 Special Issue

All of the MPI reference implementation algorithms of the

Graph500 benchmark use a “level-synchronized breadth-first

search”, which means that all of the vertices at a given level of

the BFS tree will be processed (potentially in parallel) before any

vertices from a lower level in the tree are processed.

To solve the scalability issue of reference implementations, our

scalable BFS method named U-BFS is based upon the technique

proposed in [3]. Their approach is based on the level-synchronized

BFS and 2D (two dimensions) partitioning technique. This is

scalable technique to reduce the communication cost unlike the

1D partitioning including vertical partitioning and horizontal

partitioning of reference implementations. Our proposed method

also optimizes this 2D partitioning technique and also other some

optimization techniques. Therefore we give a brief overview of the

2D partitioning technique here.

 Assume that we have P processors in total, P=R*C

processors are logically deployed in two dimensional mesh of

R (processor row) * C (processor column). An adjacent matrix is

divided as shown in Figure 2 and the processor (i, j) is responsible

for handling the C blocks from . Vertices are divided into

R*C blocks and the processor (i, j) handles the k th block where k is

computed by (j-1)*R + i.

 Each level of level-synchronized BFS method with 2D

partitioning is performed by 2 phases called “expand” and “fold”.

 Algorithm I is the abstract pseudocode for the algorithm

that implements level-synchronized BFS. Each MPI process has two

queues, CQ and NQ, and two arrays, PRED for a predecessor array

and VISITED to track whether or not each vertex has been visited.

 At any given time, CQ (Current Queue) is the set of ver-

tices that must be visited at the current level. At level 1, CQ will

contain the neighbors of r, so at level 2, it will contain their pending

Level-Synchronized BFS 3

U-BFS: Our Scalable BFS Method 4

Figure 1 Kronecker Graph [4]

neighbors (the neighboring vertices that have not been visited

at levels 0 or 1). The algorithm also maintains NQ (Next Queue),

containing the vertices that should be visited at the next level.

After visiting all of the nodes at each level, the queues CQ and NQ

are swapped at line 16.

 VISITED is a bitmap that represents each vertex with one

bit. Each bit of VISITED is 1 if the corresponding vertex has been

already visited and 0 if not. PRED has a predecessor vertex for each

vertex. If an unvisited vertex v is found at line 12, the vertex u is the

predecessor vertex of the vertex v at line 14. When we complete

BFS, PRED forms a BFS tree, the output of kernel2 in the Graph500

benchmark.

 At each level, the set of all vertices v is the NQ nominee,

now called “NQ-N”. NQ-N has all the adjacent vertices of the

vertices in CQ that would be potentially stored in NQ. NQ-N is

obtained from line 9 to line 11 in the algorithm.

 The Graph500 benchmark provides 4 different reference

implementations based on this level-synchronized BFS method.

Basically all the reference implementations has the scalability

issue and are mostly saturated with 32 nodes on TSUBAME 2.0.

Please refer our work [2] on their details and algorithms and their

performance analysis on TSUBMAE 2.0.

18

We conducted the Graph500 benchmark on TSUBAME 2.0. Here is

the evaluation environment and performance result.

In the expand phase, every processor copies its CQ to all the other

processors that exists in the same column just as the vertical 1D

partitioning. In the fold phase, each row of processors integrates

the compute results after the expand phase. Therefore, this is

equivalent to a method of combining two types of 1D partitioning.

If C is 1, this corresponds to the vertical 1D partitioning and if R is 1,

it corresponds to the horizontal 1D partitioning.

 In the fold phase, it firstly searches all the adjacent

vertices against each vertex, v of CQ obtained by the expand

phase, and then sends a tuple of (v, u) - where u is one of the found

adjacent vertices – to the corresponding processor where v is

located.

 The advantage of 2D partitioning is to reduce the

number of processors that needs communication among them.

The two types of 1D partitioning requires all-to-all communication.

However, the 2D par t it ioning can reduce the number of

communication processors and most importantly becomes highly

scalable in large computing environments since the expand phase

only requires the communication among the nodes in the same

column and the fold phase only requires the communication

among the processors in the same row.

5.1 Evaluation Environment

Each TSUBAME 2.0 node has two Intel Westmere EP 2.93 GHz

processors (Xeon X5670, 256-KB L2 cache, 12-MB L3) and 50 GB

of local memory. As the software environment we used gcc 4.3.4

(OpenMP 2.5), MVAPICH2 version 1.6 and we used at maximum

1366 nodes. TSUBAME 2.0 is also characterized as a supercomputer

with heterogeneous processors including tremendous amount

of GPU devices, but we do not use the environment. One node

of TSUBAME 2.0 has physical 12 CPU cores and virtually 24 cores

with SMT (Simultaneous Multithreading). Our implementation

treats 24 cores for one single node and the same number of

processors are allocated to each MPI processes. Each computing

node is connected to two QDR Infiniband network links, so the

communication bandwidth for the node is about 80 times larger

than a fast LAN (1 Gbps). Not only the link speed at the end-point

nodes, but the network topology of the entire system heavily

affects the performance such an I/O intensive application as

Graph500. TSUBAME 2.0 uses a full-bisection fat-tree topology,

which accommodates applications that need more bandwidth

than provided by such topologies as a torus or mesh.

5.2 Performance Result

We compare U-BFS with the latest version (2.1.4) of reference

i m p l e m e n t a t i o n s . F i g u r e 3 c o m p a r e s o u r o p t i m i z e d

implementation, U-BFS with reference implementations. This

experiment is conducted in a weak-scaling fashion, so the problem

size for one node is SCALE 26. The horizontal axis is the number of

nodes and the vertical axis is TEPS (GE/s).

 U-BFS and two reference implementations, replicated-

csr and replicated-csc (called R-CSR and R-CSC hereafter) use

2 MPI processes for 1 node. The reference implementation,

simple (called SIM hereafter), uses 16 MPI processes for one node

since the implementation has not been implemented with the

multithreading parallelism. As shown in the graph, there exists

some result that cannot be measured due to the errors such

as validation error, segmentation fault, and memory error with

reference implementations. Figure 3 shows that U-BFS outperforms

R-CSC and SIM. With smaller number of nodes less than 32

nodes, R-CSR shows better performance, but our method shows

performance advantage with more than 32 nodes. For instance, our

optimized method is 2.8 times faster than R-CSR with 128 nodes

and SCALE 26 for one node (All the problem size is SCALE 33).

 The scalability of our approach is shown in Figure 4. As

shown in the figure, the throughput in TEPS is linearly increasing

with larger number of nodes and finally achieves 99.0 GE per

second (TEPS) with 1024 nodes and SCALE 36. We successfully

Performance Evaluation 5

Figure 2 2D Partitioning Based BFS [3]

Graph500 Ranking No.3

Graph500 Challenge on TSUBAME 2.0

19

Figure 4 Performance of Our Optimized
Implementation with
Scale 26 per 1 node

SC’11 Special Issue

solved BFS (Breadth First Search) for large-scale graph with 236

（68.7 billion）vertices and 240（1.1 trillion）edges for 10.955

seconds with 1366 nodes and 16392 CPU cores. This record

corresponds to 100.366 GE/s, which was the 3rd-ranked score in

the latest ranking announced in SC2011.

In this paper we described our challenge and our basic algorithm for

the Graph500 benchmark on TSUBAME 2.0. Our proposed approach

based on 2D partitioning greatly outperforms the benchmark

reference implementations and also shows great scalability with up

to 1366 nodes. Overall our score was 3rd score announced in 2011/11.

Our achievement could not be done with only 2D partitioning but

also more optimization techniques. This is the first challenge for

Graph500, but this continuous challenge and research towards

more optimization and scalable algorithms waits us.

Acknowledgements

This research was supported in part by TSUBAME Grand Challenge

Program and a CREST project "Highly Productive, High Performance

Application Frameworks for Post Petascale Computing" from Japan

Science and Technology Agency (JST).

References

[1] Graph500 : http://www.graph500.org/.

[2] Toyotaro Suzumura, Koji Ueno, Hitoshi Sato, Katsuki Fujisawa

and Satoshi Matsuoka, "Performance Evaluation of Graph500

on Large-Scale Distributed Environment", IEEE IISWC 2011

 (IEEE International Symposium on Workload Characterization) ,

2011/11, Austin, TX, US

[3] Andy Yoo, et al, A Scalable Distributed Parallel Breadth-First

Search Algorithm on BlueGene/L. SC 2005.

[4] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Realistic,

mathematically tractable graph generation and evolution, us-

ing kronecker multiplication,” in Conf. on Principles and Prac-

tice of Knowledge Discovery in Databases, 2005.

Concluding Remarks 6

Figure 3 Performance Comparison with
Reference Implementations

20

We propose a compiler-based programming framework that automatically translates user-written structured grid
code into scalable parallel implementation code for GPU-equipped clusters such as TSUBAME2.0.
Our framework automatically translates user-written stencil functions to GPU execution code as well as message
passing parallel code for inter-node parallelism. It also includes several optimizations for better scalability with a
large number of GPUs, such as compute and communication overlapping. We present an overview of our framework
and report performance results using TSUBAME2.0, which demonstrate good scalability up to 256 GPUs.

Naoya Maruyama* Tatsuo Nomura** Kento Sato*** Satoshi Matsuoka*
*Global Scientific Information and Computing Center, Tokyo Institute of Technology　**Google, Inc.
***Graduate School of Information Science and Engineering, Tokyo Institute of Technology

Heterogeneous computing with both conventional CPUs and

vector-oriented GPU accelerators is becoming common because

of superior performance as well as power efficiency. The peak

performance of latest NVIDIA GPUs can be as high as 515 GFLOPS per

chip, which is faster than the latest CPUs by several factors, allowing

significant performance boost in compute-bound applications such

as N-body problems. GPU’s memory bandwidth is also much greater

than conventional CPU memory, reaching over 100 GB/s in properly

aligned memory accesses, making it possible to achieve significant

speedups in memory-bound applications such as computational

fluid dynamics.[2]

 Programming such heterogeneous systems, however, is

a notoriously difficult task. The reason is two-fold. First, most of the

existing programming models for such systems only provide low-

level platform-specific abstractions. The lack of high-level unified

programming models forces the programmer to learn multiple

distinctive models for parallel computing, e.g., message passing

for distributed memory machines and GPU-centric models for

accelerators, often resulting in ad hoc hybrid programming models.

Since parallel programming even with a single model is known to

be difficult and error prone, exploiting the potential performance

advantage with hybrid models is thus a highly difficult task. Second,

in the current heterogeneous architecture, data movements often

involve complex performance considerations such as locality

optimizations for keeping data close to processor cores and

overlapping of communications and computations. While these

techniques have long been well known and studied on parallel

platforms, realizing them on complex heterogeneous systems

further increases the programmer burden. As a result, further scaling

performance with a large number of GPUs remains to be challenging

even for highly skilled experts.

 To solve the problem and improve programmer

productivity, we envision a high-level programming model

that provides a uniform application programming interface

for heterogeneous systems. While low-level inter faces are

indeed essential when the maximum programming flexibility is

required, such a case should not be common but exceptional,

and simplifying programming even with limited flexibilities and

small performance cost should be highly important to allow the

adoption of heterogeneous systems for a wider range of application

programmers.

 This ar ticle presents our high-level programming

framework called Physis that is specialized to stencil computations

with regular multidimensional Car tesian grid. [1] In stencil

computations, each grid point is repeatedly updated by only

using neighbor points, exhibiting regular spatial locality. Such a

computation pattern, called “ structured grids ”, frequently appears in

numerical simulation codes for solving partial differential equations.

The performance of stencil applications is often determined by

memory system performance since the typical byte-per-flop ratio in

such code is higher than the ratio of today’s processor and memory

systems, including GPUs. Therefore, optimizing data movements is

the most important to improve performance of such applications.

Typical such optimizations for the GPU include latency hiding by

scheduling a large number of concurrent threads, data alignment

to allow coalesced memory accesses, and locality optimizations by

thread blocking.[3] In addition to these optimizations, more coding

effort is required to scale well with a large number of GPUs, such as

communication and computation overlapping. GPU performance

scalability is especially important for applications using a large

amount of data, since a single GPU is equipped only with a few giga

bytes of memory.

 In the Physis framework, we design its programming

model such that architecture neutrality can be realized on

various parallel plat forms, with a particular focus on GPU-

based heterogeneous supercomputers. It provides portable and

declarative constructs for describing stencil computations, such as

Introduction 1

Physis: A High-Level Stencil Framework for
Heterogeneous Supercomputers

21

SC’11 Special Issue

creating multidimensional grids, data copying to and from them,

and applying stencils over them. Global view memory model

and implicit parallelism are adopted to realize high productivity

as well as architecture neutrality. The declarative programming

interface at the same time allows for static compilation techniques

to automatically parallelize stencil computations over distributed

memory environments with optimizations such as compute-

communication overlapping. While it is beyond the scope of this

paper, the framework is designed to allow for further advanced

software techniques to be applied transparently for the application

programmer, such as model-based and experimental performance

tuning, resiliency through error checking and scalable and fast

checkpointing.

 We describe an implementation of the framework based

on the standard C language. We introduce a small set of custom data

types and intrinsics for stencil computations into C as an embedded

DSL .[4] Those custom extensions are translated to platform native

code, such as CUDA for GPU and MPI for message passing. Programs

written in the Physis DSL can also be automatically translated to

parallel code using MPI with the overlapping optimization for better

scalability.

 To evaluate our framework, we implement several

stencil applications in the Physis DSL and evaluate its performance

using the TSUBAME2.0 supercomputer at Tokyo Tech, which is the

fifth fastest machine at the Nov 2011 list of Top500. We present

results of performance studies using up to 256 NVIDIA Fermi GPUs,

and demonstrate that our framework can achieve performance

comparable to hand-written versions with good strong and weak

scalability. For more complete presentation, refer to our SC11 paper .[1]

We design a high-level programming framework that provides

a highly productive programming environment for stencil

computations. The framework consists of a domain-specific

language and platform-specific runtimes. The DSL allows for

declarative and flexible descriptions of stencils in an architecture-

neutral way, which is then translated to architecture-specific code by

source-to-source translators. The framework runtime encapsulates

architecture-specific data management tasks and provides a

uniform interface of virtual shared memory for multidimensional

grids. The rest of this section discusses our major design goals of the

framework.

2-1 Design Goals

Automatic parallelization: We design the Physis DSL amenable to

compiler-based automatic parallelization on distributed-memory

parallel environments. Although automatic parallelization has been

an active research topic for the past decades, it has not been widely

successful in practice for general-purpose languages, especially

on distributed memory environments, since effectively exploiting

data localities available in applications is a complex and difficult

task. In contrast, our framework is limited to a small set of domain-

specific computations, but by doing so we eliminate the difficulties

of automatic parallelization in conventional general-purpose

languages, and realize implicit parallelism on a variety of parallel

platforms.

Embedded DSL rather than external DSL: Inventing a completely

new language for a given problem domain, i.e., an external DSL

approach, potentially allows for a maximally optimized language

design. In practice, however, being dissimilar to existing familiar

languages may hinder adoption by a wide body of application

programmers. We design our DSL as a small set of extensions

on existing general-purpose languages, i.e., an embedded DSL.

We choose C as the base language in our current design and

implementation since it is one of the most commonly used languages

in high performance computing.

Declarative and expressive programming model: In order to

improve productivity, we maximize programming abstraction by

adopting a declarative programming model that allows for less

manual programming than imperative models. For example, in

the Physis DSL the programmer expresses how each grid element

is computed, but it is determined by the framework how the

whole grid is processed with the user-specified computation; the

High-Level Framework For Stencil
Computations 2

22

 PSStencilMap creates an object of PSStencil, which

encapsulates a given stencil function with its parameters bound to

actual arguments. It is analogous to closures in functional

 programming. PSStencilRun executes PSStencil objects

in a batch v. Each stencil function may be executed in parallel,

exhibiting implicit parallelism.

overall computation may be performed sequentially or in parallel

depending on target environments of the framework. Having too

much abstraction, however, can be too restricted to implement

real-world scientific simulations. For example, some stencils may

be applied only to a part of a whole grid, such as boundary regions.

Although we attempt to keep the language extensions minimal,

we adopt additional domain-specific constructs if they can further

improve productivity of programmers and performance of final

implementation codes.

The Physis DSL extends the standard C with several new data types

and intrinsics for stencil computations. The user is required to use

the extensions to express stencil-based applications, which are then

translated to actual implementation code by the Physis translator.

 Physis supports multidimensional Cartesian grids

of f loating-point values (either f loat or double). To represent

multidimensional grids, we introduce several new data types named

based on its dimensionality and element type, e.g., PSGrid3DFloat

for 3-D grids of float values and PSGrid2DDouble for 2-D grids of

double values. The type does not expose its internal structure, but

rather works as an opaque handle to actual implementation, which

may differ depending on translation targets.

 Since many of the Physis intrinsics are overloaded with

respect to the grid types, below we simply use PSGrid to specify

different grid types when not ambiguous.

 Grids of type PSGridFloat3D can be created and destructed

with intrinsics PSGridFloat3DNew and PSGridFree, as defined as follows:

PSGrid3DFloat PSGrid3DFloatNew(

 size_t dimx, size_t dimy,

 size_t dimz,

 enum PS_GRID_ATTRIBUTE attr)

void PSGridFree(PSGrid g)

 They can be accessed both in bulk and point-wise ways

using the following intrinsics:

void PSGridCopyin(PSGrid g,

 const void *src)

void PSGridCopyout(PSGrid g, void *dst)

PSGridGet(PSGrid g, size_t i,

 size_t j, size_t k)

void PSGridSet(PSGrid g,

 size_t i, size_t j, size_t k, T v)

void PSGridEmit(PSGrid g, T v)

 The set of size_t parameters specify the indices of a

point within the given grid, so the number of index parameters

depend on the dimensionality of the grid (e.g., three for 3-D grids).

The return type of PSGridGet and the v parameter of PSGridSet and

PSGridEmit have the same type as the element type of the grid,

which is either float or double.

 PSGridGet returns the value of the specified point, while

PSGridSet writes a new value to the specified point. PSGridEmit

performs similarly to PSGridSet, but does not accept the index

parameters, and is solely used in stencil functions.

3-1 Example

Fig. 1 shows a function of 9-point stencil on 2-D grids. Such a

function can be applied to grids by using two declarative intrinsics:

PSStencilMap and PSStencilRun. Fig. 2 illustrates how these intrinsics

can be used to invoke the diffusion stencil of Fig. 1 on 2-D grids.

Programming Model 3

Figure 1 Example 9-point stencil

Figure 2 Example code to apply stencils to grids

SC’11 Technical Paper

Physis: A High-Level Stencil Framework for
Heterogeneous Supercomputers

23

SC’11 Special Issue

To evaluate our proposed framework, we have implemented

a prototype for parallel machines using the ROSE compiler

framework .[5] It consists of a source-to-source translator and

runtime components for each target platform. As translation

targets, we currently generate C for CPU execution and CUDA

for GPU execution. In addition, for platforms involving multiple

distributed compute resources, we generate message-passing

parallel code using MPI.

 As performance benchmark programs, we implemented

two stencil codes in Physis:

・Diffusion: 3-D 7-point stencil.

・Seismic: 3-D seismic wave simulation with 27 stencil functions.

 Diffusion is relatively small scale, consisting of only one

stencil function, whereas the seismic code consists of 27 stencils with

staggered grids. Among the 27 stencils, six are for computing the 2-D

surfaces of the 3-D domain, which are implemented with PSDomain

objects. All benchmarks use single-precision floating-point data.

 We use the TSUBAME2.0 supercomputer at Tokyo

Institute of Technology, which consists of 1408 compute nodes.

Each node has two Intel Xeon Westmere-EP 2.9GHz CPUs and

three NVIDIA M2050 GPUs with 52GB and 3GB of system and GPU

memory, running SUSE Linux Enterprise Server 11 SP1. The compute

nodes are interconnected by dual QDR Infiniband networks with a

full bisection-bandwidth fat-tree topology network. We use CUDA

v3.2 for GPU code and gcc/g++ v4.1.2 for CPU code.

4-1 Weak Scaling Evaluation

Fig. 3 shows the results of weak scaling evaluation with the

diffusion code. The red and blue lines are the cases where each

GPU is assigned a subdomain of 256x128x128 and 512x256x256,

respectively. In both cases, the 3-D domain is decomposed only

over y and z dimensions. As expected, the larger problem size

allowed for better performance and scaling, which is almost linear

scaling up to 256 GPUs, although even the smaller case achieved 11

times speedup with 256 GPUs compared to the 16-GPU case.

 Fig. 4 shows the results of weak scaling evaluations with the

seismic code, where each GPU computes a subdomain of 256 3 region.

Unlike the diffusion case, the problem domain is decomposed over x

and y dimensions; in other words, the domain is expanded in the x-y

plane with the problem size of each GPU fixed. The decomposition

implies that boundary exchanges involve non-unit stride data

accesses, thus resulting lower scalability than the diffusion code. The

Experimental Evaluation 4

Figure 3 Weak scaling performance of Diffusion
benchmark with up to 256 GPUs.

Figure 4 Weak scaling performance of Seismic benchmark
with up to 144 GPUs. The problem size of each GPU
is fixed at 256x256x256

performance of seismic benchmark exhibits significant drop at 64

GPUs and relatively low scalability afterward, which remains to be a

subject of more detailed performance analysis.

4-2 Strong Scaling Evaluation

Fig. 5 shows the strong scaling performance of the diffusion stencil

with the problem size fixed at 512 x 512 x 4096. We evaluated 1-D,

2-D, and 3-D decompositions using up to 128 GPUs. In the 1-D

decomposition, we uniformly decomposed the z-direction by the

number of GPUs. In 2-D, we also decomposed the y-direction by

two GPUs and again uniformly decomposed the z-direction with the

rest of GPUs. Similarly, in the 3-D decomposition, we decomposed

the x-direction into two GPUs in addition to the uniform y- and

z- direction decompositions. As expected, the 1-D and 2-D cases

performed better with a smaller number of GPUs, but as the number

increases, the 3-D version outperformed the other two versions.

While it is well known that 3-D decomposition often performs

better in large-scale settings, our contribution is to allow application

scientists to transparently enjoy such better performance and

scalability without investing significant amount of efforts.

24

Recent developments of GPU accelerators for scientific computing have

enabled low-cost power-efficient approaches to increase compute

performances. However, one of the side effects of this trend is the

significant decrease of programmer productivity due to the complexities

involved in programming heterogeneous architecture. Although little

work has been done for large-scale heterogeneous supercomputers,

several recent projects attempted to solve the problem.

 Mint is a high-level directive-based framework for stencil

computations .[6] It allows for regular loop-based stencil programs

to be annotated with its custom directives so that stencil loops

can be executed on GPUs. Ypnos is a Haskell-based DSL for stencil

computations that is designed so that compiler-based automatic

parallelization is possible .[7] Both of them share common objectives

with ours, such as automatic parallelization, but so far they are limited

to single-GPU platforms, whereas our primary focus is to realize scalable

multi-GPU implementations.

 Listz is a DSL for unstructured mesh-based simulations .[8]

As in our framework, actual implementations of the mesh interface are

hidden from the programmer, which allows Listz to perform aggressive

domain-specific optimizations. The implementation of the Listz is based

on Scala’s extensive language features, which facilitate developments

of DSLs. Listz could be use to implement structured-grid stencil

applications; however, since it targets unstructured meshes, it may not

be able to fully exploit the optimization opportunities of structured data.

In order to improve programmer productivity on large-scale

heterogeneous GPU clusters, we have designed and implemented

the Physis framework that supports portable programming of stencil

computations with structured grids. The C-based DSL represents a

high-level declarative programming model for stencil computations.

The DSL translator and runtime together realize an ef ficient

implementation of the programming model with optimizations such

as automatic overlapping of computations and communications.

This paper presented our current framework implementation and

evaluations of its productivity and performance. We have shown that

our framework successfully generates scalable code for up to 256

GPUs. We plan to extend the presented framework for generating

Related Work 5

Conclusion 6

SC’11 Technical Paper

Physis: A High-Level Stencil Framework for
Heterogeneous Supercomputers

25

further optimized code and to evaluate its effectiveness using a

wider variety of stencil applications.

Acknowledgements

This project was partially supported by JST, CREST through

its research program: ``Highly Productive, High Performance

Application Frameworks for Post Petascale Computing.'' We also

thank MEXT Grant-in-Aid for Young Scientists (22700047), JST-ANR

FP3C, and NVIDIA CUDA Center of Excellence.

References

[1] N . M a r u y a m a , T. N o m u r a , K . S a to , a n d S . M a t s u o k a ,

“Physis : an implicit ly paral lel programming model for

s tenci l computations on large -scale GPU-accelerated

sup erco mp u ter s , ” In Pro ce e din gs o f 2 0 11 AC M / IEEE

International Conference for High Performance Computing,

Networking, Storage and Analysis (SC'11), Seattle, WA, USA (2011)

[2] T.Shimokawabe, T.Aoki, C.Muroi, J.Ishida, K.Kawano, T.Endo,

A.Nukada, N.Maruyama, S.Matsuoka, “An80-fold speedup, 15.0

TFlops full GPU acceleration of non-hydrostatic weather model

ASUCA production code” in Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing,

Networking, Storage and Analysis, (SC’10), New Orleans, LA, USA (2010)

[3] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. M.

W. Hwu, “Optimization principles and application performance

evaluation of a multi- threaded GPU using CUDA,” In Proceedings

of the 13th ACM SIGPLAN Symposium on Principles and practice

of parallel programming, PPoPP ’08, zpages 73– 82, (20 08)

[4] M. Fowler. Domain-Specific Languages. Addison- Wesley

Professional (2010)

[5] M. Schordan and D. Quinlan, “A source-to-source architecture

for user-defined optimizations,” In Modular Programming

Languages, volume 278 9 of Lecture Notes in Computer

Science, pages 214–223. Springer Berlin / Heidelberg (2003)

[6] D. Unat , X . Cai , and S . B . Baden. “Mint : real iz ing CUDA

p er fo r man ce in 3 D s ten c i l m eth o ds w i th ann ot ate d

c ,” In Proceedings of the International Conference on

Supercomputing (ICS’11), ICS ’11, pages 214–224 (2011)

[7] D. A. Orchard, M. Bolingbroke, and A. Mycroft. “Ypnos: declarative,

parallel structured grid programming,” In DAMP ’10: Proceedings

of the 5th ACM SIGPLAN workshop on Declarative aspects of

multicore programming, pages 15–24 (2010)

[8] [H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Su- jeeth, P. Hanrahan,

M. Odersky, and K. Olukotun, “Language virtualization for

heterogeneous parallel computing,” In Proceedings of the ACM

international conference on Object oriented programming systems

languages and applications, OOPSLA ’10, pages 835–847 (2010)

Large scientific applications deployed on current petascale systems expend a significant amount of their execution
time dumping checkpoint files to remote storage. New fault tolerant techniques will be critical to efficiently exploit
post-petascale systems. In this work, we propose a low-overhead high-frequency multi-level checkpoint technique
in which we integrate a highly-reliable topology-aware Reed-Solomon encoding in a three-level checkpoint scheme.
We efficiently hide the encoding time using one Fault-Tolerance dedicated thread per node. We implement our
technique in the Fault Tolerance Interface FTI. We evaluate the correctness of our performance model and conduct
a study of the reliability of our library. To demonstrate the performance of FTI, we present a case study of the Mw9.0
Tohoku Japan earthquake simulation with SPECFEM3D on TSUBAME2.0. We demonstrate a checkpoint overhead as
low as 8% on sustained 0.1 petaflops runs (1152 GPUs) while checkpointing at high frequency.

In high performance computing (HPC), systems are built from

highly reliable components. However, the overall failure rate of

supercomputers increases with component count. Nowadays,

petascale machines have a mean time between failures (MTBF)

measured in hours or days[14] and fault tolerance (FT) is a well-known

issue. Long running large applications rely on FT techniques to

successfully finish their long executions. Checkpoint/Restart (CR)

is a popular technique in which the applications save their state in

stable storage, frequently a parallel file system (PFS); upon a failure,

the application restarts from the last saved checkpoint. CR is a

relatively inexpensive technique in comparison with the process-

replication scheme that imposes over 100 % of overhead.

 However, when a large application is checkpointed, tens

of thousands of processes will each write several GBs of data and

the total checkpoint size will be in the order of several tens of TBs.

Since the I/O bandwidth of supercomputers does not increase at

the same speed as computational capabilities, large checkpoints

can lead to an I/O bottleneck, which causes up to 25% of overhead

in current petascale systems[12]. Post-petascale systems will have

a significantly larger number of components and an important

amount of memory. This will have an impact on the system’

s reliability. With a shorter MTBF, those systems may require a

higher checkpoint frequency and at the same time they will have

significantly larger amounts of data to save.

 Although the overall failure rate of future post-petascale

systems is a common factor to study when designing FT-

techniques, another important point to take into account is the

pattern of the failures. Indeed, when moving from 90nm to 16nm

technology, the soft error rate (SER) is likely to increase significantly,

as shown in a recent study from Intel [13, 6]. A recent study by Dong

et al. explains how this provides an opportunity for local/global

hybrid checkpoint using new technologies such as phase change

memories (PCM) [2]. Moreover, some hard failures can be tolerated

using solid-state-drives (SSD) [8] and cross-node redundancy

schemes, such as checkpoint replication or XOR encoding [9] which

allows to leverage multi-level checkpointing, as proposed by

Moody et al. [1]. Furthermore, Cheng et al. demonstrated that more

complex erasure codes such as Reed-Solomon (RS) encoding can

be used to further increase the percentage of hard failures tolerated

without stressing the PFS [3]. Our work goes in the same direction as

these three studies and partially leverages some of those results.

1-1 Contributions

We propose a model of a highly reliable erasure code scheme

based on our topology-aware RS encoding published in previous

work [4]. We extend our previous research by studying not only the

scalability of the encoding algorithm but also the impact of the

checkpoint size per node and the group size, on encoding and

decoding performance. We evaluate and prove the accuracy of

our performance model and show that our topology-aware RS

encoding scheme is several orders of magnitude more reliable

than XOR encoding. We apply our FT-dedicated thread scheme

presented in previous work [5] in order to further decrease the

checkpoint overhead and we integrate it for the first time in a multi-

level checkpoint technique that we implement in our FTI library. Our

evaluation shows that by using FT-dedicated threads in the nodes

we can efficiently hide the encoding time, making its overhead

negligible in comparison with a simple local write checkpoint. We

extend our evaluation with a functional test in a real case study by

simulating the March 11th Mw9.0 Tohoku, Japan earthquake and

we present synthetic seismograms for the Hirono seismic recoding

station in Fukushima prefecture. We perform a large scalability and

overhead evaluation of our library with SPECFEM3D and we show

that FTI can successfully scale to more than 1000 GPUs and reach

over 100 TFlops while checkpointing at high frequency and causing

only about 8 % overhead in comparison with a not checkpointed

execution.

Introduction 1

FTI: high performance Fault Tolerance
Interface for hybrid systems
Leonardo Bautista-Gomez*　Dimitri Komatitch**　Naoya Maruyama*　Seiji Tsuboi***　
Franck Cappello †　Satoshi Matsuoka ‡　Takeshi Nakamura***
* Tokyo Institute of Technology, INRIA　** Observatoire Midi-Pyrénées, University of Toulouse

*** JAMSTEC　† INRIA, University of Illinois　‡ Tokyo Institute of Technology

26

In this section we evaluate the performance, scalability and

efficiency of our FTI library using SPECFEM3D. All our experiments

were done on TSUBAME2.0 with the configuration given in table 1.

2-1 Simulating the March 11t h Mw9.0 Tohoku Japan earthquake

In an effort to extend our evaluation with a functional test of

FTI in a real case simulation with a production level application,

we decided to simulate the devastating Mw9.0 Tohoku Japan

earthquake that struck the northeast part of the island on March

11th, 2011. The simulation is done with SPECFEM3D on TSUBAME2.0

using an input model that describes the source fault.

 SPECFEM3D is used by more than 300 research groups in

the world for a large number of applications, for example to model

the propagation of seismic waves resulting from earthquakes,

seismic acquisition experiments carried out in the oil industry,

or laboratory experiments with ultrasounds in crystals. This

application won the Gordon Bell SuperComputing award for Best

Performance [11] for a calculation of seismograms in the whole 3D

Earth down to periods of approximately 5 seconds, carried out

at 5 teraflops (sustained) on 1944 processors using 14.6 billion

degrees of freedom stored in 2.5 terabytes of memory on the Earth

Simulator, the fastest computer in the world at that time (2002).

 For the source model, we apply waveform inversion [19]

to obtain slip distribution in the source fault at the 2011 Tohoku,

EVALUATION 2
Japan earthquake in the same manner as Nakamura et al[22]. We

use broadband seismograms of IRIS GSN and IFREE OHP seismic

stations with epicentral distance between 30 and 100 degrees. The

broadband original data are integrated into ground displacement

and band-pass filtered in the frequency band 0.002-1 Hz. We use

the velocity structure model of the earth IASP91 [18] to calculate the

wavefield near the source and stations. We assume that the strike

of the fault plane is 201 degree and the dip angle is 9 degree, based

on the Global Centroid Moment Tensor model of the earthquake

source. The length of a subfault is 20 km along strike. The assumed

fault length is 440 km in total, consistent with the aftershock

distribution.

 The nonnegative least-squares method [21] is employed for

constraining the rake angle in the waveform inversion. The results

of the inversion show the bilateral rupture to the northeast and the

southwest with two main asperities along the fault; maximum slip

is of around 40 m with the reverse fault mechanism approximately

100 km northeast of the epicenter and another large slip with

reverse fault mechanism at 100 km southeast of the epicenter. The

total amount of released seismic moment corresponds to moment

magnitude Mw = 9.1. We calculate synthetic seismograms with

this source propagation model for a realistic 3D Earth model using

the spectral-element method [20, 23]. As we can observe in figure 1,

the synthetic seismogram for the Hirono seismic recording station

located in the Fukushima prefecture, the East component shows

about 2m static displacement to the East, which seems to be

consistent with the observed crustal deformation caused by this

earthquake. Figures 1 also shows the other two components at the

same station.

Table 1 : TSUBME 2.0 Architecture

SC’11 Technical Paper (Achieving a Perfect Score)

FTI: high performance Fault Tolerance Interface for
hybrid systems

27

Figure 2 FTI evaluation on TSUBAME2.0

SC’11 Special Issue

2-2 FTI scalability study with SPECFEM3D

In order to demonstrate the efficiency and scalability of FTI we

decided to evaluate it at large scale with SPECFEM3D. Recently,

SPECFEM3D was ported to GPU clusters using CUDA [15, 16], so it can

be used in hybrid systems such as TSUBAME2.0. It is important to

notice that such seismic simulations do not need double precision

and perform their runs in single precision [15]. Also, we want to

highlight that SPECFEM3D is a memory-bound application, as any

finite difference or finite element code; this is intrinsically related

to the fact that in such numerical methods few operations are

performed per grid point, and thus the cost comes mostly from

memory accesses [15, 16].

 First, we start with a strong scalability test in which

we evaluate the performance of SPECFEM3D in three cases: no

checkpointing, checkpointing with FTI (L2) and checkpointing

on Lustre [7]. Since the problem size is fixed, the memory used

(and therefore the checkpoint size) per GPU decreases when the

number of GPUs increases. In this experiment, for the FTI tests all

the checkpoints were done with the L2 of FTI, thus we do not take

advantage of the multi-level scheme of FTI at this point. Since

checkpoint size decreases, we also decrease the checkpoint interval

in order to decrease the recovery cost in case of failure. All the

checkpoints are done at the application level and we checkpoint

only the strictly necessary data in order to restart the execution; this

corresponds to about 20% of the memory used by the application.

Figure 1 Synthetic seismograms for the Hirono station

28

SC’11 Technical Paper (Achieving a Perfect Score)

FTI: high performance Fault Tolerance Interface for
hybrid systems

 As we can see in figure 7a, SPECFEM3D strong-scales

well from 5 TFlops on 48GPUs to almost 23 TFlops on 384GPUs

without checkpointing. FTI follows closely this progression by

causing only about 4 % of overhead for 384GPUs. In contrast,

checkpointing to Lustre becomes prohibitively costly at high

frequencies. Performance was measured using PAPI to measure

the floating point operations [17] and each dot in the figure is the

average of 5 runs.

 To evaluate the overhead of FTI at large scale, we stressed

even more our library by weak-scaling to more than 1000 GPUs.

In this second experiment, we populate the GPUs memory with

2.1GBs of data, out of 2.6GBs available for the user (12.5 % is used

for ECC in Fermi GPUs) and we keep the checkpoint interval fixed

to 6 minutes, which is the Young’s optimal checkpoint interval for

a MTBF of 12 hours and a L1 checkpoint of 2 seconds. Then, we

run SPECFEM3D for several configurations: The first one is without

checkpoint (No ckpt.); the second one is checkpointing to the local

SSDs without any encoding (L1); the third one is using FTI, thus in

addition to the local checkpoint, every 2 checkpoints FTI will use

the RS encoding proposed in our model (FTI-L1,L2); the fourth one

is similar to the previous one but in addition every 6 checkpoints

the latest checkpoint files are flushed to Lustre (FTI-L1,L2,L3); and

finally checkpointing with BLCR on Lustre (BLCR+Lustre). Although

there are some ongoing works [10] to make it possible, BLCR cannot

currently checkpoint GPU-accelerated systems. Hence, we emulate

it by writing 2.1GBs of data per process (therefore per GPU) to Lustre

in the same way BLCR would do it. It is important to highlight that

BLCR, as any other kernel-level checkpoint, will save the complete

memory of every process, creating a 5 times larger checkpoint.

 In figure 7b, we can see that SPECFEM3D has an almost

perfect weak scaling, from 43TFlops to 117TFlops on 1152GPUs

for the No ckpt. test. Also, in the figure the L1 results are actually

hidden by the FTI-L1,L2 results. Indeed, both scenarios achieve

almost identical results causing about 8% overhead in comparison

with the No ckpt. case. This means, that the RS encoding done at

L2 is completely hidden thanks to the FT-dedicated threads. The

L1 checkpoints, capable of tolerating transient failures, are done

between two L2 checkpoints while the FT-threads are still encoding

the previous, more reliable, checkpoint. The FTI-L1,L2,L3 scheme

adds an extra 3 % overhead due to Lustre writing performance.

Finally, the BLCR+Lustre scheme imposes an always larger and

prohibitive overhead as the size of the problem increases. For each

run we let the application run between 30 and 40 minutes and

every point in the figure is the average of 3 runs.

 At this point , we have achieved over 100TFlops

of sustained performance with a production-level scientific

application such as SPECFEM3D, on an hybrid supercomputer such

as TSUBAME2.0 and checkpointing with our library FTI every 6

minutes (high frequency checkpointing).

In this work we have proposed a highly reliable technique based

on a topology-aware RS encoding. Also, we have exploited some

characteristics of GPU computing through which many GPU

applications are capable of spawning one extra FT-dedicated

thread per node in order to improve checkpoint performance.

We have integrated both techniques in a multi-level checkpoint

model that we have implemented in our FTI library and we have

conducted an exhaustive study of correctness of our performance

model and the reliability of our library.

 Moreover, we have conducted for the first time a large

scale evaluation of such a multi-level technique with a production

level scientific application on an hybrid platform. Our evaluation

with SPECFEM3D on TSUBAME2.0 shows that FTI imposes only 8%

of checkpoint overhead while running at over 0.1 petaflops and

checkpointing every 6 minutes.

Acknowledgements

This work was supported in part by the JSPS, the ANR/JST FP3C

project, and by the INRIA-Illinois Joint Laboratory for Petascale

Computing.

References

[1] A . Moody, G . Bronevetsk y, K . Mohror, B. R . de Supinsk i ,

Design, Modeling, and Evaluation of a Scalable Multi-level

Checkpointing System. In ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and

Analysis, New Orleans, 2010

[2] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, Y. Xie.

Leveraging 3D PCRAM Technologies to Reduce Checkpoint

O ver h ea d fo r Fu t ure E x as c a l e Sy s tems . In AC M / IEEE

International Conference for High Performance Computing,

Networking, Storage and Analysis, Portland, 2009.

[3] Z. Cheng, J. Dongarra, A scalable Checkpoint Encoding

Algorithm for Diskless Checkpointing. Proceedings of the 11th

IEEE High Assurance Systems Engineering Symposium, HASE

2008, Nanjing, China, December, 2008.

[4] L. Bautista-Gomez, N. Maruyama, A. Nukada, F. Cappello, S.

Matsuoka, “Low-overhead diskless checkpoint for hybrid

computing systems”, International Conference on High

CONCLUSIONS 3

29

SC’11 Special Issue

Performance Computing, Goa, India, December 2010.

[5] L. Bautista-Gomez, N. Maruyama, F. Cappello, S. Matsuoka,

“Distributed Diskless Checkpoint for large scale systems”, IEEE/

ACM International Symposium on Cluster, Cloud and Grid

computing (CCGrid2010), Melbourne, Australia, May 2010.

[6] B. Schroeder, E . Pinheiro, W. Weber. DRAM errors in the

wild: A Large-Scale Field Study. In Proceedings of the 11th

international joint conference on Measurement and modeling

of computer systems (SIGMETRICS), ACM, New York, NY, USA,

2009.

[7] S. Microsystems. Lustre file system, October 2008[8] A. Moody, G.

Bronevetsky, Scalable I/O Systems via Node-Local Storage:

Approaching 1 TB/sec File I/O. DOE technical report, 2009

[9] W. D. Gropp, R. Ross, and N. Miller. Providing ef ficient I/O

redundancy in MPI environments. Lecture Notes in Computer

Science, 3241:7786, September 2004.

[10] A. Nukada, S. Matsuoka, NVCR : A Transparent Checkpoint-

Restar t Librar y for NVIDIA CUDA in Proceedings at the

International Heterogeneity in Computing Workshop, Alaska,

2011. (To appear)

[11] D. Komatitsch, S. Tsuboi, C. Ji and J. Tromp, A 14 . 6 billion

degrees of freedom, 5 teraf lops, 2 . 5 terabyte earthquake

simulation on the Earth Simulator, Proceedings of the ACM /

IEEE Supercomputing SC’2003 conference, November 2003.

[12] G. Grider, J. Loncaric, and D. Limpart, Roadrunner System

Management Report, Los Alamos National Laboratory, Tech.

Rep. LA-UR-07-7405, 2007.

[13] S. Y. Borkar, Designing Reliable Systems from Unreliable

Components: The Challenges of Transistor Variability and

Degradation, IEEE Micro, vol. 25, no. 6, pp. 10-16, 2005.

[14] D. Reed, High-End Computing : The Challenge of Scale ,

Director’s Colloquium, LANL, May 2004.

[15] D. Komatitsch, D. Michéa, G. Erlebacher, Porting a high-order

finite-element earthquake modeling application to NVIDIA

graphics cards using CUDA, Journal of Parallel and Distributed

Computing, vol. 69(5), p. 451-460, doi: 10.1016/j.jpdc.2009.01.006,

2009.

[16] D. Komatitsch, G. Erlebacher, D. Göddeke, D. Michéa, High-

order finite-element seismic wave propagation modeling with

MPI on a large GPU cluster, Journal of Computational Physics,

vol. 229(20), p. 7692-7714, doi: 10.1016/j.jcp.2010.06.024, 2010.

[17] http://icl.cs.utk.edu/papi/

[18] B. Kennet, E. Engdahl, Traveltimes for global earthquake

location and phase identification. Geophys. J. Int., 105, 429-

465, 1991.

[19] M. Kikuchi, H. Kanamori, Note on Teleseismic Body-Wave Inversion

Program, 2003. http://www.eri.u-tokyo.ac.jp/ETAL/KIKUCHI/

[20] D. Komatitsch, J. Ritsema, J. Tromp, The spectral-element

method, Beowulf computing, and global seismology, Science

298, 1737-1742, 2002.

[21] C . Lawson , R . Hanson, Solving Least Squares Problems,

Prentice-Hall, New Jersey, 340 pp, 1974.

[22] T. Nakamura, S. Tsuboi, Y. Kaneda, Y. Yamanaka, Rupture

process of the 2008 Wenchuan, China earthquake inferred

from teleseismic waveform inversion and forward modeling

of broadband seismic waves, Tectonophysics, vol. 491, 72-84,

2010.

[23] S. Tsuboi, D. Komatitsch, C. Ji, J. Tromp, Broadband modelling

of the 2002 Denali fault earthquake on the Earth Simulator,

Phys. Earth Planet. Inter. 139, 305-312, 2003.

● TSUBAME e-Science Journal No.5
Published 02/28/2012 by GSIC, Tokyo Institute of Technology ©
ISSN 2185-6028
Design & Layout: Kick and Punch
Editor: TSUBAME e-Science Journal - Editorial room
 Takayuki AOKI, Thirapong PIPATPONGSA,
 Toshio WATANABE, Atsushi SASAKI, Eri Nakagawa
Address: 2-12-1-E2-1 O-okayama, Meguro-ku, Tokyo 152-8550
Tel: +81-3-5734-2087　Fax: +81-3-5734-3198
E-mail: tsubame_j@sim.gsic.titech.ac.jp
URL: http://www.gsic.titech.ac.jp/

30

