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The phase - f ie ld model is  der ived f rom non- equi l ibr ium 

statistical mechanics and can describe meso-scale phenomena 

that occur on a mid-scale between the molecular and macro 

scales. The phase-field model introduces a “continuous-order 

parameter,” i.e., a phase-field variable, to describe whether a 

material is solid or liquid. The phase field      takes a value of 0 

in the liquid phase and 1 in the solid phase. Interfaces between 

solid and liquid phases are treated as dif fuse ones described 

by localized regions, where the parameter changes smoothly 

between the two f ixed values. The inter face positions are 

represented by              . Thanks to this approach, the phase-field 

method can describe the locations of the interfaces without 

using a traditional interface-tracking method and carry out the 

same calculations throughout a computational domain.

 The dendritic solidification process in a binary alloy is 

simulated by solving the phase-field equation and the diffusion 

Phase-field model 2
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The development of new strong and light materials contributes 

greatly to transportation systems with high fuel efficiency and 

realization of a “low-carbon” society. The strength of a metal strongly 

depends on its microstructure, which is, in turn, determined by the 

solidification process of the metal (see Fig .1). However, determining 

material properties (such as strength) requires millimeter-scale 

macroscopic study.

 The phase-field model [1] is a physical theory describing 

the evolution of complicated material morphologies on the “meso-

scale,” namely, between the molecular scale and the macroscopic 

scale of materials. It is a powerful numerical tool for studying the 

dynamics of phase transformations such as solidification. The 

derived equations are partial differential equations in time and 

space and often discretized by FDM (finite-difference method) or 

FEM (finite element method). The phase-field equations include 

many complex nonlinear terms, and the amount of computations 

per mesh or element becomes large compared to normal stencil 

applications. Furthermore, the phase-field model assumes a 

narrow-thickness interface between liquid phase and solid phase, 

so the time integration requires high spatial resolution and short 

time step, and phase-field simulations remain restricted to two- 

or small three-dimensional computations due to their large 

computational cost.

 In this study, we carry out a large-scale phase-field 

simulation for the aluminum-silicon dendritic growth during 

directional solidification on the GPU supercomputer TSUBAME 

2.0. The simulation code is developed in CUDA, and almost all the 

capability of TSUBAME 2.0 is used for the simulation, which uses a 

domain decomposition and inter-node communications with an 

MPI library. Such large-scale phase-field simulation has not been 

done before and will have a big impact on material science.

Introduction 1

Peta-scale Phase-Field Simulation for Dendritic 
Solidification on the TSUBAME 2.0 Supercomputer

Figure 1  Images of a material microstructure

To realize a low-carbon society, it is indispensable to develop new strong and light materials. The material 
microstructure controlling the mechanical property is determined in the solidification process. The phase-field 
model is a meso-scale physical theory describing phase transformations such as solidification. Realistic prediction of 
material solidification requires a millimeter-scale simulation heretofore impossible with supercomputers. The phase-
field equation was discretized by using the finite-difference method, and a simulation code in CUDA was developed. 
A large-scale solidification simulation of an aluminum-silicon alloy was carried out with 4,000 GPUs on TSUBAME 2.0 
and achieved 2.0 petaflops in single precision. The ACM Gordon Bell Award - Special Achievement in Scalability and 
Time-to-Solution was awarded for this achievement in 2011.
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where      and     are the diffusion coefficients in the bulk solid 

and liquid phases , respectively. Solid concentration     and liquid 

concentration       satisfy                                  .

Figure 2  Spatial access patterns of neighbor points 
required for time integration.

(a)  Stencil of phase-field variable.

equation of the solute concentration. The time integration of the 

phase field is described by the following equation, which takes into 

account the anisotropy of interfacial energy:

where    ,       ,     ,       ,  and        represent the gradient 

coefficient that describes interface anisotropy, the mobility of the 

phase field, the height of the potential energy barrier, the entropy 

of fusion and undercooling, respectively. The two functions

and           are given as                                               and ,

respectively.

 The time integration of the solute concentration is 

derived by the following diffusion equation:

T he t ime inte gr at ion of  the phase f ie ld and the so lute 

concentration given by Equations (1) and (2) are carried out by the 

second-order finite-difference scheme for space and the first-order 

forward Euler-type finite-difference method for time on a three-

dimensional regular computational grid. The simulation code is 

written in CUDA to run on GPUs. All variables are allocated on GPU 

video memory (also called global memory in CUDA), which virtually 

eliminates all the CPU-GPU data transfers through a PCI-Express 

bus during simulation runs. The spatial patterns of the neighbor 

points of phase field     and solute concentration     that are 

required to solve the discretized governing equations at the 

center point (i, j, k) of the grid are, respectively, shown in Figures 2 

(a) and (b). In one time step , 19 neighbor elements of      and seven 

neighbor elements of      are used with the governing equations to 

update the phase field value and concentration value at the center 

point; thus, 26 elements must be read from the memory and two 

updated values must be written back to the memory for each point 

of the grid.

Single-GPU implementation 3

(b)  Stencil of concentration variable.
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We describe our strategies of multi-GPU computation. Using 

multiple GPUs is necessary for high-performance computing of 

large-size problems. In addition to the intrinsic parallel-processing 

capabilities of GPUs, it is necessary to do parallel computing by 

using a large number of distributed GPUs. We decompose the 

whole computational domain in both the y- and z-directions ( i.e., 

2D decomposition) and allocate each subdomain to one GPU. 

We have chosen this method because 3D decomposition, which 

is better in terms of reducing communication amount, tends to 

degrade GPU performance due to complicated memory access 

patterns in the y-z plane for data exchanges between the GPU 

and CPU. Similar to conventional multi-CPU implementations, 

multi-GPU implementation requires boundary-data exchanges 

between subdomains. Because a GPU cannot directly access the 

global memory of other GPUs, host CPUs are used as bridges 

for data exchange. For inter-node cases, this data exchange is 

composed of the following three steps: (1) data transfer from the 

GPU to the CPU by using CUDA APIs, (2) data exchange between 

nodes with the MPI library, and (3) data transfer back from the 

CPU to the GPU by using CUDA APIs.

 Unlike in conventional multi-CPU computation, in multi-

GPU computing, data-communication time with neighbor GPUs 

is not ignored in the total execution time, especially in large-scale 

computation, since the performance of the GPU is higher than 

that of the CPU. To achieve higher performance, it is important to 

hide communication overheads by overlapping communication 

with computation. In this study, we implement the following three 

methods for multi-GPU computing: (a) GPU-only method, (b) 

Hybrid-YZ method, and (c) Hybrid-Y method.

(a) GPU-only method: This basic method (which is used as a 

reference) computes all subdomains without applying any specific 

optimization. After that, the boundary regions of subdomains are 

exchanged between GPUs by using the above three steps.

(b) Hybrid-YZ method: By dividing each subdomain into five 

regions, which are two y-boundaries, two z-boundaries and an 

inside region, we can overlap communication for the boundary 

data exchange with the computation of the inside region. A similar 

overlapping technique has been described in previous reports [2]. 

In this technique, separate GPU kernels are invoked for separate 

regions. Instead of dividing a GPU kernel, in this study, we let CPU 

cores compute four y- and z-boundary regions, while the inside 

 The computation in the phase-field model involves a 

large number of memory accesses. It is thus highly effective to 

reduce access to the global memory. In GPU computing, a key 

factor in performance improvement is how threads and blocks are 

assigned to actual calculation. The elements of the computational 

domain of size nx × ny × nz are calculated as follows. First, as 

shown in Figure 3, the given domain is divided into pieces of size 

64 × 4 × 32. Our kernel function is invoked on a GPU, and each 

thread block (which has 64 × 4 × 1 threads) handles each piece. 

Each thread calculates 32 elements by marching in the z direction; 

a thread that corresponds to (i, j) updates grid points (i, j, k), where 

k varies from k0 to k0 + 31, and k0 is a multiple of 32 (i.e., k0 = 0, 32, 

64, ..., nz − 32).　When a thread computes a point in the k + 1-th 

plane, some elements to be referred to in this computation have 

already been accessed by that thread in the previous k-th plane 

computation. Such data are reused by holding them in registers, 

thereby reducing global memory accesses. On the other hand, on-

chip shared memory is not used to store data shared by several 

neighbor threads; instead, the L1/L2 cache available on Fermi GPUs 

including M2050 is relied on.

Optimization of multi-GPU computing 4

Figure 3  Layouts of CUDA threads and blocks.

ACM Gordon Bell Prize: Special Achievements in Scalability and Time-to-Solution & SC'11 Technical Paper

Peta-scale Phase-Field Simulation 
for Dendritic Solidification on the TSUBAME 2.0 Supercomputer
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region is computed by GPU. We observed that CPUs often become 

bottlenecks by taking longer time to do computation of all 

boundaries and communications than the GPU computation time.

(c) Hybrid-Y method: This method is a slightly modified method 

from the (b) method. It reduces CPU loads by assigning only the 

y-boundaries to CPUs instead of both y- and z-boundaries. The 

GPU can compute the z-boundaries effectively, since it accesses 

consecutive addresses of the global memory.

 Since each node of TSUBAME 2.0 has three GPUs and 12 

CPU cores (two 6-core Xeon CPUs), we assign four cores to each of 

the three GPUs. Each subdomain is thus cooperatively computed 

by a single GPU and four CPU cores. Multi cores are exploited by 

using OpenMP.

SC’11 Special Issue

Figure 4   Schematic diagram 
of  the GPU-only method.

Figure 5   Schematic diagram of the Hybrid-YZ method.

Figure 6   Schematic diagram of the Hybrid-Y method.
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We show the performance of (a) the GPU-only method, (b) the 

Hybrid-YZ method, and (c) the Hybrid-Y method, all using multiple 

M2050 GPUs of the GPU-rich supercomputer TSUBAME 2.0 at the 

Global Scientific Information and Computing Center of the Tokyo 

Institute of Technology. In this study, we simulate solidification of 

aluminum–silicon (Al–Si) alloy.

 An image of the solidification process of the alloy observed 

at the world’s largest synchrotron radiation facility, SPring- 8, by 

Hideyuki Yasuda, a professor at Osaka University, and his research 

group, is shown in Figure 7 (a) . Results of the phase-field simulation 

using a 4096 × 128 × 4096 mesh are shown in Figure 7 (b) . Although 

the alloy systems in the images differ, the growth process obtained 

by the simulation agrees well with the observed one.

Performance of multi-GPU computing 5

Figure 7(a)  Solidification process of an alloy observed 
 at SPring-8 (courtesy of Professor Yasuda).

Figure 8   Results for strong scaling of multi-GPU
 computation in single precision.

Figure 7(b)  Solidification growth simulated 
 by the phase-field model using GPUs.

 To measure the performance of the GPU computation, 

we count the number of floating-point operations in the C/C++-

based phase-field simulation code by running it on a CPU with 

a performance counter provided by PAPI (Performance API). The 

obtained count and GPU elapsed time are used for evaluating the 

performance of the GPU computing. Figure 8 shows the results 

on strong scaling, which show variation of the performance 

with the number of GPUs for a fixed total mesh size. This figure 

compares the strong-scaling characteristics of the three proposed 

methods i.e., (a), (b), and (c). We perform simulations in single 

precision for three different mesh sizes: 5123, 10243, and 20483. It is 

clear from the figure that the overlapping methods, (b) Hhybrid-

YZ method and (c) Hhybrid-Y method, both work effectively in 

hiding communication overhead as expected, resulting in an 

improvement of overall performance when a small number of 

GPUs are used. When the number of GPUs is larger, the volume 

that each GPU handles becomes smaller, and the percentage 

of the boundary region computed by the CPU in the whole 

computational domain increases. Eventually, the GPU computation 

is no longer able to hide the communication cost. In the case of the 

Hybrid-YZ method, method (b), we observed that the CPUs often 

become bottlenecks by taking a longer time to do their operations 

than the GPU computation time especially when the number of 

GPUs is larger. Since the Hybrid-Y method alleviates this bottleneck, 

it achieves a significantly improved performance compared with 

that of the GPU-only method.

 Next, we show the weak scaling results, which show how 

the performance of the three methods varies with the number of 

GPUs for a fixed mesh size per GPU. Each GPU handles a domain 

of 4096 × 160 × 128 for single precision. In demonstrating weak 

Peta-scale Phase-Field Simulation 
for Dendritic Solidification on the TSUBAME 2.0 Supercomputer

ACM Gordon Bell Prize: Special Achievements in Scalability and Time-to-Solution & SC'11 Technical Paper
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Figure 9   Results on weak scaling of multi-GPU 
 computation in single precision.

Figure 10    Electrical power consumption of 
the 2-petaflops phase-field simulation 
running on TSUBAME 2.0.

Figure 11    Large-scale simulation of dendritic 
solidification of aluminum–silicon alloy.

 Figure 11 demonstrates the dendritic growth during 

binary-alloy solidification using a mesh size of 4096 × 1024 × 4096 

on TSUBAME 2.0. As an initial condition, 32 nuclei are put on the z 

= 0 plane. This simulation will allow us to clarify the mechanisms of 

competitive growth between parallel dendrites. Evaluating these 

mechanisms is important to design and control the mechanical 

properties of solidified products.

SC’11 Special Issue

scalability, the Hybrid-Y method has achieved extremely high 

performance in single precision (Figure 9), namely, reaching 

2.000 petaflops, specifically 1.975 petaflops by the GPU and 0.025 

petaflops by CPU, for a 4096 × 6480 × 13000 mesh using 4,000 

GPUs along with 16,000 CPU cores. This is the first peta-scale result 

as a real stencil application we know to date.

 Figure 10 shows that electric power consumption of 

TSUBAME 2.0 when the simulation achieved 2 petaflops, namely, 

44.5% of the efficiency to the peak performance, using 4,000 GPUs 

along with 16,000 CPU cores. The 2-petaflops simulation consumed 

electric power of 1.36 MW for all computational nodes and networks 

on TSUBAME 2.0. The simulation thus achieved 1468 Mflops/W. 

These results show that the simulation results were obtained by 

small electric power consumption.

8



A large-scale GPU simulation of the dendritic growth during binary-

alloy solidification was carried out on the basis of a phase-field 

model. An extremely high performance of 2.0 petaflops in single 

precision was achieved on 4,000 GPUs of TSUBAME 2.0, in spite of 

a stencil application, which is hard to extract high performance. 

The computation reached 44.5 % of the peak performance and 

simultaneously high efficiency from the viewpoint of electrical 

power consumption. It means that we have the computational 

result on TSUBAME 2.0 with smaller energy compared to 

conventional supercomputing. It is concluded that a GPU 

supercomputer is available for various practical stencil applications.
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Multi-scale simulations of real-life biofluidic problems entail simulating suspensions composed by hundreds of 
millions of bodies interacting with each other and with a surrounding fluid in complex geometries. One such 
example is the simulation of blood flow through the human coronary arteries, with spatial resolution comparable 
with the size of red blood cells, and physiological levels of hematocrit (the red blood cell volume fraction). 
We developed a methodology such that hemodynamic simulations exhibit excellent scalability on the TSUBAME2 
installation, achieving an aggregate sustained performance of hundreds of Teraflops. The result demonstrates 
the capability of predicting the evolution of biofluidic phenomena of clinical significance, by using a suitable 
combination of novel mathematical models, computational algorithms, hardware technology and code tuning.
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Transport phenomena are ubiquitous in living systems, underlying 

muscle contraction, digestion, the nourishment of cells in the body, 

blood circulation, to name but a few. Blood is a reference biofluid, 

being the carrier of those biological components that fuel the 

most basic physiological functions, such as metabolism, immune 

response and tissue repair. 

 Building a detailed, realistic representation of blood 

and the vasculature represents a formidable challenge since the 

computational model must combine the motion of the fluid within 

an irregular geometry, subject to unsteady changes in flow and 

pressure driven by the heartbeat, as coupled to the dynamics of 

red and white blood cells and other suspended bodies of biological 

relevance.

 Large-scale hemodynamic simulations have made 

substantial progress in recent years[1–3], but until now the coupling 

of f luid dynamics with the motion of blood cells and other 

suspended bodies in vessels with realistic shapes and sizes, has 

remained beyond reach. Owing to non-local correlations carried 

by the flow pressure, the global geometry plays a significant role 

on local circulation patterns, most notably on the shear stress 

at arterial walls. Wall shear stress is a recognized trigger for the 

complex biomechanical events that can lead to atherosclerotic 

pathologies. Accurate and reliable hemodynamic simulations of the 

wall shear stress may provide a non-invasive tool for the prediction 

of the progression of cardiovascular diseases.

 We illustrate here the first multiscale simulation of 

cardiovascular flows in human coronary arteries reconstructed from 

computed tomography angiography. The coronary arteries form 

the network that supply blood to the heart muscle and span the 

entire heart extension. Spatial resolution extends from 5 cm down 

to 10 μ m, where a red blood cell has a diameter of about 8 μ m. 

The simulations involve up to a billion fluid nodes, embedded in a 

bounding space of about a three hundred billion voxels, with 10-450 

million suspended bodies, as shown in Fig. 1. They are performed 

with the (MUlti PHYsics/multiscale) MUPHY code, which couples 

Lattice Boltzmann method for the fluid flow and a specialized 

version of Molecular Dynamics for the suspended bodies[4,5]. The 

simulation achieves an aggregate performance in excess of 600 

Teraflops, with a parallel efficiency of more than 90 percent on 4000-

GPU of the TSUBAME2 system.

 Our work presents a number of unique features, both at 

the level of high-performance computing technology and in terms 

of physical/computational modeling. The extreme complication 

of the irregular geometries demands that the workload be evenly 

distributed across the pool of as many as 4000 GPU of the TSUBAME2 

supercomputer. The resulting domain-partitioning problem, even 

at the mere level of the fluid computation, poses a formidable 

challenge. On top of this, the application adds the further constraint 

of keeping a good workload balance also for the Molecular 

Dynamics (MD) component of the multiscale methodology.

 Complex and large-scale geometries, such as the one 

considered here, are rare in the literature. By leveraging large-scale 

parallel architectures, this work demonstrates the feasibility of 

cardiovascular simulations of unprecedented size that do not rely on 

any geometrical regularity of the computational domain.

Introduction 1

Large scale biofluidics simulations 
on TSUBAME2

Figure 1  Geometry of the simulated
coronary arteries, with the 
underlying level of red 
blood cells embedded in 
the Lattice Boltzmann mesh.
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Living matter is typically composed of two main components: a 

generic liquid, given by an aqueous solution, plasma, cytosol, etc., 

and suspended bodies, such as bioparticles, cells, proteins, DNA, 

etc. , that move within the embedding solvent. We have developed 

the MUPHY[4,5] software to simulate such generic conditions.

 As compared to the previous versions of MUPHY[4,5], the 

current simulation framework handles the numerical solution of 

the motion of a generic fluid and suspended bodies. Within this 

vision, MUPHY represents a major effort to design a computational 

infrastructure for biofluidics research based on the use of a library 

of solvents and solutes. A non-exhaustive list of functionalities 

includes: selection of Newtonian versus non-Newtonian rheological 

response; selection of dif ferent  kernels for the collision, to 

reproduce from molecular hydrodynamics to stochastic frictional 

dynamics; inclusion of stochastic fluctuations; selection of solutes 

as disconnected particles or forming polymer and molecules; 

suspended bodies with polymorphic hydrodynamic shapes; 

selection of different body-body forces; scale-adaptive body-

fluid coupling mechanisms; handling of irregular confining media 

and tissues. Within this range of options, biofluids are modeled 

in multiple ways and the multiscale/multiphysics behavior of 

biological or physiological systems can be studied accordingly.

 MUPHY leverages two computational engines. The first 

one handles the motion of the generic fluid within the hydro- 

kinetic formulation embodied by the Lattice Boltzmann (LB) 

method: collision-driven mechanisms reproduce the dynamics 

of fluids in the continuum (in contrast to the direct macroscopic 

description of fluid motion via the Navier-Stokes equations). The 

second engine handles the motion of Lagrangian bodies by using 

a technique that shares several technical aspects with Molecular 

Dynamics (MD). However, the nature of the suspended bodies 

is non- conventional and requires a substantial extension of the 

basic MD technique. Finally, the coupling between fluid and 

moving particles takes place via specifically designed kernels based 

on kinetic modeling, again significantly distinct from stresslet, 

boundary-integral and other methods based on macroscopic 

hydrodynamics. The end result of the computational environment 

is a fully time-explicit simulation technique that offers strategic 

advantages for the study of biofluids under realistic conditions, in 

particular: i)  employing geometries with irregular boundaries, such 

as in the case of the blood vasculature; ii)  describing non-trivial 

rheology, as emerging from the underlying particle dynamics; iii)  

Multiscale biofluidics 2
enabling scale-specific hydrodynamic interactions at sub-mesh 

spacing resolution; iv)  avoiding the detailed representation of the 

fluid-body dividing interface.

 The last two points are crucial to boost the performances 

of the simulations and to guarantee numerical stability of the dual 

method, in particular as related to the stiff forces exerted on the fluid 

by the immersed bodies. The framework employs either a single 

or a multiple timestep algorithm to handle stiff forces. It should be 

stressed that the LB method is largely tolerant towards the presence 

of rapidly varying forces and allows simulating dense suspensions 

from creeping flow conditions up to Reynolds number in the order 

of 1000. This strategic asset allows covering a wide range of physical 

phenomena in real-world physiological conditions, enabling to 

reproduce highly non-local rheological response that cannot be 

assimilated to a continuum governed by constitutive relations.

2-1 Lattice Boltzmann/Molecular Dynamics

The LB method[10] is based on the evolution of the singlet distribution 

representing the probability of finding, at mesh location x and at 

time t, a “fluid particle” traveling with a given discrete speed. “Fluid 

particles” represent the collective motion of a group of physical 

particles (often referred to as populations). The hydrodynamic fluid-

body coupling is based on specific roto-translational kernels that 

represent either rigid entities moving in the fluid as impenetrable 

bodies, soft vesicles, or a combination thereof.

 The fluid-body hydrodynamic interaction is constructed 

according to the transfer function centered on the ith particle and 

having spherical or ellipsoidal symmetry and compact support, 

with a hydrodynamic shape that can be smaller than the mesh 

spacing[6]. The fluid-particle coupling requires the computation of 

convolutions over the mesh points {x} and for each configuration of 

the N suspended bodies. 

 While, in principle, the calculation of hydrodynamic 

interactions grows cubically with the system size, the concurrent 

evolution of fluid and bodies provides a strategic algorithmic 

advantage. In fact, the LB method features a computational 

cost which scales linearly with the number of mesh points M, 

that is, O(M)=O(N/c), for a fixed solute concentration c = N/M. 

By employing the link-cell method to compute the direct forces 

among bodies, the particle dynamics also shows O(N) complexity. 

Thanks to the fact that the solvent-mediated particle-particle 

interactions are localized and explicit, the LB-MD coupling scales 

linearly with the number of mesh elements and suspended 

bodies. However, hydrodynamic coupling represents the most 

time-consuming component of the methodology due to the 

large overhead arising from the O(100) number of mesh points 

enclosed in the particle support and scattered access to memory.

ACM Gordon Bell Prize:  Honorable Mention

Large scale biofluidics simulations 
on TSUBAME2
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The MUPHY (MUlti PHYsics/multiscale) code was originally written 

in Fortran 90 by using MPI for the parallelization[4]. For a flexible 

and efficient handling of complex geometries, MUPHY makes 

use of an indirect addressing scheme that not only limits the 

memory requirements to the bare minimum, but also facilitates 

the achievement of a good load balancing and the selection of the 

most suitable communication pattern depending on the platform 

in use. MUPHY was originally developed for the IBM BlueGene 

architecture[7], a system characterized by thousands of relatively 

slow PowerPC processors connected by a high performance custom 

network. On BlueGene/P we achieved an excellent scalability up 

to the largest configuration available to us (294,912 cores)[11]. The 

obtained total performance was, in that case, in the range of tens 

of TeraFlops, with limited room for further improvements since 

our code cannot exploit the SIMD-like operations of the PowerPC 

architecture (those operations require stride-one access whereas 

both the LB and the MD components of MUPHY have a “scattered” 

data access pattern). In the meantime, the steadily increasing 

computing power of modern GPUs motivated us to develop a 

version of MUPHY targeted to clusters of GPUs[7].

 A multi-GPU code resorts to parallelism at two levels: 

intra- and inter- GPU. Unlike the case of codes developed for clusters 

of traditional multi-core systems that can be implemented either 

in a hybrid (e.g., OpenMP+MPI) or in a simple distributed memory 

layout (counting on the avail- ability of highly efficient MPI libraries 

for shared memory systems), for a multi-GPU platform, a hybrid 

paradigm is the only choice. This is not the only difference that 

needs to be taken into account: on a traditional multi-core platform 

the parallelism is limited to a few threads, at most tens on high-end 

systems. On a GPU hundreds of threads are required to keep the 

hardware busy, so that a much finer-grain parallelization is required. 

Finally, albeit the combination of latest generation Nvidia GPUs and 

CUDA drivers offers the chance to copy data from/to the global (i.e., 

main) memory of GPU to/from the global memory of another GPU 

sitting on the same system, GPUs can not, in general, exchange data 

with each other without using the CPU.

 At first glance, the passage through the CPU introduces 

an overhead in the communication among the GPUs but, by using 

the CUDA concepts of stream and asynchronous memory copies, it 

is possible to overlap data transfers between GPU and CPU memory 

with the execution of kernels (functions in the CUDA jargon) on 

the GPU. Moreover, also the execution of functions running on the 

MUPHY 3
CPU (like MPI primitives) may be concurrent with the execution of 

kernels on the GPU. As a result, the CPU should be seen as a MPI co-

processor of the GPU.

3-1 Domain decomposition

The geometry used in our simulations is highly irregular, as shown 

in Figure 1, and partitioning in subdomains handled by the available 

computing resources represents a major challenge in itself. In 

a previous attempt to solve this issue, we used the third-party 

software PT-SCOTCH, the parallel version of the SCOTCH graph/

mesh partitioning tool[12], in order to distribute the computational 

load in an even manner. The graph-based procedure utilizes a graph 

bisection algorithm and it is completely unaware of the geometry 

of the computational domain. We then realized that the lack of 

geometrical information degrades the quality of the partitioning as 

the number of partitions increases, in which case the subdomains 

reduce to highly irregular shapes with large contact areas each other 

that increase the communication overhead. An optimal solution 

was found by combining the graph-based partitioning with a 

flooding-based approach (also known as graph-growing method) 

according to the following procedure: the mesh is first partitioned, 

by using PT-SCOTCH, in a fixed number of subdomains (256). Then 

each subdomain is further divided by using a flooding algorithm.

 In MUPHY, the communication pattern is set up at run 

time. Each task determines the neighboring tasks owning mesh 

points that need to be accessed during the simulation, regarding 

the non-local streaming of populations in the LB algorithm, the 

migration of particles and calculation of inter-domain forces for 

the particle dynamics. During this pre-processing step, we employ 

mainly MPI collective communication primitives whereas, in the 

remainder of the execution, most communications are point-to-

point and make use of the following scheme: the receive operations 

are always posted in advance by using corresponding non-blocking 

MPI primitives, then the send operations are carried out. Finally, 

each task waits for the completion of its receive operations, by using 

the MPI wait primitives.

 For the Lattice Boltzmann component, only the evaluation 

of global quantities ( e.g. , the momentum along the x, y, z directions) 

is carried out by using MPI collective (reduction) primitives. Also for 

the Molecular Dynamics component most of the communications 

are point-to-point but, here, the irregularity of the geometry and, as 

a consequence, of the corresponding domain decomposition results 

in other issues, as detailed out in the next subsection.
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3-2 Parallel Molecular Dynamics

In most parallel Molecular Dynamics applications the geometry of 

the spatial domain is regular and simple Cartesian decompositions 

are applied such that each task has (approximately) the same 

number of particles. In an irregular domain, this strategy would 

produce two distinct domain decompositions: one for the LB 

(as described above) and one for the particle dynamics. As a 

consequence, the same subdomain might belong to two or more 

processors for the LB and for the MD components and consequently 

the interaction between particles and fluid would become highly 

non-local with a complex and expensive communication pat- tern. 

We then decided to resort to a domain decomposition strategy 

where the MD parallel domains and the LB parallel domains 

coincide. In this way, each computational task performs both the LB 

and MD calculations and the inter- actions of the particles with the 

fluid are quasi-local. The underlying LB mesh serves the purpose 

of identifying particles that belong to the domain via a test of 

membership: a particle with position R belongs to the domain if 

the vector of nearest integers coincides with a mesh point of the 

domain. Since an even number of bodies is expected to populate 

the domains, a pretty good load balancing of the MD parts is 

granted by the mesh partitioning.

 We have developed a novel parallelization strategy 

suitable for domains with irregular geometry. Among others, 

a major issue regards the identification of particles that reside 

next to the subdomain frontiers and that interact with intra- and 

interdomain particles. Our solution[8] relies on the notion of cells, 

cubes with side greater or equal to the interaction cutoff, that 

tile the whole irregular domain handled by a computational task 

(see Fig.2). This representation allows the processors to perform 

an efficient search of both interdomain and intradomain pairs of 

particles and to reduce data transfers by exchanging a limited 

superset of both the particles actually involved in the evaluation of 

forces among interdomain pairs and the particles moving across 

domains.

 The final component of our multiscale application 

deals with the fluid-particle coupling. Each suspended particle 

experiences hydrodynamic forces and torques arising from the 

fluid macroscopic velocity and vorticity, smeared over a domain 

made of 4×4×4 mesh points. Analogously, mesh points experience 

a momentum transfer arising from the surrounding particles. 

These non-local operations require multiple communication steps 

such that each processor owning a given particle, exchanges 

hydrodynamic quantities with the surrounding domains.

 Par t ic le - f luid coupl ing is  a non- local  operat ion 

involving the interaction between particles and mesh nodes 

inside the frontier cells of neighboring domains. For this reason, 

the coupling is done by exploiting the cell tiling, analogously 

to the computation of inter-domain forces. In order to compute 

the forces/torques acting from the fluid to the particles, each 

processor exchanges particles inside the frontier cells with its 

neighbors. Finally, forces and torques associated to the external 

particles are exchanged back with neighboring processors and, 

on the receiving side, the external contributions are distributed 

to the frontier particles. This approach is particularly efficient as 

compared to other strategies. For example, by exchanging the 

mesh points located inside frontier cells in place of particles, 

one could lower the number of exchanged data to a single 

communication step. However, such alternative would impose 

a large communication overhead since all mesh nodes near the 

interfaces among domains should be exchanged.

 Finally, regarding the computation of the momentum 

transfers exerted from the particles to the fluid, it is carried out by 

exchanging the frontier particles as in the particle-on-fluid case 

but without a second data exchange.

Figure 2  Tiling of an irregular domain in external, 
 frontier and internal cells, and selective  
 exchange with neighboring domains.

ACM Gordon Bell Prize:  Honorable Mention

Large scale biofluidics simulations 
on TSUBAME2
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Results 4
In our benchmarks, we measure the total runtime for the 

simulation together with the breakdown between computation 

and communication. All simulations include about 1 billion lattice 

sites for the fluid, within a bounding box having a total of almost 

300 billion nodes, and 450 million Red Blood Cells (RBC). We choose 

the fluid-body coupling parameters such that a single RBC carries 

a hydrodynamic shape with linear size of 4 μ m and 8 μ m for the 

smallest and largest principal directions of the globule, respectively, 

and corresponding to a hematocrit level of 58% . 

 Most computations are performed in single floating 

point precision with only few reduction operations carried out in 

double precision. Each GPU thread is responsible for the update, in 

the LB phase, of a number of mesh nodes that depends on the total 

number of available GPU (the thread configuration is fixed on each 

GPU). For instance, with 512 GPU, each thread is in charge of 8 mesh 

nodes. For the MD phase, interactions among the particles are 

processed on a per-particle basis. In this case, the grid of threads is 

directly mapped onto the arrays of particles. Threads are assigned 

to particles according to a global id and the search for interacting 

pairs proceeds for each thread in an independent fashion. Each 

thread scans the cell neighbors and, for each interacting pair, it 

computes the contribution to the total force. The obtained results 

provide a fundamental check of the reliability of the code up to 

physiological levels of hematocrit. 

 Fig.3 (Upper panel) shows the elapsed t ime per 

simulation-step, as well as the breakdown for the LB and MD 

components separately. A few comments are in order. At first, the 

performance of the Lattice Boltzmann component of MUPHY on 

a single GPU is in line with other, highly tuned, CUDA LB kernels. 

Secondly, the elapsed time decreases significantly with the number 

of cores, with a speed-up of 12.5 between the 256 and 4000 GPU 

configurations, corresponding to a parallel efficiency around 80% . 

The calculation of the MD direct forces features an efficiency as 

high as 95% . The LB component performs in an optimal way, with 

a work share that stays always below 4% .

 The results show that the combination of asynchronous 

communication and overlap between communication and 

computation, significantly alleviates the lack of support for the 

direct exchange of data among GPUs.

 Fig.3 (Lower panel) shows the total parallel efficiency  

referred to either 256 GPUs, if the available memory allows 

simulating the hematocrit level, or 512 GPUs for higher levels 

of hematocrit. The efficiency features superlinear scaling for a 

number of GPUs up to 1024, whereas at the largest number of 

GPUs available the efficiency slightly lowers to ≃ 80% . 

The excellent scalability should be ascribed to the optimal 

load balancing obtained with our hybrid graph partitioning/

flooding scheme for the multi-branched arteries. Although the 

distribution of red blood cells over a test case of 1200 domains 

shows a broad distribution of values, the execution time for both 

the aggregate MD and the LB component is compact. The result 

is a direct consequence of the minimal extension of contact 

regions among domains that optimizes the share between 

computations and communications.

 Fig.4 shows the distribution of the time spent in 

communication for a run employing 4000 GPUs. On average, most 

of the tasks (∼3000 out of 4000) spend about 50% of the total time 

in communication. This result confirms that the asynchronous 

communication scheme in use works at sustained rate, and the 

CPU actually plays the role of MPI co-processor of the GPU, where 

most of the computations take place. 

 For 1334 nodes of the TSUBAME2 (4000 MPI tasks), we 

estimate a (weighted) average performance of slightly less than 

600 TeraFlops (see Fig. 5 for the corresponding breakdown). Just 

to convey the flavor of the practical impact of this application, 

the above performance corresponds to simulating a complete 

heartbeat at microsecond resolution and fully inclusive of red 

blood cells, in 48 hours time on the full TSUBAME2 system.

Figure 3  Upper Panel: Elapsed time per timestep.
 Lower Panel: Parallel efficiency.
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In the context of computational biofluidics, we have performed 

the first large-scale simulation of the entire heart-sized coronary 

system on a world-class cluster of GPUs. The hemodynamic 

system consists of a realistic representation of the complex human 

arterial geometry at the spatial resolution of red-blood cells. The 

computational environment involves one-billion fluid nodes, 

embedded in a bounding space of one trillion voxels and coupled 

with the concurrent motion of hundreds of millions of red-blood 

cells. We achieved a close to 600 Teraflops performance on the 

4000 GPU configuration of the TSUBAME2 supercomputer, with a 

parallel efficiency in excess of 90 percent, performing about 2000 

billion lattice updates per second concurrently with the simulation 

of the dynamics of up to 450 million red blood cells.

 T h e  a b o v e  a c c o m p l i s h m e n t  r e s u l t s  f r o m  t h e 

development of several unique features, in terms of both high-

performance technology and physical/computational modeling. 

We are not aware of any previous implementation dealing with 

non-idealized geometries. The present work represents a major 

progress in the predictive capabilities of computer simulations for 

real-life biofluidic research, with special, yet not exclusive, focus on 

cardiovascular clinical practice.
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Graph500 is a new benchmark that ranks supercomputers by executing a large-scale graph search problem. 
Our early study reveals that the provided reference implementations by the Graph500 benchmark are not scalable 
in a large-scale distributed environment. For the Graph500 benchmark on TSUBAME 2.0, we ran our highly scalable 
BFS method that divides adjacent matrix - representing large-scale graph - with 2D partitioning and distributes the 
portion to all the processors. In contrast to traditional 1D partitioning, this can greatly reduce the communication 
exchange. With the optimization method, we successfully solved BFS (Breadth First Search) for large-scale graph with 
236（68.7 billion）vertices and 240（1.1 trillion）edges for 10.955 seconds with 1366 nodes and 16392 CPU cores. This 
record corresponds to 100.366 GE/s, which was the 3rd-ranked score in the latest ranking announced in SC2011.

Toyotaro Suzumura*/**   Koji Ueno*

*Graduate School of Information Science and Engineering, Tokyo Institute of Technology
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Large-scale graph analysis is a hot topic for various fields of study, 

such as social networks, micro-blogs, cyber security, protein-protein 

interactions, and the connectivity of the Web. The numbers of 

vertices in the analyzed graph networks have grown from billions 

to tens of billions and the edges have grown from tens of billions to 

hundreds of billions. Since 1994, the best known de facto ranking 

of the world’s fastest computers is TOP500, which is based on a 

high performance Linpack benchmark for linear equations. As an 

alternative to Linpack, Graph500 [1] was recently developed. We 

con-ducted a thorough study of the algorithms of the reference 

implementations and their performance in an earlier paper [2]. Based 

on that work, we implemented a scalable and high-performance 

implementation of an optimized Graph500 benchmark for large 

distributed environments. In this paper, we give an overview of the 

Graph500 benchmark in Section 2 and its basic parallel algorithm 

called level-synchronized BFS in Section 3. Our proposed scalable 

BFS method is described in Section 4 and the performance 

evaluation is shown in Section 5, and then give a conclusion in 

Section 6. 

In this section, we give an overview of the Graph500 benchmark [1].

In contrast to the computation-intensive benchmark used by 

TOP500, Graph500 is a data-intensive benchmark.

 It does breadth-first searches in undirected large graphs 

generated by a scalable data generator based on a Kronecker 

graph [16]. The benchmark has two kernels: Kernel 1 constructs an 

undirected graph from the graph generator in a format usable by 

Kernel 2. The first kernel transforms the edge tuples (pairs of start 

and end vertices) to efficient data structures with sparse formats, 

such as CSR (Compressed Sparse Row) or CSC (Compressed Sparse 

Column). Then Kernel 2 does a breadth-first search of the graph 

from a randomly chosen source vertex in the graph. 

 The benchmark uses the elapsed times for both kernels, 

but the rankings for Graph500 are determined by how large the 

problem is and by the throughput in TEPS (Traversed Edges Per 

Second). This means that the ranking results basically depend on 

the time used by the second kernel. 

 After both kernels have finished, there is a validation 

phase to check if the result is correct. When the amount of data 

is extremely large, it becomes difficult to show that the resulting 

breadth-first tree matches the reference result. Therefore the 

validation phase uses 5 validation rules. For example,  the first rule 

is that the BFS graph is a tree and does not contain any cycles. 

 There are six problem classes: toy, mini, small, medium, 

large, and huge. Each problem solves a different size graph defined 

by a Scale parameter, which is the base 2 logarithm of the number 

of vertices. For example, the level Scale 26 for toy means 226 and 

corresponds to 1010 bytes occupying 17 GB of memory. The six 

Scale values are 26, 29, 32, 36, 39, and 42 for the six classes. The 

largest problem, huge (Scale 42), needs to handle around 1.1 PB 

of memory. As of this writing, Scale 38 is the largest that has been 

solved by a top-ranked supercomputer.

Introduction 1

GRAPH500 Benchmark 2

Graph500 Challenge on TSUBAME 2.0
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All of the MPI reference implementation algorithms of the 

Graph500 benchmark use a “level-synchronized breadth-first 

search”, which means that all of the vertices at a given level of 

the BFS tree will be processed (potentially in parallel) before any 

vertices from a lower level in the tree are processed.

To solve the scalability issue of reference implementations, our 

scalable BFS method named U-BFS is based upon the technique 

proposed in [3]. Their approach is based on the level-synchronized 

BFS and 2D (two dimensions) partitioning technique. This is 

scalable technique to reduce the communication cost unlike the 

1D partitioning including vertical partitioning and horizontal 

partitioning of reference implementations. Our proposed method 

also optimizes this 2D partitioning technique and also other some 

optimization techniques. Therefore we give a brief overview of the 

2D partitioning technique here.

 Assume that we have P processors in total, P=R*C 

processors are logically deployed in two dimensional mesh of 

R (processor row) * C (processor column).  An adjacent matrix is 

divided as shown in Figure 2 and the processor (i, j) is responsible 

for handling the C blocks from                   . Vertices are divided into 

R*C blocks and the processor (i, j) handles the k th block where k is 

computed by (j-1)*R + i.

 Each level of level-synchronized BFS method with 2D 

partitioning is performed by 2 phases called “expand” and “fold”. 

 Algorithm I is the abstract pseudocode for the algorithm 

that implements level-synchronized BFS. Each MPI process has two 

queues, CQ and NQ, and two arrays, PRED for a predecessor array 

and VISITED to track whether or not each vertex has been visited. 

 At any given time, CQ (Current Queue) is the set of ver-

tices that must be visited at the current level. At level 1, CQ will 

contain the neighbors of r, so at level 2, it will contain their pending 

Level-Synchronized BFS 3

U-BFS: Our Scalable BFS Method 4

Figure 1  Kronecker Graph [4]

neighbors (the neighboring vertices that have not been visited 

at levels 0 or 1). The algorithm also maintains NQ (Next Queue), 

containing the vertices that should be visited at the next level. 

After visiting all of the nodes at each level, the queues CQ and NQ 

are swapped at line 16. 

 VISITED is a bitmap that represents each vertex with one 

bit. Each bit of VISITED is 1 if the corresponding vertex has been 

already visited and 0 if not. PRED has a predecessor vertex for each 

vertex. If an unvisited vertex v is found at line 12, the vertex u is the 

predecessor vertex of the vertex v at line 14. When we complete 

BFS, PRED forms a BFS tree, the output of kernel2 in the Graph500 

benchmark.

 At each level, the set of all vertices v is the NQ nominee, 

now called “NQ-N”. NQ-N has all the adjacent vertices of the 

vertices in CQ that would be potentially stored in NQ. NQ-N is 

obtained from line 9 to line 11 in the algorithm. 

 The Graph500 benchmark provides 4 different reference 

implementations based on this level-synchronized BFS method. 

Basically all the reference implementations has the scalability 

issue and are mostly saturated with 32 nodes on TSUBAME 2.0.  

Please refer our work [2] on their details and algorithms and their 

performance analysis on TSUBMAE 2.0.
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We conducted the Graph500 benchmark on TSUBAME 2.0. Here is 

the evaluation environment and performance result.

In the expand phase, every processor copies its CQ to all the other 

processors that exists in the same column just as the vertical 1D 

partitioning. In the fold phase, each row of processors integrates 

the compute results after the expand phase.  Therefore, this is 

equivalent to a method of combining two types of 1D partitioning. 

If C is 1, this corresponds to the vertical 1D partitioning and if R is 1, 

it corresponds to the horizontal 1D partitioning.

 In the fold phase, it firstly searches all the adjacent 

vertices against each vertex, v of CQ obtained by the expand 

phase, and then sends a tuple of (v, u) - where u is one of the found 

adjacent vertices – to the corresponding processor where v is 

located.

 The advantage of 2D partitioning is to reduce the 

number of processors that needs communication among them. 

The two types of 1D partitioning requires all-to-all communication. 

However,  the 2D par t it ioning can reduce the number of 

communication processors and most importantly becomes highly 

scalable in large computing environments since the expand phase 

only requires the communication among the nodes in the same 

column and the fold phase only requires the communication 

among the processors in the same row.

5.1 Evaluation Environment

Each TSUBAME 2.0 node has two Intel Westmere EP  2.93 GHz 

processors (Xeon X5670, 256-KB L2 cache, 12-MB L3) and 50 GB 

of local memory. As the software environment we used gcc 4.3.4 

(OpenMP 2.5), MVAPICH2 version 1.6 and we used at maximum 

1366 nodes. TSUBAME 2.0 is also characterized as a supercomputer 

with heterogeneous processors including tremendous amount 

of GPU devices, but we do not use the environment. One node 

of TSUBAME 2.0 has physical 12 CPU cores and virtually 24 cores 

with SMT (Simultaneous Multithreading). Our implementation 

treats 24 cores for one single node and the same number of 

processors are allocated to each MPI processes. Each computing 

node is connected to two QDR Infiniband network links, so the 

communication bandwidth for the node is about 80 times larger 

than a fast  LAN (1 Gbps). Not only the link speed at the end-point 

nodes, but the network topology of the entire system heavily 

affects the performance such an I/O intensive application as 

Graph500. TSUBAME 2.0 uses a full-bisection fat-tree topology, 

which accommodates applications that need more bandwidth 

than provided by such topologies as a torus or mesh.

5.2 Performance Result 

We compare U-BFS with the latest version (2.1.4) of reference 

i m p l e m e n t a t i o n s .  F i g u r e  3  c o m p a r e s  o u r  o p t i m i z e d 

implementation, U-BFS with reference implementations. This 

experiment is conducted in a weak-scaling fashion, so the problem 

size for one node is SCALE 26. The horizontal axis is the number of 

nodes and the vertical axis is TEPS (GE/s). 

 U-BFS and two reference implementations, replicated-

csr  and replicated-csc (called R-CSR and R-CSC hereafter) use 

2 MPI processes for 1 node. The reference implementation, 

simple (called SIM hereafter), uses 16 MPI processes for one node 

since the implementation has not been implemented with the 

multithreading parallelism. As shown in the graph, there exists 

some result that cannot be measured due to the errors such 

as validation error, segmentation fault, and memory error with 

reference implementations. Figure 3 shows that U-BFS outperforms 

R-CSC and SIM. With smaller number of nodes less than 32 

nodes, R-CSR shows better performance, but our method shows 

performance advantage with more than 32 nodes. For instance, our 

optimized method is 2.8 times faster than R-CSR with 128 nodes 

and SCALE 26 for one node (All the problem size is SCALE 33). 

 The scalability of our approach is shown in Figure 4. As 

shown in the figure, the throughput in TEPS is linearly increasing 

with larger number of nodes and finally achieves 99.0 GE per 

second (TEPS) with 1024 nodes and SCALE 36. We successfully 

Performance Evaluation 5

Figure 2  2D Partitioning Based BFS [3]

Graph500  Ranking  No.3

Graph500 Challenge on TSUBAME 2.0
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Figure 4  Performance of Our Optimized
Implementation with
Scale 26 per 1 node
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solved BFS (Breadth First Search) for large-scale graph with 236

（68.7 billion）vertices and 240（1.1 trillion）edges for 10.955 

seconds with 1366 nodes and 16392 CPU cores. This record 

corresponds to 100.366 GE/s, which was the 3rd-ranked score in 

the latest ranking announced in SC2011.

In this paper we described our challenge and our basic algorithm for 

the Graph500 benchmark on TSUBAME 2.0.  Our proposed approach 

based on 2D partitioning greatly outperforms the benchmark 

reference implementations and also shows great scalability with up 

to 1366 nodes. Overall our score was 3rd score announced in 2011/11.  

Our achievement could not be done with only 2D partitioning but 

also more optimization techniques. This is the first challenge for 

Graph500, but this continuous challenge and research towards 

more optimization and scalable algorithms waits us.
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We propose a compiler-based programming framework that automatically translates user-written structured grid 
code into scalable parallel implementation code for GPU-equipped clusters such as TSUBAME2.0. 
Our framework automatically translates user-written stencil functions to GPU execution code as well as message 
passing parallel code for inter-node parallelism. It also includes several optimizations for better scalability with a 
large number of GPUs, such as compute and communication overlapping. We present an overview of our framework 
and report performance results using TSUBAME2.0, which demonstrate good scalability up to 256 GPUs.
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Heterogeneous computing with both conventional CPUs and 

vector-oriented GPU accelerators is becoming common because 

of superior performance as well as power efficiency. The peak 

performance of latest NVIDIA GPUs can be as high as 515 GFLOPS per 

chip, which is faster than the latest CPUs by several factors, allowing 

significant performance boost in compute-bound applications such 

as N-body problems. GPU’s memory bandwidth is also much greater 

than conventional CPU memory, reaching over 100 GB/s in properly 

aligned memory accesses, making it possible to achieve significant 

speedups in memory-bound applications such as computational 

fluid dynamics.[2]

 Programming such heterogeneous systems, however, is 

a notoriously difficult task. The reason is two-fold. First, most of the 

existing programming models for such systems only provide low-

level platform-specific abstractions. The lack of high-level unified 

programming models forces the programmer to learn multiple 

distinctive models for parallel computing, e.g., message passing 

for distributed memory machines and GPU-centric models for 

accelerators, often resulting in ad hoc hybrid programming models. 

Since parallel programming even with a single model is known to 

be difficult and error prone, exploiting the potential performance 

advantage with hybrid models is thus a highly difficult task. Second, 

in the current heterogeneous architecture, data movements often 

involve complex performance considerations such as locality 

optimizations for keeping data close to processor cores and 

overlapping of communications and computations. While these 

techniques have long been well known and studied on parallel 

platforms, realizing them on complex heterogeneous systems 

further increases the programmer burden. As a result, further scaling 

performance with a large number of GPUs remains to be challenging 

even for highly skilled experts.

 To solve the problem and improve programmer 

productivity, we envision a high-level programming model 

that provides a uniform application programming interface 

for heterogeneous systems. While low-level inter faces are 

indeed essential when the maximum programming flexibility is 

required, such a case should not be common but exceptional, 

and simplifying programming even with limited flexibilities and 

small performance cost should be highly important to allow the 

adoption of heterogeneous systems for a wider range of application 

programmers.

 This ar ticle presents our high-level programming 

framework called Physis that is specialized to stencil computations 

with regular multidimensional Car tesian grid. [1] In stencil 

computations, each grid point is repeatedly updated by only 

using neighbor points, exhibiting regular spatial locality. Such a 

computation pattern, called “ structured grids ”, frequently appears in 

numerical simulation codes for solving partial differential equations. 

The performance of stencil applications is often determined by 

memory system performance since the typical byte-per-flop ratio in 

such code is higher than the ratio of today’s processor and memory 

systems, including GPUs. Therefore, optimizing data movements is 

the most important to improve performance of such applications. 

Typical such optimizations for the GPU include latency hiding by 

scheduling a large number of concurrent threads, data alignment 

to allow coalesced memory accesses, and locality optimizations by 

thread blocking.[3] In addition to these optimizations, more coding 

effort is required to scale well with a large number of GPUs, such as 

communication and computation overlapping. GPU performance 

scalability is especially important for applications using a large 

amount of data, since a single GPU is equipped only with a few giga 

bytes of memory.

 In the Physis framework, we design its programming 

model such that architecture neutrality can be realized on 

various parallel plat forms, with a particular focus on GPU-

based heterogeneous supercomputers. It provides portable and 

declarative constructs for describing stencil computations, such as 
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creating multidimensional grids, data copying to and from them, 

and applying stencils over them. Global view memory model 

and implicit parallelism are adopted to realize high productivity 

as well as architecture neutrality. The declarative programming 

interface at the same time allows for static compilation techniques 

to automatically parallelize stencil computations over distributed 

memory environments with optimizations such as compute-

communication overlapping. While it is beyond the scope of this 

paper, the framework is designed to allow for further advanced 

software techniques to be applied transparently for the application 

programmer, such as model-based and experimental performance 

tuning, resiliency through error checking and scalable and fast 

checkpointing.

 We describe an implementation of the framework based 

on the standard C language. We introduce a small set of custom data 

types and intrinsics for stencil computations into C as an embedded 

DSL .[4] Those custom extensions are translated to platform native 

code, such as CUDA for GPU and MPI for message passing. Programs 

written in the Physis DSL can also be automatically translated to 

parallel code using MPI with the overlapping optimization for better 

scalability.

 To evaluate our framework, we implement several 

stencil applications in the Physis DSL and evaluate its performance 

using the TSUBAME2.0 supercomputer at Tokyo Tech, which is the 

fifth fastest machine at the Nov 2011 list of Top500. We present 

results of performance studies using up to 256 NVIDIA Fermi GPUs, 

and demonstrate that our framework can achieve performance 

comparable to hand-written versions with good strong and weak 

scalability. For more complete presentation, refer to our SC11 paper .[1]

We design a high-level programming framework that provides 

a highly productive programming environment for stencil 

computations. The framework consists of a domain-specific 

language and platform-specific runtimes. The DSL allows for 

declarative and flexible descriptions of stencils in an architecture-

neutral way, which is then translated to architecture-specific code by 

source-to-source translators. The framework runtime encapsulates 

architecture-specific data management tasks and provides a 

uniform interface of virtual shared memory for multidimensional 

grids. The rest of this section discusses our major design goals of the 

framework.

2-1 Design Goals 

Automatic parallelization: We design the Physis DSL amenable to 

compiler-based automatic parallelization on distributed-memory 

parallel environments. Although automatic parallelization has been 

an active research topic for the past decades, it has not been widely 

successful in practice for general-purpose languages, especially 

on distributed memory environments, since effectively exploiting 

data localities available in applications is a complex and difficult 

task. In contrast, our framework is limited to a small set of domain-

specific computations, but by doing so we eliminate the difficulties 

of automatic parallelization in conventional general-purpose 

languages, and realize implicit parallelism on a variety of parallel 

platforms.

Embedded DSL rather than external DSL:  Inventing a completely 

new language for a given problem domain, i.e., an external DSL 

approach, potentially allows for a maximally optimized language 

design. In practice, however, being dissimilar to existing familiar 

languages may hinder adoption by a wide body of application 

programmers. We design our DSL as a small set of extensions 

on existing general-purpose languages, i.e., an embedded DSL. 

We choose C as the base language in our current design and 

implementation since it is one of the most commonly used languages 

in high performance computing.

Declarative and expressive programming model:  In order to 

improve productivity, we maximize programming abstraction by 

adopting a declarative programming model that allows for less 

manual programming than imperative models. For example, in 

the Physis DSL the programmer expresses how each grid element 

is computed, but it is determined by the framework how the 

whole grid is processed with the user-specified computation; the 

High-Level Framework For Stencil 
Computations 2
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 PSStencilMap creates an object of PSStencil, which 

encapsulates a given stencil function with its parameters bound to 

actual arguments. It is analogous to closures in functional 

 programming. PSStencilRun executes PSStencil objects 

in a batch v. Each stencil function may be executed in parallel, 

exhibiting implicit parallelism.

overall computation may be performed sequentially or in parallel 

depending on target environments of the framework. Having too 

much abstraction, however, can be too restricted to implement 

real-world scientific simulations. For example, some stencils may 

be applied only to a part of a whole grid, such as boundary regions. 

Although we attempt to keep the language extensions minimal, 

we adopt additional domain-specific constructs if they can further 

improve productivity of programmers and performance of final 

implementation codes.

The Physis DSL extends the standard C with several new data types 

and intrinsics for stencil computations. The user is required to use 

the extensions to express stencil-based applications, which are then 

translated to actual implementation code by the Physis translator.

 Physis supports multidimensional Cartesian grids 

of f loating-point values (either f loat or double). To represent 

multidimensional grids, we introduce several new data types named 

based on its dimensionality and element type, e.g., PSGrid3DFloat 

for 3-D grids of float values and PSGrid2DDouble for 2-D grids of 

double values. The type does not expose its internal structure, but 

rather works as an opaque handle to actual implementation, which 

may differ depending on translation targets.

 Since many of the Physis intrinsics are overloaded with 

respect to the grid types, below we simply use PSGrid to specify 

different grid types when not ambiguous.

 Grids of type PSGridFloat3D can be created and destructed 

with intrinsics PSGridFloat3DNew and PSGridFree, as defined as follows:

PSGrid3DFloat PSGrid3DFloatNew( 

  size_t dimx, size_t dimy, 

  size_t dimz,  

  enum PS_GRID_ATTRIBUTE attr) 

void PSGridFree(PSGrid g)

 They can be accessed both in bulk and point-wise ways 

using the following intrinsics:

void PSGridCopyin(PSGrid g,  

                    const void *src)  

void PSGridCopyout(PSGrid g, void *dst) 

PSGridGet(PSGrid g, size_t i,  

          size_t j, size_t k) 

void PSGridSet(PSGrid g, 

  size_t i, size_t j, size_t k, T v) 

void PSGridEmit(PSGrid g, T v)

 The set of size_t parameters specify the indices of a 

point within the given grid, so the number of index parameters 

depend on the dimensionality of the grid (e.g., three for 3-D grids). 

The return type of PSGridGet and the v parameter of PSGridSet and 

PSGridEmit have the same type as the element type of the grid, 

which is either float or double.

 PSGridGet returns the value of the specified point, while 

PSGridSet writes a new value to the specified point. PSGridEmit 

performs similarly to PSGridSet, but does not accept the index 

parameters, and is solely used in stencil functions.

3-1 Example

Fig. 1 shows a function of 9-point stencil on 2-D grids. Such a 

function can be applied to grids by using two declarative intrinsics: 

PSStencilMap and PSStencilRun. Fig. 2 illustrates how these intrinsics 

can be used to invoke the diffusion stencil of Fig. 1 on 2-D grids.

Programming Model 3

Figure 1  Example 9-point stencil

Figure 2  Example code to apply stencils to grids
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To evaluate our proposed framework, we have implemented 

a prototype for parallel machines using the ROSE compiler 

framework .[5] It consists of a source-to-source translator and 

runtime components for each target platform. As translation 

targets, we currently generate C for CPU execution and CUDA 

for GPU execution. In addition, for platforms involving multiple 

distributed compute resources, we generate message-passing 

parallel code using MPI. 

 As performance benchmark programs, we implemented 

two stencil codes in Physis:

・Diffusion: 3-D 7-point stencil.

・Seismic: 3-D seismic wave simulation with 27 stencil functions.

 Diffusion is relatively small scale, consisting of only one 

stencil function, whereas the seismic code consists of 27 stencils with 

staggered grids. Among the 27 stencils, six are for computing the 2-D 

surfaces of the 3-D domain, which are implemented with PSDomain 

objects. All benchmarks use single-precision floating-point data. 

 We use the TSUBAME2.0 supercomputer at Tokyo 

Institute of Technology, which consists of 1408 compute nodes. 

Each node has two Intel Xeon Westmere-EP 2.9GHz CPUs and 

three NVIDIA M2050 GPUs with 52GB and 3GB of system and GPU 

memory, running SUSE Linux Enterprise Server 11 SP1. The compute 

nodes are interconnected by dual QDR Infiniband networks with a 

full bisection-bandwidth fat-tree topology network. We use CUDA 

v3.2 for GPU code and gcc/g++ v4.1.2 for CPU code.

4-1 Weak Scaling Evaluation

Fig. 3 shows the results of weak scaling evaluation with the 

diffusion code. The red and blue lines are the cases where each 

GPU is assigned a subdomain of 256x128x128 and 512x256x256, 

respectively. In both cases, the 3-D domain is decomposed only 

over y and z dimensions. As expected, the larger problem size 

allowed for better performance and scaling, which is almost linear 

scaling up to 256 GPUs, although even the smaller case achieved 11 

times speedup with 256 GPUs compared to the 16-GPU case.

 Fig. 4 shows the results of weak scaling evaluations with the 

seismic code, where each GPU computes a subdomain of 256 3 region. 

Unlike the diffusion case, the problem domain is decomposed over x 

and y dimensions; in other words, the domain is expanded in the x-y 

plane with the problem size of each GPU fixed. The decomposition 

implies that boundary exchanges involve non-unit stride data 

accesses, thus resulting lower scalability than the diffusion code. The 

Experimental Evaluation 4

Figure 3  Weak scaling performance of Diffusion
benchmark with up to 256 GPUs.

Figure 4  Weak scaling performance of Seismic benchmark
with up to 144 GPUs. The problem size of each GPU 
is fixed at 256x256x256

performance of seismic benchmark exhibits significant drop at 64 

GPUs and relatively low scalability afterward, which remains to be a 

subject of more detailed performance analysis.

4-2 Strong Scaling Evaluation

Fig. 5 shows the strong scaling performance of the diffusion stencil 

with the problem size fixed at 512 x 512 x 4096. We evaluated 1-D, 

2-D, and 3-D decompositions using up to 128 GPUs. In the 1-D 

decomposition, we uniformly decomposed the z-direction by the 

number of GPUs. In 2-D, we also decomposed the y-direction by 

two GPUs and again uniformly decomposed the z-direction with the 

rest of GPUs. Similarly, in the 3-D decomposition, we decomposed 

the x-direction into two GPUs in addition to the uniform y- and 

z- direction decompositions. As expected, the 1-D and 2-D cases 

performed better with a smaller number of GPUs, but as the number 

increases, the 3-D version outperformed the other two versions. 

While it is well known that 3-D decomposition often performs 

better in large-scale settings, our contribution is to allow application 

scientists to transparently enjoy such better performance and 

scalability without investing significant amount of efforts.
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Recent developments of GPU accelerators for scientific computing have 

enabled low-cost power-efficient approaches to increase compute 

performances. However, one of the side effects of this trend is the 

significant decrease of programmer productivity due to the complexities 

involved in programming heterogeneous architecture. Although little 

work has been done for large-scale heterogeneous supercomputers, 

several recent projects attempted to solve the problem.

 Mint is a high-level directive-based framework for stencil 

computations .[6] It allows for regular loop-based stencil programs 

to be annotated with its custom directives so that stencil loops 

can be executed on GPUs. Ypnos is a Haskell-based DSL for stencil 

computations that is designed so that compiler-based automatic 

parallelization is possible .[7] Both of them share common objectives 

with ours, such as automatic parallelization, but so far they are limited 

to single-GPU platforms, whereas our primary focus is to realize scalable 

multi-GPU implementations.

 Listz is a DSL for unstructured mesh-based simulations .[8] 

As in our framework, actual implementations of the mesh interface are 

hidden from the programmer, which allows Listz to perform aggressive 

domain-specific optimizations. The implementation of the Listz is based 

on Scala’s extensive language features, which facilitate developments 

of DSLs. Listz could be use to implement structured-grid stencil 

applications; however, since it targets unstructured meshes, it may not 

be able to fully exploit the optimization opportunities of structured data.

In order to improve programmer productivity on large-scale 

heterogeneous GPU clusters, we have designed and implemented 

the Physis framework that supports portable programming of stencil 

computations with structured grids. The C-based DSL represents a 

high-level declarative programming model for stencil computations. 

The DSL translator and runtime together realize an ef ficient 

implementation of the programming model with optimizations such 

as automatic overlapping of computations and communications. 

This paper presented our current framework implementation and 

evaluations of its productivity and performance. We have shown that 

our framework successfully generates scalable code for up to 256 

GPUs. We plan to extend the presented framework for generating 

Related Work 5

Conclusion 6

SC’11 Technical Paper

Physis: A High-Level Stencil Framework for 
Heterogeneous Supercomputers

25

further optimized code and to evaluate its effectiveness using a 

wider variety of stencil applications.
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Large scientific applications deployed on current petascale systems expend a significant amount of their execution 
time dumping checkpoint files to remote storage. New fault tolerant techniques will be critical to efficiently exploit 
post-petascale systems. In this work, we propose a low-overhead high-frequency multi-level checkpoint technique 
in which we integrate a highly-reliable topology-aware Reed-Solomon encoding in a three-level  checkpoint scheme.  
We efficiently hide the encoding time using one Fault-Tolerance dedicated thread per node.  We implement our 
technique in the Fault Tolerance Interface FTI. We evaluate the correctness of our performance model and conduct 
a study of the reliability of our library. To demonstrate the performance of FTI, we present a case study of the Mw9.0 
Tohoku Japan earthquake simulation with SPECFEM3D on TSUBAME2.0.  We demonstrate a checkpoint overhead as 
low as 8% on sustained 0.1 petaflops runs (1152 GPUs) while checkpointing at high frequency.

In high performance computing (HPC), systems are built from 

highly reliable components. However, the overall failure rate of 

supercomputers increases with component count. Nowadays, 

petascale machines have a mean time between failures (MTBF) 

measured in hours or days[14] and fault tolerance (FT) is a well-known 

issue.  Long running large applications rely on FT techniques to 

successfully finish their long executions.   Checkpoint/Restart (CR) 

is a popular technique in which the applications save their state in 

stable storage, frequently a parallel file system (PFS); upon a failure, 

the application restarts from the last saved checkpoint.  CR is a 

relatively inexpensive technique in comparison with the process-

replication scheme that imposes over 100 % of overhead.

 However, when a large application is checkpointed, tens 

of thousands of processes will each write several GBs of data and 

the total checkpoint size will be in the order of several tens of TBs. 

Since the I/O bandwidth of supercomputers does not increase at 

the same speed as computational capabilities, large checkpoints 

can lead to an I/O bottleneck, which causes up to 25% of overhead 

in current petascale systems[12]. Post-petascale systems will have 

a significantly larger number of components and an important 

amount of memory.  This will have an impact on the system’

s reliability. With a shorter MTBF, those systems may require a 

higher checkpoint frequency and at the same time they will have 

significantly larger amounts of data to save.

 Although the overall failure rate of future post-petascale 

systems is a common factor to study when designing  FT-

techniques, another important point to take into account is the 

pattern of the failures.  Indeed, when moving from 90nm to 16nm 

technology, the soft error rate (SER) is likely to increase significantly, 

as shown in a recent study from Intel [13, 6].  A recent study by Dong 

et al. explains how this provides an opportunity for local/global 

hybrid checkpoint using new technologies such as phase change 

memories (PCM) [2].  Moreover, some hard failures can be tolerated 

using solid-state-drives (SSD) [8] and cross-node redundancy 

schemes, such as checkpoint replication or XOR encoding [9] which 

allows to leverage multi-level checkpointing, as proposed by 

Moody et al. [1].  Furthermore, Cheng et al.  demonstrated that more 

complex erasure codes such as Reed-Solomon (RS) encoding can 

be used to further increase the percentage of hard failures tolerated 

without stressing the PFS [3]. Our work goes in the same direction as 

these three studies and partially leverages some of those results.

1-1 Contributions

We propose a model of a highly reliable erasure code scheme 

based on our topology-aware RS encoding published in previous 

work [4]. We extend our previous research by studying not only the 

scalability of the encoding algorithm but also the impact of the 

checkpoint size per node and the group size, on  encoding and 

decoding performance.  We evaluate  and prove the accuracy of 

our performance model and show that our topology-aware RS 

encoding scheme is several orders of magnitude more reliable 

than XOR encoding. We apply our FT-dedicated thread scheme 

presented in previous work [5] in order to further decrease the 

checkpoint overhead and we integrate it for the first time in a multi-

level checkpoint technique that we implement in our FTI library. Our 

evaluation shows that by using FT-dedicated threads in the nodes 

we can efficiently hide the encoding time, making its overhead 

negligible in comparison with a simple local write checkpoint. We 

extend our evaluation with a functional test in a real case study by 

simulating the March 11th  Mw9.0 Tohoku, Japan earthquake and 

we present synthetic seismograms for the Hirono seismic recoding 

station in Fukushima prefecture. We perform a large scalability and 

overhead  evaluation of our library with SPECFEM3D and we  show 

that FTI can successfully scale to more than 1000 GPUs and reach 

over 100 TFlops while checkpointing at high frequency and causing 

only about 8 % overhead in comparison with a not checkpointed 

execution.
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In this section we evaluate the performance, scalability and 

efficiency of our FTI library using SPECFEM3D. All our experiments 

were done on TSUBAME2.0 with the configuration given in table 1.

2-1  Simulating the March 11t h  Mw9.0 Tohoku Japan earthquake

In an effort to extend our evaluation with a functional test of 

FTI in a real case simulation with a production level application, 

we decided to simulate the devastating Mw9.0 Tohoku Japan 

earthquake that struck the northeast part of the island on March 

11th, 2011. The simulation is done with SPECFEM3D on TSUBAME2.0 

using an input model that describes the source fault.

 SPECFEM3D is used by more than 300 research groups in 

the world for a large number of applications, for  example to model 

the propagation of seismic waves resulting from earthquakes, 

seismic acquisition experiments carried out in the oil industry, 

or laboratory experiments with ultrasounds in crystals. This 

application won the Gordon Bell SuperComputing award for Best 

Performance [11] for a calculation of seismograms in the whole 3D 

Earth down to periods of approximately 5 seconds, carried out 

at 5 teraflops (sustained) on 1944 processors using 14.6 billion 

degrees of freedom stored in 2.5 terabytes of memory on the Earth 

Simulator, the fastest computer in the world at that time (2002).

 For the source model, we apply waveform inversion [19] 

to obtain slip distribution in the source fault at the 2011 Tohoku, 

EVALUATION 2
Japan earthquake in the same manner as Nakamura et al[22].  We 

use broadband seismograms of IRIS GSN and IFREE OHP seismic 

stations with epicentral distance between 30 and 100 degrees.  The 

broadband original data are  integrated into ground displacement 

and band-pass filtered in the frequency band 0.002-1 Hz. We use 

the velocity structure model of the earth IASP91 [18] to calculate the  

wavefield near the source and stations.  We assume that  the strike 

of the fault plane is 201 degree and the dip angle is 9 degree, based 

on the Global Centroid Moment Tensor model of the earthquake 

source. The length of a subfault is 20 km along strike. The assumed 

fault length is 440 km in total, consistent with the aftershock 

distribution.

 The nonnegative least-squares method [21] is employed for 

constraining the rake angle in the waveform inversion. The results 

of the inversion show the bilateral rupture to  the northeast and the 

southwest with two main asperities along the fault; maximum slip 

is of around 40 m with the reverse fault mechanism approximately 

100 km northeast of the epicenter and another large slip with 

reverse fault mechanism at 100 km southeast of the epicenter. The 

total amount of released seismic moment corresponds to moment 

magnitude Mw = 9.1. We calculate synthetic seismograms with 

this source propagation model for a realistic 3D Earth model using 

the spectral-element method [20, 23]. As we can observe in figure 1, 

the synthetic seismogram for the Hirono seismic recording station 

located in the Fukushima prefecture, the East component shows 

about 2m static displacement to the East, which seems to be 

consistent with the observed crustal deformation caused by this 

earthquake. Figures 1 also shows the other two components at the 

same station.

Table 1  : TSUBME 2.0 Architecture
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Figure 2  FTI evaluation on TSUBAME2.0

SC’11 Special Issue

2-2 FTI scalability study with SPECFEM3D

In order to demonstrate the efficiency and scalability of FTI we 

decided to evaluate it at large scale with SPECFEM3D. Recently, 

SPECFEM3D was ported to GPU clusters using CUDA [15, 16], so it can 

be used in hybrid systems such as TSUBAME2.0.  It is important to 

notice that such seismic simulations do not need double precision 

and perform their runs in single precision [15]. Also, we want to 

highlight that SPECFEM3D is a memory-bound application, as any 

finite difference or finite element code; this is intrinsically related 

to the fact that in such numerical methods few operations are 

performed per grid point, and thus the cost comes mostly from 

memory accesses [15, 16].

 First, we start with a strong scalability test in which 

we evaluate the performance of SPECFEM3D in three cases:  no 

checkpointing, checkpointing with FTI (L2) and checkpointing 

on Lustre [7]. Since the problem size is fixed, the memory used 

(and therefore the checkpoint size) per GPU decreases when the 

number of GPUs increases.  In this experiment, for the FTI tests all 

the checkpoints were done with the L2 of FTI, thus we do not take 

advantage of the multi-level scheme of FTI at this point.  Since 

checkpoint size decreases, we also decrease the checkpoint interval 

in order to decrease the recovery cost in case of failure. All the 

checkpoints are done at the application level and we checkpoint 

only the strictly necessary data in order to restart the execution; this 

corresponds to about 20% of the memory used by the application.

Figure 1  Synthetic seismograms for the Hirono station
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 As we can see in figure 7a, SPECFEM3D  strong-scales  

well from 5 TFlops on 48GPUs to almost 23 TFlops on 384GPUs 

without checkpointing. FTI follows closely this progression by 

causing only about 4 % of overhead for 384GPUs. In contrast, 

checkpointing to Lustre becomes prohibitively costly at high 

frequencies. Performance was measured using PAPI to measure 

the floating point operations [17] and each dot in the figure is the 

average of 5 runs.

 To evaluate the overhead of FTI at large scale, we stressed 

even more our library by weak-scaling to more than 1000 GPUs. 

In this second experiment, we populate the GPUs memory with 

2.1GBs of data, out of 2.6GBs  available for the user (12.5 % is used 

for ECC in Fermi  GPUs ) and we keep the checkpoint interval fixed 

to  6 minutes, which is the Young’s optimal checkpoint interval for 

a MTBF of 12 hours and a L1 checkpoint of 2 seconds. Then, we 

run SPECFEM3D for several configurations: The first one is without 

checkpoint (No  ckpt.); the second one is checkpointing to the local  

SSDs without any encoding (L1); the third one is using FTI, thus in 

addition to the local checkpoint, every 2 checkpoints FTI will use 

the RS encoding proposed in our model (FTI-L1,L2); the fourth one 

is similar to the previous one but in addition every 6 checkpoints 

the latest checkpoint files are flushed to Lustre (FTI-L1,L2,L3); and 

finally checkpointing with BLCR on Lustre (BLCR+Lustre).  Although 

there are some ongoing works [10] to make it possible, BLCR cannot 

currently checkpoint GPU-accelerated systems.  Hence, we emulate 

it by writing 2.1GBs of data per process (therefore per GPU) to Lustre 

in the same way BLCR would do it. It is important to highlight that 

BLCR, as any other kernel-level checkpoint, will save the complete 

memory of every process, creating a 5 times larger checkpoint.

 In figure 7b, we can see that SPECFEM3D has an almost 

perfect weak scaling, from 43TFlops to 117TFlops on 1152GPUs 

for the No ckpt. test. Also, in the figure the L1 results are actually 

hidden by the FTI-L1,L2 results.  Indeed, both scenarios achieve 

almost identical results  causing about 8% overhead in comparison 

with the No ckpt.  case.  This means, that the RS encoding done at 

L2 is completely hidden thanks to the FT-dedicated threads.  The 

L1 checkpoints, capable of tolerating transient failures, are done 

between two L2 checkpoints while the FT-threads are still encoding 

the previous, more reliable, checkpoint. The FTI-L1,L2,L3 scheme 

adds an extra 3 % overhead due to Lustre writing performance. 

Finally, the BLCR+Lustre scheme imposes an always larger and 

prohibitive overhead as the size of the problem increases. For each 

run we let the application run between 30 and 40 minutes and 

every point in the figure is the average of 3 runs.

 At this point ,  we have achieved over 100TFlops 

of  sustained performance with a production-level scientific 

application such as SPECFEM3D, on an hybrid supercomputer such 

as TSUBAME2.0 and checkpointing with our library FTI every 6 

minutes (high frequency checkpointing).

In this work we have proposed a highly reliable technique based 

on a topology-aware RS encoding. Also, we have exploited some 

characteristics of GPU computing through which many GPU 

applications are capable of spawning one extra FT-dedicated 

thread per node in order to improve checkpoint performance.  

We have integrated both techniques in a multi-level checkpoint 

model that we have implemented in our FTI library and we have 

conducted an exhaustive study of correctness of our performance 

model and the reliability of our library.

 Moreover, we have conducted for the first time a large  

scale evaluation of such a multi-level technique with a production 

level scientific application on an hybrid platform.  Our evaluation 

with SPECFEM3D on TSUBAME2.0 shows that FTI imposes only 8% 

of  checkpoint overhead while running at over 0.1 petaflops  and 

checkpointing every 6 minutes.
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