
6

Turbulence Simulation Using 40963 
Vortex Particles on 4096 GPUs

An Ultra-fast Computing Pipeline for 
Metagenome Analysis 
with Next-Generation DNA Sequencers

GPU-Accelerated Large-Scale 
Simulation of Seismic-Wave Propagation



01

The simulation of high Reynolds number turbulence is one of the most computationally demanding applications in high 
performance computing. In the present study, we perform the simulation of turbulence in a periodic box using 40963 
vortex particles. The accuracy of the calculation is verified by comparing with a pseudo-spectral code. The relative parallel 
efficiency is compared between the FMM based vortex particle method, and the FFT based pseudo-spectral method on 
up to 4096 GPUs on the TSUBAME 2.0 system.
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	 Turbulence	 is	 ubiquitous	 in	 our	 daily	 l ives	 and	 also	

appears	 in	various	engineering	problems	 involving	energy	and	

environmental	applications.	The	non-linearity	of	 the	governing	

equation	and	the	 large	degrees	of	 freedom	in	the	system,	make	

the	simulation	of	 turbulence	one	of	 the	most	computationally	

demanding	problems	in	computational	physics.	Recent	advances	

in	the	computational	capability	of	supercomputers	has	made	 it	

possible	 to	perform	direct	numerical	simulations	of	 the	Navier-

Stokes	equation	for	reasonably	high	Reynolds	numbers.

	 Although	typical	engineering	applications	 for	 turbulent	

flows	 involve	complex	boundary	conditions	and	require	strong	

coupling	with	other	domains	of	physics,	 there	 exist	 certain	

canonical	flow	fields	where	the	physics	of	turbulence	itself	can	be	

investigated	without	the	complications	of	these	extra	constraints.	

The	homogeneous	isotropic	turbulence	under	periodic	boundary	

conditions	is	one	such	case,	where	the	fundamental	characteristics	

of	high	Reynolds	number	turbulence	can	be	analyzed	in	isolation	

from	mean	shear	and	near	wall	effects.

	 The	numerical	method	of	preference	for	solving	isotropic	

turbulence	with	periodic	boundary	conditions	has	been	pseudo-

spectral	methods[1]. 	 	 The	 largest	 of	 such	 calculations	was	

performed	with	40963	grid	points	at	a	Taylor-microscale	Reynolds	

number	of																								on	the	Earth	Simulator	back	in	2002[2].	Their	

calculations	revealed	that	the	scaling	of	the	high	order	turbulence	

statistics	is	significantly	different	at	high							,	while	the	local	scaling	

exponents	 seemed	universal[3].	 Such	 conclusions	would	not	

have	been	attainable	without	the	use	of	supercomputers	and	an	

idealized	flow	configuration,	and	symbolizes	the	 importance	of	

such	efforts.

	 We	would	like	to	point	out	however,	that	the	record	for	the	

largest	turbulence	calculation	has	not	been	broken	for	a	decade1,	

	 There	are	 a	 variety	of	methods	 that	 are	 referred	 to	as	

``vortex	methods”[4].	Some	are	Lagrangian	while	others	are	semi-

Lagrangian.	 Some	are	based	on	 the	vorticity-streamfunction	

formulation	while	other	use	 the	vorticity-velocity	 formulation.	

There	are	also	many	different	ways	to	treat	the	viscous	diffusion	
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despite	the	300	fold	 increase	 in	LINPACK	performance	between	

the	Earth	Simulator	and	K	computer.	This	can	be	either	interpreted	

as;	a)	the	difficultly	to	parallelize	FFT	on	large	distributed	memory	

systems	with	 torus	networks,	or	b)	 the	 inability	of	LINPACK	 to	

serve	as	an	 indicator	 for	 the	actual	performance	 that	 can	be	

achieved	in	real	applications.	The	former	 interpretation	prompts	

the	development	of	 alternative	 algorithms	 that	have	better	

scalability.	The	 latter	perception	would	most	 likely	 facilitate	an	

early	adaptation	of	an	alternative	benchmark,	which	could	 lead	

to	better	co-design	between	the	software	and	hardware	in	high	

performance	computing.

	 In	 the	present	study,	we	propose	an	alternative	method	

for	solving	isotropic	turbulence	that	can	scale	to	the	full	node	of	

TSUBAME	2.0.	We	caution	the	reader	that	 ``scalability”	does	not	

necessarily	 reflect	 the	``performance”	of	 the	code	–	slow	codes	

usually	scale	better	because	it	is	easier	to	hide	the	communication.	

By	comparing	both	the	time-to-solution	and	scalability	of	 two	

different	algorithms	for	the	same	application,	we	hope	to	provide	

data	that	supports	decision	making	 in	the	choice	of	algorithms	

and	co-design	of	next	generation	software	and	hardware	in	high	

performance	computing.

[1]There	have	been	reports	of	spectral	method	calculations	for	81923	grid	points,	
but	these	are	benchmarks	that	are	not	run	for	a	significantly	 long	time,	and	do	
not	provide	any	data	on	the	actual	physics	of	turbulence
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	 The	N-body	 problem	 resulting	 from	 the	 Biot-Savar t	

equation	and	the	stretching	term	of	the	vorticity	equation	results	

in	O(N 2)	 operations	 if	 solved	directly.	We	use	the	 fast	multipole	

method	(FMM)[6]	to	bring	the	number	of	operations	down	to	O(N).

	 Since	the	Biot-Savart	equation	originates	from	a	Poisson’s	

equation,	the	FMM	for	Laplace	kernels	can	be	used	here.	The	curl	

in	the	source	term	of	the	Biot-Savart	equation	and	the	gradient	in	

the	stretching	term	each	require	an	extra	a	derivative	to	be	applied	

to	the	Laplace	kernel.	However,	since	the	multipole	expansion	and	

local	expansion	already	consist	of	these	derivative	terms,	it	is	trivial	

to	extract	this	information	without	any	extra	computation.

3.1 Load Balancing

	 When	parallelizing	FMMs,	the	global	nature	of	the	N-body	

interaction	and	the	dynamic	nature	of	 the	particle	distribution	

pose	a	unique	challenge.	Unlike	grid	based	methods,	the	use	of	

domain	decomposition	will	not	 localize	 the	data	dependency	

–the	halo	region	will	be	the	entire	domain	but	with	hierarchically	

coarsened	far	regions.	A	common	approach	is	to	use	a	global	tree	

structure	 to	minimize	 the	communication[7].	When	the	particle	

distribution	is	 irregular	and	the	tree	structure	is	adaptive,	equally	

partitioning	the	domain	will	result	in	load	imbalance.	Furthermore,	

the	dynamic	nature	of	the	N-body	simulation	necessitates	frequent	

repartitioning,	so	the	overhead	must	be	small.

	 A	clever	way	to	solve	the	load	balancing	issue	is	to	record	

the	 load	 imbalance	 from	the	previous	 time	step,	and	use	 it	 to	

repartition	 the	 tree	 for	 the	present	 step.	Such	strategies	were	

first	 introduced	 in	the	early	90’s	on	both	shared	memory[8]	and	

distributed	memory	architectures[9].	This	idea	of	using	information	

from	the	previous	step	to	update	the	present	step	can	be	used	

with	any	existing	partitioning	scheme	such	as	orthogonal	recursive	
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in	the	Lagrangian	 frame	of	 reference.	A	common	advantage	of	

these	methods	 is	the	treatment	of	convection	in	the	Lagrangian	

frame.	This	allows	the	use	of	larger	time	step	sizes	while	eliminating	

numerical	dif fusion	and	dispersion	effects.	 Furthermore,	 the	

vorticity-based	formulation	allows	the	points	to	be	placed	only	in	

regions	with	non-zero	vorticity.	This	leads	to	substantial	savings	in	

computational	time	and	storage	for	external	flows	with	unsteady	

vortex	dynamics,	such	as	vortex	rings	and	trailing	edge	vortices.

	 In	this	work,	we	use	the	full	Lagrangian	vortex	method	with	

vorticity-velocity	formulation[5].	The	vorticity	field	is	discretized	by	

a	superposition	of	Lagrangian	vortex	particles	with	Gaussian	basis	

functions.	In	the	vorticity-velocity	formulation	the	velocity	Poisson	

equation.

is	solved	along	with	the	vorticity	equation

The	velocity	Poisson	equation	becomes	the	Biot-Savart	equation	

when	formulated	as	an	integral	equation	with	the	Green’s	function	

as	the	kernel.	This	becomes	an	N-body	problem	that	can	be	solved	

using	 the	 fast	multipole	method	 (FMM)	described	 in	 the	next	

section.	In	the	vorticity	equation,	the	convection	term	is	calculated	

by	advecting	 the	Lagrangian	particles.	The	stretching	 term	 is	

calculated	by	substituting	the	Biot-Savart	equation	into	the	velocity,	

which	results	 in	another	N-body	problem.	The	diffusion	term	is	

calculated	by	 increasing	the	size	of	 the	Gaussian	basis	 function	

according	 to	 the	analytical	 solution	of	 the	diffusion	equation.	

In	 order	 to	maintain	 suf ficient	 overlap	between	 the	 vortex	

particles,	the	coordinates	are	reinitialized	every	few	steps,	and	the	

corresponding	vortex	strength	of	each	particle	 is	calculated	to	

reproduce	the	vorticity	field	before	the	reinitialization.	This	is	done	

using	radial	basis	function	interpolation	with	a	Gaussian	basis.
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Figure 1		Diagram	of	the	dual	tree	traversal

bisection	(ORB)[7],	partitioning	of	Morton/Hilbert	keys[9],	and	graph	

based	partitioning[10].	The	work/communication	 load	 from	the	

previous	step	can	be	used	as	weights	 in	any	of	 these	originally	

unweighted	partitioning	schemes.	Our	current	FMM	code	supports	

both	ORB	and	Morton	key	based	partitioning	schemes.

	 Once	the	domain	 is	partitioned,	each	process	will	own	a	

local	portion	of	the	global	tree	structure.	 It	 is	 then	necessary	to	

communicate	the	local	essential	tree	(LET),	which	is	a	significantly	

smaller	 subset	of	 the	global	 tree	 that	 is	 required	 for	 the	 tree	

traversal	 on	each	process.	 The	 communication	of	 the	 LET	 is	

global	in	nature,	and	is	a	potential	bottleneck	for	the	scalability	of	

FMMs.	A	common	technique	in	both	treecodes[11]	and	FMMs[12]	 is	

to	repeatedly	exchange	the	LET	on	the	other	side	of	the	bisector	

of	the	equivalent	binary	tree	structure.	This	N-D	hypercube	type	

communication	is	extended	in	our	code	to	work	with	number	of	

processes	that	are	not	a	power	of	two.	We	have	further	extended	

this	framework	to	work	with	periodic	boundary	conditions.

3.2 Dual Tree Traversal

	 Both	treecodes	and	FMMs	build	 the	same	tree	structure	

and	partition	it	 in	the	same	way.	The	difference	between	the	two	

methods	lies	in	the	way	the	tree	is	traversed.	Treecodes	loop	over	

the	target	 leaf	cells	and	traverse	the	entire	source	tree	 for	each	

target	leaf	cell.	FMMs	usually	do	not	traverse	the	tree,	but	loop	over	

all	target	cells	and	construct	an	explicit	source	cell	 list	per	target	

cell.	For	an	adaptive	tree,	the	construction	of	such	source	cell	 lists	

becomes	complicated,	especially	 if	one	were	 to	 introduce	 the	

concept	of	multipole	acceptance	criteria	(MAC)	into	FMMs.

	 The	dual	 tree	 traversal[13]	 can	be	used	 to	 simplify	 the	

construction	of	source	cell	 lists	in	FMMs.	It	can	be	thought	of	as	a	

generalization	of	U,V,W,X-lists[12]	that	also	allows	the	use	of	MAC	in	

FMMs.	A	conceptual	diagram	of	the	dual	tree	traversal	is	shown	in	

Figure	1.	Two	trees	are	traversed	simultaneously,	one	for	the	target	

and	one	for	the	source.	The	MAC	is	applied	for	each	pair	during	

the	dual	 traversal.	 If	 the	MAC	 is	satisfied,	 the	multipole-to-local	

translation	is	calculated	and	the	pair	is	removed	from	the	traversal	

queue.	If	the	MAC	is	not	satisfied,	the	traversal	continues	until	both	

trees	reach	their	 leaf	cells,	at	which	point	the	direct	 interaction	

will	be	calculated	between	all	particles	in	the	cells.	In	other	words,	

the	dual	 tree	traversal	provides	a	simple	bookkeeping	strategy	

for	constructing	a	MAC-based	interaction	stencil	that	 is	mutually	

exclusive	at	each	level,	by	letting	the	target	cells	 inherit	a	unique	

list	of	source	cells	from	their	parents.

3.3 Auto-tuning on CPU/GPU

	 In	hierarchical	N-body	methods	such	as	 treecodes	and	

FMMs,	the	dominant	part	of	the	calculation	is	the	particle-particle	

interaction	(P2P)	kernel	for	the	near	field	and	the	multipole-to-local	

(M2L)	or	multipole-to-particle	(M2P)	kernel	for	the	far	field.

The	ratio	between	these	near	field	and	far	field	calculations	must	

be	optimized	by	properly	selecting	the	number	of	particles	per	

leaf	cell	during	the	tree	construction.	This	 is	a	non-trivial	 task	on	

heterogeneous	architectures,	 since	each	kernel	will	 accelerate	

at	different	 rates	on	GPUs[14].	 There	are	 also	a	wide	variety	of	

mathematical	formulations	for	each	of	these	kernels,	some	of	which	

are	better	suited	for	a	particular	architecture.

	 A	simple	strategy	for	selecting	the	optimal	kernel	on	any	

given	architecture	is	to	measure	the	time	of	dry	kernel	calls	at	the	

beginning	of	the	simulation,	and	to	use	those	timings	to	select	the	

fastest	option	during	the	tree	traversal.	By	providing	the	option	

to	select	between	P2P	(direct),	M2P	(treecode),	 	 	and	M2L	(FMM)	

kernels,	 the	resulting	algorithm	will	always	run	faster	than	any	of	

these	methods	alone,	on	any	architecture,	for	any	problem	size.	Our	

tests	show	that	this	is	indeed	the	case[15].	
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GPUs.	However,	 this	part	of	 the	calculation	scales	perfectly,	and	

does	not	affect	the	scalability	of	the	FMM.	The	parts	that	do	affect	

the	scalability	are	the	tree	construction	and	MPI	communication.	

Actually,	 the	tree	construction	 involves	MPI	communication	 for	

the	partitioning	so	it	 is	the	efficiency	of	MPI	communication	that	

determines	the	weak	scalability.

	 It	may	be	worth	noting	 that	 the	N-D	 	hypercube	 type	

communication	of	the	LET	(described	in	section	3.1)	turned	out	to	

be	slower	than	a	simple	call	to	MPI_Alltoallv	for	sending	the	entire	

LET	at	once.	Therefore,	the	results	shown	in	Figure	2	are	with	MPI_

Alltoallv	and	not	the	hypercube	communication.

	 We	performed	a	similar	weak	scalability	test	for	the	spectral	

method,	and	compared	the	parallel	efficiency	with	the	FMM	in	

Figure	3.	The	spectral	method	was	calculated	on	the	CPU	because	

we	did	not	have	access	 to	a	GPU	based	FFT	code	that	gave	us	

significant	acceleration	over	FFTW	(when	host-device	data	transfer	

is	included)	at	the	time	of	the	comparison.	The	parallel	efficiency	of	

the	FMM	was	74	%	at	4096	GPUs,	while	the	parallel	efficiency	of	the	

spectral	method	was	14	%	on	the	same	number	of	CPUs.	The	time-

to-solution	was	approximately	100s	for	both	the	FMM	and	spectral	

method.

Figure 2		Weak	scaling	of	FMM	on	up	to	4096	GPUs	for	
																		N=40962		particles	per	GPU.

Figure 3		Parallel	efficiency	of	FMM	and	spectral	method	
																		on	up	to	4096	processes.

	 The	present	simulations	are	run	on	the	TSUBAME	2.0	system,	

which	has	1408	nodes	equipped	with	two	Intel	Xeon5670	CPUs,	

three	NVIDIA	M2050	GPUs,	54	GB	of	RAM,	and	120	GB	of	local	SSD	

storage.	The	inter-node	connection	is	a	full	bisection/non-blocking	

fat-tree,	where	each	node	has	two	QDR	Infiniband	links.

	 The	breakdown	of	 the	weak	 scaling	 runs	 for	N=40962	

particles	per	GPU	is	shown	in	Figure	2.	We	assign	one	MPI	process	

per	GPU	so	 the	number	of	processes	 is	 equal	 to	 the	number	

of	GPUs.	The	execution	time	 is	 for	 the	combined	Biot-Savart	+	

stretching	kernel.	 In	the	legend,	“P2P	evaluation”	is	the	evaluation	

time	of	 the	P2P	 kernel	 in	 the	near	 field,	 “FMM	evaluation”	 is	

the	sum	of	all	other	FMM	kernels,	 “MPI	communication”	 is	 the	

total	 time	 spent	on	all	MPI	 communications	except	 the	ones	

in	 the	 tree	construction,	 “GPU	buffering”	 is	 the	 time	spent	on	

reordering/buffering	 the	data	and	sending	 it	 to	 the	GPU,	and	

“Tree	construction”	is	the	parallel	construction/	partitioning	of	the	

global	tree.	The	local	portion	of	the	P2P	evaluation	is	overlapped	

with	the	MPI	communication.	 In	Figure	2	the	MPI	communication	

time	is	subtracted	from	the	P2P	evaluation	time	so	that	the	total	

height	of	the	bar	reflects	the	actual	wall	clock	time.	The	largest	run	

with	N=40963	vortex	particles	on	4096	GPUs	results	in	a	sustained	

performance	of	1.01		Pflop/s.

	 We	see	that	the	GPU	buffering	is	taking	a	significant	amount	

of	time,	but	we	have	found	this	to	be	necessary	in	order	to	achieve	

high	efficiency	 in	 the	P2P	evaluation	and	FMM	evaluation	on	

Scalability Results 4
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Figure 4		Isosurface	of	the	second	invariant	of	the	velocity
																		gradient	tensor	from	the	vortex	method	simulation

Figure 5		Energy	spectra	of	the	pseudo-spectral	spectral	
																		method	and	vortex	method	at	t/T=2

	 The	calculation	of	 isotropic	 turbulence	 for	 	 	 	 	 	 	 	 	 	 	 	was	

performed	by	 the	FMM	based	vortex	particle	method	and	FFT	

based	pseudo-spectral	method.	The	calculation	domain	was	a	

periodic	box	of	[-π,π]3	and	the	number	of	particles/grid-points	was	

40963.	For	the	FMM,	we	used	273	periodic	images	to	approximate	

the	periodic	boundary	condition,	 and	 the	order	of	multipole	

expansion	was	set	 to	p=14.	The	 initial	condition	was	generated	

using	the	spectral	code,	by	generating	a	velocity	 field	 in	wave	

space	with	a	prescribed	energy	spectrum	and	random	phases.	

This	initial	velocity	field	is	used	directly	as	an	input	to	the	pseudo-

spectral	method.	For	the	vortex	method,	the	velocity	field	is	first	

converted	to	real	space	and	the	strength	of	the	vortex	particles	are	

adjusted	to	reproduce	this	velocity	field.	The	vortex	particles	are	

initially	positioned	at	the	cell	centers	(same	location	as	the	pressure	

on	a	staggered	grid),	and	radial	basis	function	interpolation	is	used	

to	determine	the	strength	of	each	particle.	The	initial	core	radius	of	

the	vortex	particles	are	set	to	σ=Δx	so	that	the	overlap	ratio	is	1.

	 Figure	4	shows	an	isosurface	of	the	second	invariant	of	the	

velocity	gradient	tensor	at	time	t/T=2,	where	T	 is	the	 large	eddy	

turn-over	time.	Many	small	vortex	structres	can	be	observed,	but	

no	 large	scale	coherent	structures	are	seen	at	this	early	stage	of	
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the	calculaiton.	The	duration	of	the	run	was	severely	limited	by	the	

window	of	access	to	the	full	node	of	TSUBAME	2.0.	Therefore,	the	

results	of	the	present	turbulence	simulation	are	only	preliminary,	

and	are	only	 interesting	in	terms	of	demonstrating	the	scalability	

and	validity	of	FMM	based	vortex	methods	on	 large	scale	GPU	

systems,	which	is	orthogonal	to	the	issue	of	what	new	physics	of	

turbulence	was	obtained.

	 The	kinetic	energy	spectra	for	the	pseudo-spectral	method	

and	vortex	method	at	t/T=2	are	compared	in	Figure	5.	There	 is	a	

small	deviation	at	the	high	end	of	the	wave	numbers,	but	otherwise	

the	 results	agree	quantitatively.	The	 improvement	over	similar	

comparisons	in	the	past[5][16]	was	achieved	by	using	a	higher	order	

of	multipole	expansion	(p=14),	using	more	periodic	 images	(273),	

more	frequent	reinitialization	(every	5	steps),	higher	accuracy	in	the	

RBF	iteration	(relative	|L|2=1e-5),	and	of	course	much	more	vortex	

particles.	We	have	confirmed	that	all	 the	conditions	mentioned	

above	must	be	satisfied	 in	order	to	achieve	the	high	accuracy	 in	

vortex	methods	that	we	show	in	Figure	5.
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	 We	 compared	 the	 scalability	 of	 a	 FMM	based	 vortex	

method	against	a	FFT	based	pseudo-spectral	method	 for	 the	

simulation	of	isotropic	turbulence	with	40963	particles/grid	points	

on	4096	CPU/GPUs	on	TSUBAME	2.0.	The	FMM	based	calculation	

achieved	74	%	parallel	efficiency,	while	the	FFT	based	method	had	

14	%	parallel	efficiency	on	4096	processes.	The	calculation	using	

40963	vortex	particles	reached	1.01	Pflop/s,	which	is	a	new	record	

for	FMMs	as	far	as	the	authors	are	aware.	The	comparison	of	the	

results	between	the	vortex	method	and	pseudo-spectral	method	

showed	quantitative	agreement	 in	the	energy	spectra.	However,	

due	to	the	limited	availability	of	the	full	node	of	TSUBAME	2.0,	we	

were	not	able	to	compare	high	order	turbulence	statistics	between	

the	 vortex	method	and	 spectral	method.	 Future	generation	

supercomputers	may	offer	us	the	opportunity	to	make	use	of	our	

FMM	based	turbulence	solver.
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Metagenome analysis is useful for not only understanding symbiotic systems but also watching environment 
pollutions. However, metagenome analysis requires sensitive sequence homology searches which require large 
computation time and it is thus a bottleneck in current metagenome analysis based on the data from the latest DNA 
sequencers generally called a next-generation sequencer. To solve the problem, we developed a faster homology 
search program based on GPU-calculation and a large-scale computing pipeline for metagenome analysis on 
TSUBAME2.
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An Ultra-fast Computing Pipeline for 
Metagenome Analysis with 
Next-Generation DNA Sequencers

	 Metagenome	analysis	 is	 the	 study	of	 the	genomes	

of	 uncultured	microbes	 obtained	 directly	 f rom	microbial	

communities	 in	 their	natural	habitats	 such	as	 soils,	 seas,	 and	

human	bodies.	The	analysis	is	useful	for	not	only	understanding	

symbiotic	systems	but	also	watching	environment	pollutions[1].	

These	days,	 the	 latest	DNA	sequencers,	generally	called	next-

generation	 sequencer,	 became	 to	 produce	 huge	 amount	

of	 genomic	 data	 in	 a	 shor t	 t ime	 and	 i t 	 is 	 expected	 that	

metagenomic	 researches	are	promoted	based	on	 such	huge	

genomic	data.

	 However,	metagenome	analysis	 requires	comparisons	

of	 sequence	data	obtained	 from	a	 sequencer	with	 sequence	

data	of	 remote	homologues	 in	databases.	 Because,	 current	

databases	do	not	 include	sequence	data	 for	most	of	microbes	

in	 the	sample.	Therefore,	 sensitive	sequence	homology	search	

processes	are	 required	 in	metagenome	analysis.	Unfortunately,	

this	 process	 needs	 large	 computation	 time	 and	 is	 thus	 a	

bottleneck	 in	current	metagenome	analysis	based	on	the	data	

from	a	next-generation	sequencer[2].

	 He re , 	 we 	 deve loped 	 a 	 l a rge - s ca l e 	 au tomated	

computing	pipeline	for	analyzing	huge	amount	of	metagenomic	

data	obtained	 from	a	next-generation	sequencer.	This	pipeline	

enables	us	to	analyze	metagenomic	data	from	a	next	generation	

sequencer	in	real	time	by	utilizing	huge	computational	resources	

on	 TSUBAME2.	Also,	we	developed	 a	 fast	 homology	 search	

program	based	on	GPU-calculation,	which	 is	named	GHOSTM[3].	

This	program	has	sufficient	search	sensitivity	 for	metagenomic	

analysis	 and	 is	much	 faster	 than	BLASTX	program[4],	which	 is	

generally	used	 for	previous	metagenomic	 researches.	By	using	

these	new	program	and	pipeline,	we	can	process	metagenome	

information	obtained	 from	a	 single	 run	of	 a	next	generation	

	 Current	sequencers	produce	only	 information	 in	short	

fragments,	whose	 lengths	range	between	50	and	700	base-pair	

(bp).	Thus,	mapping	or	assembling	processes	are	 required	 for	

obtaining	meaningful	results	from	the	output.

	 Mapping	 is	a	process	 to	 identify	 the	 location	of	each	

DNA	sequence	fragment	on	known	genome	information.	In	single-

organism	genomics,	 it	 is	easy	because	the	reference	genome	has	

already	been	obtained	and	we	do	not	have	to	mention	about	many	

mismatches	and	gaps.	Thus,	the	process	 is	similar	to	general	text	

search	and	does	not	require	large	computation.	Therefore,	by	using	

efficient	short-read	mapping	programs	such	as	BWA[5]	and	Bowtie[6],	

we	can	process	the	output	of	a	next	generation	sequencer	on	a	

few	workstations.	

	 In	contrast,	in	metagenomic	analysis,	the	DNA	sequence	

fragments	obtained	 from	environmental	 samples	 frequently	

include	DNA	sequences	from	many	different	species,	and	closely	

related	reference	genome	sequences	are	often	unavailable.	Thus,	

more	 sensitive	 search,	generally	 called	a	homology	 search,	 is	

required	for	the	 identification	of	novel	genes.	 In	addition,	 in	the	

typical	metagenomic	analyses,	 sequenced	DNA	 fragments	are	

translated	into	protein	coding	sequences	and	then	further	assigned	

to	protein	families	to	improve	search	sensitivity.	This	also	increases	

the	computational	cost	of	homology	search.

	 The	BLAST	algorithm	is	sufficiently	sensitive	for	searching	

protein	 families	and	 is	much	 faster	 than	 the	classical	dynamic	

programming	method.	Thus,	BLASTX	program	has	been	used	in	

previous	metagenomic	researches[7].	However,	 its	performance	is	

Introduction 1
Metagenome mapping 2

sequencer	in	a	few	hours.	We	believe	our	pipeline	will	accelerate	

metagenome	analyses	with	next-generation	sequencers.
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GHOSTM: a GPU-accelerated homology 
search tool for metagenomics 3

insufficient	for	analyzing	the	large	quantities	of	data	produced	by	a	

next-generation	sequencer.	In	practice,	by	using	BLASTX	program,	

approximately	25,000	CPU	days	are	needed	for	querying	600	GB	

of	short	 reads	generated	 from	one	run	of	 the	 latest	sequencer	

Illumina’s	Hiseq	2000.	Thus,	 the	metagenomic	mapping	based	

on	a	homology	search	 is	a	bottleneck	 in	current	analysis	and	 its	

acceleration	is	highly	required.

Figure 1		Data	flow	and	processing	within	GHOSTM.

	 To	 address	 the	 issue, 	 we	 developed	 a	 new	 and	

efficient	homology	search	algorithm	suitable	for	GPU	calculation	

and	 implemented	 the	 system	on	GPUs.	 The	 system	accepts	

a	 large	number	of	 short	DNA	 fragment	 sequences	produced	

by	 a	 next-generation	 sequencer	 as	 the	 input	 and,	 like	 the	

BLASTX	program,	performs	DNA	sequence	homology	searches	

against	a	protein	sequence	database.	We	used	NVIDIA	CUDA	to	

implement	the	GPU-calculation.	Thus,	the	system	requires	CUDA	

2.2	or	higher.	 The	 search	 system,	which	we	named	GHOSTM,	

demonstrated	a	calculation	speed	that	was	130	times	faster	with	

one	GPU	than	BLAST	on	a	CPU.	

3.1 Algorithm

	 T h e 	 GHOS TM 	 i s 	 m a i n l y 	 c ompo s e d 	 o f 	 t h r e e	

components,	as	shown	in	Figure	1.	The	first	component	searched	

the	 candidate	 alignment	positions	 for	 a	 sequence	 from	 the	

database	using	the	 indexes.	The	second	component	calculated	

local	 alignments	 around	 the	 candidate	positions	 using	 the	

Smith-Waterman	 algorithm[8]	 for	 calculating	 the	 alignment	

scores.	Finally,	the	third	component	sorted	the	alignment	scores	

and	output	the	search	results.

	 Both	 the	 candidate	 search	 and	 local 	 a l ignment	

components	 required	 a	 large	 amount	 of	 computing	 time.	

Therefore,	we	processed	queries	on	both	components	in	parallel	

and	mapped	 them	onto	GPUs.	 Thus,	multiple	 queries	were	

simultaneously	processed	on	different	GPU	cores.

3.2 Search sensitivity and speed

	 Because 	 metagenome	 ana lyses 	 requi re 	 h igh ly	

sensitive	searches,	it	is	difficult	to	use	homology	search	program	

with	high	speed	but	 low	sensitivity,	such	as	BLAT[9].	 In	contrast,	

GHOSTM	has	 suf ficient	 search	 sensitivity	 for	metagenomic	

analysis.	 Figure	2	 shows	 the	comparison	of	 search	 sensitivity	

for	 each	homology	 search	program.	 To	 evaluate	 the	 search	

sensitivity,	we	used	the	search	results	obtained	with	the	Smith-

Waterman	local	alignment	method	implemented	in	SSEARCH[10],	

and	 these	 results	were	 assumed	 to	be	 the	 correct	 answers.	

We	analyzed	the	performance	of	a	particular	method	 in	 terms	

of	 the	 fraction	of	 its	 results	 that	corresponded	 to	 the	correct	

answers	obtained	by	SSEARCH.	The	search	accuracy	of	GHOSTM	

was	clearly	higher	 than	BLAT.	 Low-scoring	hits	 (e.g.,	<50)	are	

generally	 not	used	 in	practice	because	 such	hits	 can	occur	

by	chance.	With	 the	exception	of	 the	 low-score	hits,	GHOSTM	

successfully	 identified	more	 than	90 %	of	 the	hits	 identified	

by	SSEARCH.	This	 result	 suggests	 that	GHOSTM	 is	 sufficiently	

accurate	for	general	usage.

	 Table	1	shows	the	computational	times	of	BLAST,	BLAT,	

and	GHOSTM	for	100	thousand	reads.	Each	query	 read	has	 the	

Figure 2		Comparison	of	search	accuracy
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Table 1 Comparison	of	search	speed

length	 from	60	to	75	bp	and	the	search	target	 is	KEGG	Genes	 (

“genes.pep”)	database	with	approximately	2.5GB.	The	GHOSTM	

program	achieved	a	calculation	speed	approximately	130	and	

400	times	 faster	 than	the	BLAST	program	using	1	thread	and	4	

threads,	respectively.	Moreover,	GHOSTM	was	approximately	3.4	

times	 faster	 than	BLAT	despite	of	 its	higher	 search	sensitivity.	

GHOSTM	achieves	both	high	 search	 speed	 and	high	 search	

sensitivity	compared	with	previous	homology	search	programs.

	 Even	using	GHOSTM,	 it	 is	 dif ficult	 to	 analyze	huge	

amount	of	metagenomic	data	on	a	 single	workstation.	 Thus,	

we	developed	a	 large-scale	automated	computing	pipeline	 for	

analyzing	huge	amount	of	metagenomic	data	obtained	 from	a	

next-generation	sequencer.	This	pipeline	enables	us	 to	analyze	

metagenomic	data	 from	a	next	generation	 sequencer	 in	 real	

time	by	utilizing	huge	computational	resources	on	TSUBAME2.	

File	 I/O	 processes	 including	 a	 database	 copy	 and	writing	

search	 results	 caused	 a	 contention	problem	when	we	used	

many	 computation	 nodes.	 Thus,	we	 changed	 to	 employ	 a	

sophisticated	file	transfer	manner	where	data	are	simultaneously	

copied	 from	 local	disk	of	 a	node	 to	another	 in	 a	binary-tree	

manner.

4.1 Large-scale experiments

	 By	the	assistance	of	TSUBAME	Grand	Challenge	(Large	

Scale	GPU	application)	program,	we	performed	a	 large-scale	

metagenome	analysis	by	using	our	pipeline	on	whole	TSUBAME2	

system.	We	used	data	sampled	from	polluted	soils	and	obtained	

by	using	a	next-generation	sequencer.	Original	metagenomic	

Automated computing pipeline on 
TSUBAME2 4

data	has	 224	million	DNA	reads	with	75	bp,	and	after	excluding	

low-quality	data,	 the	dataset	became	71	million	DNA	 reads.	

Thus,	homology	searches	were	performed	with	71	million	DNA	

reads	for	NCBI	nr	amino-acid	sequence	DB	(4.2GB).	We	evaluated	

the	effective	performance	of	the	pipeline	with	both	BLASTX	on	

CPUs	and	GHOSTM	on	GPUs.	

	 As	 results,	 the	pipeline	shows	almost	 linear	speedup	

to	 the	number	of	computing	cores.	When	we	used	BLASTX	as	

a	homology	search	program,	 the	pipeline	achieved	to	process	

about	24	million	reads	per	an	hour	with	16,008	CPU	cores	(1,334	

computing	nodes)	 (Figure.	 3).	When	we	used	GHOSTM	as	 a	

homology	 search	program,	 the	pipeline	achieved	 to	process	

about	 60	mill ion	 reads	 per	 an	 hour	with	 2,520	GPUs	 (840	

computing	nodes)	 (Figure.	4).	When	we	used	2,520	GPUs,	 the	

speed	up	is	only	20%	compared	with	the	case	that	we	used	1,260	

GPUs.	This	was	because	the	dataset	was	too	small	for	2,560	GPUs	

and	 it	might	cause	the	 failure	of	 the	 load	balancing.	Therefore,	

the	speedup	will	be	 linear	even	with	more	than	2,520	GPUs	by	

processing	much	more	metagenomic	data.

Figure 3		Speedup	of	the	BLASTX-based	system	
																		for	the	number	of	CPU	cores

Figure 4		Speedup	of	the	GHOSTM-based	
																		system	for	the	number	of	GPUs
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	 For	analyzing	metagenomic	data	obtained	from	a	next	

generation	sequencer	in	real	time,	we	developed	a	new	efficient	

GPU-based	homology	 search	program	GHOSTM	and	a	 large-

scale	automated	computing	pipeline	which	enable	us	to	utilize	

huge	computational	resources	on	TSUBAME2.

The	 results	of	 the	experiment	with	whole	TSUBMAME2	system	

indicate	the	pipeline	can	process	genome	information	obtained	

from	a	single	run	of	next	generation	sequencers	in	a	few	hours.	

We	believe	our	pipeline	will	 accelerate	metagenome	analysis	

with	next	generation	sequencers.	
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Simulating seismic wave propagation is important for the study of earthquake sources, the generation of strong 
ground motions and the excitation of large tsunamis. We describe methods for accelerating large-scale f inite-
difference time-domain simulation of the seismic wave propagation by the use of graphics processing units (GPUs). 
We then present examples of the wave-filed from the 2011 Tohoku-Oki earthquake simulated by using the GPUs 
of TSUBAME supercomputer. The simulated wave-f ield exhibits strongly complex pattern reflecting the source 
complexity and the heterogeneities around the source region.
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	 The	Tohoku-Oki	earthquake	on	March	11,	2011	 (MJMA	

9.0;	 Fig.	 1)	generated	 strong	 shaking	 reaching	 the	maximum	

intensity	 (seven)	on	 the	 JMA’s	 scale	 and	caused	devastating	

tsunamis	with	 run-up	heights	exceeding	30	m.	15,845	people	

were	 lost,	and	3,368	people	are	still	missing	 (January	27,	2012).	

Such	magnitude	9	earthquake	was	not	expected	to	occur	along	

the	plate	 interface	off	 the	northeastern	 Japan.	Thus	 it	 is	 very	

important	to	study	this	event	for	understanding	the	geophysical	

condition	of	 the	generation	of	mega-thrust	 earthquake,	 the	

characteristics	of	 the	 induced	strong	ground	motions,	and	the	

mechanism	of	the	excitation	of	the	large	tsunamis.

	 The	ground	motion	 records	of	 this	 event	 are	quite	

important	data	 for	 the	quantitative	studies	on	 the	earthquake	

source	and	 the	 induced	damages.	However,	modeling	of	 the	

ground	motions	is	not	a	simple	task	because	of	the	strong	lateral	

heterogeneity	 in	and	around	the	Japan	trench:	steeply	varying	

topography,	oceanic	water	 layer,	 thick	 sediments,	 crust	with	

varying	 thickness	and	subducting	oceanic	plate	can	all	 affect	

the	seismic	waves	radiated	from	suboceanic	earthquakes.

	 The	modeling	of	 the	ground	motion	 induced	by	 this	

event	 is	 a	 computational	 challenge:	 large	memory	 size	 and	

fast	computing	devices	are	 required	because	 the	huge	source	

size	of	the	earthquake	 imposes	a	very	 large	domain	size	for	the	

simulation.

	 In	 this	 paper	we	 review	our	 3-D	 f inite-dif ference	

time	domain	 (FDTD)	method	 [1-3].	 In	order	 to	simulate	 the	wave	

propagation	with	a	 large	grid	size,	we	adopt	the	GPU	(graphics	

processing	unit)	 computing	 to	our	 finite-difference	program.	

We	 then	present	 the	 results	 of	 the	 simulation	 of	 the	wave	

propagation	based	on	a	preliminary	source	model	of	 the	2011	

Tohoku-Oki	earthquake.

	 We	 apply	 the	 time	domain,	 staggered-grid	 three-

dimensional	finite-difference	scheme	[4].		The	components	of	the	

particle	velocity	(vi;	 i=x,	y,	z)	and	the	stress	tensor	(τij;	 i,	 j=x,	y,	z)	

are	the	 field	variables.	We	use	three	material	parameters	 (Lamé	

coefficients	 and	density)	 as	we	assume	 isotropic	 and	elastic	

material	 for	 the	simulation.	Thus	 twelve	variables	are	assigned	

Introduction 1

Finite-diference time domain method 2

Figure 1		
Aftershock	distribution	of	the	2011	Tohoku-Oki	earthquake.	
The	epicenters	of	earthquakes	(MJMA ≧ 4.0)	from	
Mar.	09,	2011	to	Apr.	11,	2011	(JST)	are	shown.	
Earthquakes	with	magnitude	larger	than	or	equal	to	7	are	
shown	by	red	stars.	Hypocentral	data	determined	by	
Japan	Meteorological	Agency	are	used.

GPU-Accelerated Large-Scale 
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with	1408	nodes	and	4224	of	NVIDIA	M2050	GPUs,	 and	has	a	

peak	performance	of	2.4	PFlops	 (peta-flops).	 It	 is	 ranked	as	 the	

world	 fifth	 fastest	 supercomputer	 in	 the	November	2011	TOP-

500	list	(www.top500.org).

Memory optimization

	 The	GPU	 is	characterized	by	 its	hundreds	of	cores	 for	

arithmetic	 instructions	 (Fig.	3):	we	need	 to	provide	 sufficient	

amount	of	 data	 to	 these	 cores.	 The	bandwidth	of	 the	main	

memory	 (called	 “global	memory”	 in	NVIDIA	GPUs)	connected	

to	 the	GPU	 is	much	 faster	 than	 that	 of	 the	memory	 system	

connected	to	the	conventional	CPUs.	However,	400	to	600	clock	

cycles	of	memory	 latency	 still	occurs	 in	 transferring	 the	data	

between	the	global	memory	and	the	GPU.	 It	 is	 thus	critical	 for	

performance	to	optimize	the	memory	manipulation	in	memory-

intensive	applications	 such	as	 the	 simulation	of	 seismic	wave	

propagation.	Therefore,	we	use	 the	 fast	 (but	 small)	memories	

in	 the	GPU,	 the	registers 	 and	 the	shared	memory,	 as	 software	

managed	 cache	memories	 to	 reuse	 the	 data	 and	hence	 to	

reduce	the	data	transfer	from	the	global	memory	[1,	6-9]	(see	Fig.	4	

for	the	method).

	 In	order	to	reduce	the	access	to	the	global	memory,	we	

define	the	material	parameters	only	at	the	center	of	the	unit	cell.	

The	material	parameters	at	the	grid	points	for	particle	velocities	

and	shear	 stresses	are	computed	by	using	 the	values	defined	

at	 the	center	of	 the	unit	cells	at	every	 time	steps.	The	unified	

implementation	method	[5]	allows	us	to	compute	the	appropriate	

values	of	 the	material	parameters.	We	 further	use	 the	 look-up	

table	method	 for	 the	material	parameters.	 In	addition	to	 these	

techniques	we	optimize	the	number	of	grid	points	(i.e.,	the	block	

size)	assigned	to	a	single	execution	unit	(called	a	multiprocessor),	

	 The	GPU	 (graphics	processing	unit)	 is	 a	 remarkable	

device	 for	 i t s 	many-core	 architec ture	 and	 high	memory	

bandwidth	(Fig.	3).	The	GPU	delivers	extremely	high	computing	

per formance	 at	 a	 reduced	 power	 and	 cost	 compared	 to	

conventional	 central	processing	units	 (CPUs).	 The	 simulation	

of	 seismic	wave	propagation	 is	 a	 typical	memory-intensive	

problem	which	involves	a	large	amount	of	data	transfer	between	

the	memory	 and	 the	 arithmetic	 units,	while	 the	number	of	

arithmetic	operations	 is	 relatively	 small.	 This	 is	 the	 reason	we	

adopt	 the	GPU	computing	 to	 the	 simulation	of	 seismic	wave	

propagation:	it	can	benefit	from	the	high	memory-bandwidth	of	

the	GPUs.

	 We	use	 the	TSUBAME	2.0 	 supercomputer	 in	Global	

Scientific	 Information	and	Computing	Center,	Tokyo	 Institute	of	

Technology,	 for	 the	seismic	wave	simulation	employed	 in	 this	

paper.	The	TSUBAME	2.0	 is	a	 large-scale	GPU	cluster	equipped	

GPU computing 3

Figure 2		A	single	unit	cell	of	the	staggered	grid.	
																	Open	symbols	denote	the	variables	that	belong	
																	to	the	neighboring	cells	[2].

Figure 3		A	simplified	diagram	of	a	
																		GPU	(NVIDIA	M2050)	used	in	this	study.	
																		A	single	GPU	has	14	processors	(multiprocessors)
																		and	a	single	multiprocessor	has	32	processor	cores.	
																		Thus	448	processor	cores	are	integrated	in	a	GPU.
																		The	size	of	the	global	memory	is	3	GB.

to	 a	unit	 cell	 (i.e.,	 a	heterogeneous	 formulation:	 Fig.	 2).	 The	

accuracies	of	 finite-differences	are	 fourth-order	 in	 space	and	

second-order	 in	 time,	 respectively.	 In	order	 to	 incorporate	 the	

effects	due	to	heterogeneities	and	irregularities	in	the	structure,	

we	have	adopted	an	approach	to	model	structures	with	both	of	

the	land	and	ocean	topography	and	heterogeneity	in	3D	seismic	

modeling	with	 the	 finite-difference	method	 [5].	 The	approach	

unifies	the	implementation	for	irregular	free-surface	and	that	for	

irregular	liquid-solid	interface.
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because	the	memory	transfer	rate	is	better	for	grouped	memory	

transaction	using	blocks	of	proper	size	 (typically	16	to	64)	 than	

that	for	serialized,	one-by-one	memory	transaction.

	 Fig.	 5	 shows	 the	 per formance	 of	 the	 (multi-GPU-

capable)	 FDTD	 program	 executed	 on	 a	 single -GPU.	 As	 a	

comparison	we	 show	 the	per formance	of	 a	 FDTD	program	

executed	on	the	host	CPUs.	Note	that	this	example	for	CPU	does	

not	 involve	MPI	 inter-node	communications:	 the	program	 is	

parallelized	with	OpenMP	and	executed	on	a	single	node.	For	

these	programs,	 the	performance	of	 a	 single	GPU	 is	 roughly	

three-fold	faster	than	that	of	a	single	node	(2	CPUs,	12	cores).

Parallel computing with multi-gpus

For	parallel	 computing	with	multi-GPUs,	we	decompose	 the	

FDTD	domain	 into	subdomains	and	allocate	a	single	subdomain	

to	a	 single	GPU.	 This	 is	necessary	 for	 large-scale	 simulations	

because	the	size	of	the	global	memory	of	a	GPU	is	not	large	(e.g.,	

3	GB	 in	the	case	of	NVIDIA	M2050).	We	here	use	the	MPI	 library	

for	our	parallel	FDTD	program.	

	 In	 the	parallel	 computing	we	need	 to	exchange	 the	

data	 in	the	ghost	zones	between	the	neighboring	subdomains.	

We	adopt	 the	three-dimensional 	 (3D)	domain	decomposition	

(Fig.	6).	Here	we	note	 that,	 in	GPU	computing,	 the	data	within	

the	ghost	 zones	 in	 the	GPU	memory	must	be	once	copied	 to	

the	host	memory	 in	order	 to	exchange	 them	with	other	GPUs	

installed	on	the	other	nodes	 (see	Fig.	3).	Thus	 in	decomposing	

the	domain,	we	use	dedicated	memory	buffers	 for	 the	ghost	

zones	 to	 improve	 the	 data	 transfer	 rate	 between	 the	GPU	

memory	and	the	host	memory	[1,3].

	 We	also	overlap	the	procedures	for	the	communication	

and	 the	computation	 to	 reduce	 the	 total	processing	 time.	 In	

our	program	we	 first	compute	 for	 the	grid	points	at	and	near	

the	 sides	of	 the	 subdomains	 for	ghost	point	exchange.	Then	

we	start	 the	exchange	procedure	 for	 the	ghost	points	and	the	

computations	for	the	internal	grid	points	simultaneously.

	 With	these	optimizations,	 the	performance	of	our	3D	

FDTD	program	scales	well	with	 the	 increasing	number	of	GPUs	

(Fig.	7):	by	using	400	nodes	of	the	TSUBAME	supercomputer	and	

under	the	condition	of	2	GPUs	activated	per	a	node,	a	very	high	

single-precision	performance	of	 about	50	TFlops	 is	 achieved	

in	the	case	of	800	GPUs	(85 %	of	the	complete	scalability).	Even	

higher	performance	of	about	61	TFlops	(69	% )	is	achieved	in	the	

case	of	1200	GPUs	under	the	condition	of	3	GPUs	per	a	node	[3].

Figure 4		
Illustrations	showing	the	usage	of	the	shared	memory	and
registers.	(a)	All	the	variables	in	the	whole	subdomain	is	stored	in	
the	global	memory	in	the	GPU.	We	further	copy	the	variables	on	a	
chosen	level	into	the	small,	two-dimensional	(2D)	blocks	assigned	
in	the	shared	memory.	We	assign	a	single	thread	to	each	unit	cell.	
Thick	blue	arrow	denotes	the	marching	direction	of	the	
computation.	(b)	Illustration	of	grid	points	for	the	finite-difference.	
Values	on	red	points	are	stored	in	shared	memory	and	those	
on	gray	point	in	registers.	To	the	variables	not	on	the	2D	plane,	
only	“vertical”	finite-differences	are	operated	so	that	they	are	not	
required	to	be	shared	among	different	threads.	
When	the	computation	proceeds	to	the	next	level,	the	variables	in	
the	shared	memory	are	copied	to	the	registers	and	vice	versa.	
This	reduces	the	data	transfer	from	the	global	memory.

Figure 5	
Performance	of	GPU	and	CPU	in	GFlops.	
A	single	GPU	is	used	to	execute	the	(multi-GPU-capable)	
FDTD	program	with	a	domain	size	of	320×320×320.	
On	CPUs	we	parallelized	a	Fortran	source	code	by	using	
OpenMP	with	1D	domain	decomposition,	compiled	it	by	PGI	
Fortran	compiler	with	"-fastsse"	option,	and	executed	the	
program	on	a	single	host	node	with	12	cores	(2	CPUs)	in	total.
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	 The	aftershock	distribution	of	 the	2011	Tohoku-Oki	

earthquake	 indicates	 the	approximate	source	area	 (i.e.,	 size	of	

the	 fault)	of	 about	500	 km	 long	and	200	 km	wide.	We	use	a	

preliminary	 source	model	determined	by	ourselves	 [10]	 for	 the	

results	shown	 in	 this	paper.	The	preliminary	source	model	was	

determined	by	using	waveform	data	 recorded	at	world-wide	

Simulation of Tohoku-Oki earthquake 4

Figure 6	
Schematic	illustration	of	the	3D	domain	decomposition.	
Blue	regions	indicate	the	ghost	zones.

Figure 7	
Weak	scaling	curve	of	Multi-GPU	case	on	TSUBAME–2.0.	
The	subdomain	size	was	fixed	to	320	×	320×320.	
The	total	number	of	subdomains	 is	equal	to	the	number	of	used	
GPUs.	The	numbers	of	unit	cells	are	also	shown	for	several	points.	
The	experiments	were	performed	with	2	GPUs	per	a	node,	except	
in	the	case	of	1200	GPUs	that	was	performed	with	3	GPUs	per	a	
node.

stations	that	are	far	from	the	source	region	and	hence	the	model	

represents	 long-wavelength	 feature	of	 the	source.	The	source	

model	consists	of	point	sources	distributed	on	the	grid	points	

(23 × 11)	on	the	fault	plane	with	a	spacing	of	about	20	km.	We	

compile	 several	detailed	structure	models	 [11-14]	 in	and	around	

the	northeastern	Japan	region	to	construct	the	3D	model	for	the	

simulation.	The	3D	model	incorporates	the	irregular	topography	

of	 the	 land	and	ocean	area,	ocean	water	 layer,	sediments,	crust	

and	subducting	plates.	For	 the	example	shown	here	we	were	

required	 to	use	1000	GPUs	 (334	nodes)	of	 the	 TSUBAME	2.0	

supercomputer.	This	 is	about	24%	of	the	entire	resources	of	 the	

TSUBAME	2.0.	 The	 FDTD	parameters	 are	 as	 follows:	 the	grid	

spacing	0.15	km,	the	time	 increment	0.005	s,	 the	grid	size	6400	

×	3200	×	1600,	time	steps	44000,	and	the	maximum	frequency	

0.61	Hz.

	 Fig.	8	and	9	show	the	snapshots	of	the	ground	motion	

(particle	velocity)	computed	 for	 the	preliminary	source	model	

of	 the	2011	Tohoku-Oki	earthquake	 [2].	 The	ground	motions	at	

the	 free-surface	 in	 the	 land	area	and	at	 the	 solid	 side	of	 the	

ocean	bottom	 in	 the	oceanic	area	are	visualized	 in	color	scale.	

Although	not	visualized,	the	propagation	of	the	pressure	waves	

within	the	ocean	water	 layer	 is	also	modeled	 in	 the	simulation.	

We	are	able	to	observe	strong	 interference	due	to	the	complex	

source	model	and	the	heterogeneous	structure.	The	complexity	

is	especially	 significant	 in	 the	 later	part	of	 the	simulation.	 It	 is	

also	 remarkable	 that,	 from	about	130	 s	 to	170	 s,	 regions	with	

strong	positive	motion	(red)	and	negative	motion	(blue)	emerge	

near	the	coast	of	the	Fukushima	prefecture	(Fig.	9,	yellow	circle).	

Motions	 in	 the	 regions	overwhelm	the	wave-field	propagated	

from	around	 the	epicenter,	 and	 largely	distort	 the	pattern	of	

the	wave	propagation.	The	source	 that	provides	 this	 feature	 is	

the	relatively	 large	slip	near	the	Fukushima	prefecture	retrieved	

in	 the	 source	model	 [2].	 Such	a	 feature	was	 also	observed	 in	

the	 strong	ground	motion	 records	 and	 the	 strong-motion-

generation-areas	 (SMGAs)	were	 identified	below	 the	coast	of	

Miyagi	 to	Fukushima	prefectures	 [15].	These	characteristics	must	

be	studied	 further	 in	the	 future	analysis,	with	 improvements	 in	

the	source	model	as	well	as	in	the	3D	structure	model.
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Figure 8	
Snapshots	of	 the	simulated	wave-field.	The	vertical	component	
of	the	particle	velocity	is	visualized	with	color	scale.	Red	and	blue	
colors	denote	upward	and	downward	motions,	respectively.	
From	left	 to	 right,	 top	to	bottom	the	snapshot	at	10	s	after	 the	
onset	of	the	rupture,	at	30	s,	50	s,	70	s,	90	s,	and	110	s,	respectively,	
are	shown.

Figure 9	
Same	as	Fig.	8	but	for	snapshots	at	130	s,	150	s,	170	s	and	190	s.

	 In	order	 to	 simulate	 the	wave	propagation	 from	the	

2011	 Tohoku-Oki	 earthquake,	we	 constructed	 a	preliminary	

3D	 structure	model	 for	 the	 nor theastern	 Japan	 region	 by	

compil ing	 the	models	 for	 topography,	 sediments , 	 crust ,	

and	 subducting	plates.	We	 adopted	 the	GPU	 computing	 to	

accelerate	 the	 large-scale	 finite-dif ference	 simulation	of	 the	

seismic	wave	propagation.	By	using	about	24%	of	the	resources	

of	 the	GPU	supercomputer,	TSUBAME	2.0,	at	Tokyo	 Institute	of	

Technology,	 Japan,	we	are	now	able	 to	 simulate	 the	 seismic	

wave	propagation	from	the	source	of	the	huge	fault	plane	up	to	

Conclusion 5
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0.61	Hz	within	a	 tolerable	computation	 time.	The	snapshots	of	

simulated	wave-field	exhibit	strongly	complex	pattern	because	

of	 the	 complex	 source	model,	 the	 irregular	 topography	and	

the	 shallow	heterogeneities.	 Such	effect	must	be	considered	

in	 improving	the	source	model,	 the	3D	structure	model,	and	 in	

the	 future	quantitative	study	on	 the	observed	ground	motion	

records.

Acknowledgements

We	are	grateful	 to	 the	researchers	who	provided	the	structural	

models.	We	are	also	grateful	 to	Global	 Scientific	 Information	

and	Computing	Center	(GSIC),	Tokyo	Institute	of	Technology,	for	

providing	opportunity	 (Grand	Challenge)	 to	use	 large	number	

of	nodes	of	TSUBAME.	This	 research	was	partially	supported	by	

Grant-in-Aid	 for	Scientific	Research	 (KAKENHI	23310122)	 from	

Japan	Society	for	the	Promotion	of	Science	(JSPS).

References

[1]	 Okamoto, 	 T. , 	 Takenaka, 	 H. , 	 Nakamura, 	 T. 	 and	 Aok i , 	 T.	

“Accelerating	 large-scale	 simulation	 of	 seismic	wave	

propagation	by	multi-GPUs	and	three-dimensional	domain	

decomposition”,	Earth,	Planets	and	Space,	vol.	62,	no.	12,	pp.	

939-942	(2010).

[2]	 Okamoto,	 T. , 	 Takenaka,	 H. , 	 Nakamura,	 T. , 	 and	 Aoki, 	 T.	

"Large-scale	 simulation	of	 seismic-wave	propagation	of	

the	2011	Tohoku-Oki	M9	earthquake",	Proceedings	of	 the	

International	Symposium	on	Engineering	Lessons	Learned	

from	 the	2011	Great	 East	 Japan	Earthquake,	pp.	349-360	

(2012).

[3]	 Okamoto,	T.,	Takenaka,	H.,	Nakamura,	T.	and	Aoki,	T.	 “GPU-

accelerated	 simulation	of	 seismic	wave	propagation”,	 in	

GPU	 Solutions	 to	Multi-scale	 Problems	 in	 Science	 and	

Engineering,	Yuen,	D.,	Wang,	J.,	 Johnsson,	L.,	Chi,	C.-H.,	Shi,	

Y.	(Eds.),	250	pp.,	Springer,	in	press.

[4]	 Graves,	R.	W.	 “Simulating	seismic	wave	propagation	 in	3D	

elastic	media	using	staggered-grid	 finite	differences”,	Bull.	

Seism.	Soc.	Am.,	vol.	86,	pp.	1091-1106	(1996).

[5]	 Takenaka,	H.,	Nakamura,	T.,	Okamoto,	T.	and	Kaneda,	Y.	 “A	

unified	approach	 implementing	 land	and	ocean-bottom	

topographies	 in	 the	 staggered-grid	 f inite -dif ference	

method	 for	 seismic	wave	modeling”,	 Proc.	 9th	 SEGJ	 Int.	

Symp.,	CD-ROM	Paper	No.37	(2009).

[6]	 Abdelkhalek,	R.,	Calandra,	H.,	Coulaud,	O.,	Roman,	 J.	 and	

Latu,	G.	 “Fast	seismic	modeling	and	reverse	time	migration	

on	 a	 GPU	 cluster ”, 	 International	 Conference	 on	 High	

Performance	Computing	&	Simulation,	pp.	36-43	(2009).

[7]	 Micikevicius,	P.	 “3D	 finite-difference	computation	on	GPUs	

using	CUDA”,	GPGPU-2:	 Proc.	 2nd	Workshop	on	General	

Purpose	Processing	on	Graphics	Processing	Units,	pp.	79-

84,	Washington	DC,	USA	(2009).

[8]	 Michéa,	 D.	 and	 Komatitsch,	 D.	 “Accelerating	 a	 three-

dimensional	finite-difference	wave	propagation	code	using	

GPU	graphics	 cards”,	Geophys.	 J.	 Int.,	 doi:	 10.1111/j.1365-	

246X.2010.04616.x	(2010).

[9]	 Okamoto,	 T.,	 Takenaka,	H.	 and	Nakamura,	 T.	 “Simulation	

of 	 se ismic	 wave	 propagat ion	 by	 GPU”, 	 Proceedings	

of	 symposium	 on	 advanced	 computing	 systems	 and	

infrastructures,	pp.	141-142	(2010).

[10]	 Okamoto,	 T. , 	 Takenaka,	 H. , 	 Hara,	 T. , 	 Nakamura,	 T. 	 and	

Aoki,	T.	 “Rupture	Process	And	Waveform	Modeling	of	The	

2011	 Tohoku-Oki,	Magnitude-9	 Ear thquake”,	 American	

Geophysical	Union,	Fall	Meeting,	U51B-0038,	San	Francisco,	

USA	(2011).

[11]	 Kisimoto,	K.	“Combined	bathymetric	and	topographic	mesh	

data:	 Japan250m.grd”,	Geological	Survey	of	 Japan,	Open-

file	Report,	No.	353	(1999).

[12]	 Fujiwara,	 H.,	 Kawai,	 S. ,	 Aoi,	 S. ,	Morikawa,	N.,	 Senna,	 S. ,	

Kudo,	N.,	Ooi,	M.,	Hao,	K.	X.-S.,	Hayakawa,	Y.,	 Toyama,	N.,	

Matsuyama,	H.,	 Iwamoto,	K.,	Suzuki,	H.	and	Liu,	Y.	 “A	study	

on	subsurface	structure	model	for	deep	sedimentary	layers	

of	 Japan	 for	 strong-motion	evaluation”,	 Technical	Note	

of	 the	National	Research	 Institute	 for	 Earth	Science	and	

Disaster	Prevention,	No.337	(2009).

[13]	 Baba,	T.,	Ito,	A.,	Kaneda,	Y.,	Hayakawa,	T.	and	Furumura,	T.	“3-D	

seismic	wave	velocity	 structures	 in	 the	Nankai	and	Japan	

Trench	 subduction	 zones	 derived	 from	marine	 seismic	

surveys”,	Abstr.	 Japan	Geoscience	Union	Meet.,	 S111-006,	

Makuhari,	Japan	(2006).

[14]	 Nakamura,	T.,	Okamoto,	T.,	 Sugioka,	H.,	 Ishihara,	Y.,	 Ito,	A.,	

Obana,	K.,	Kodaira,	S.,	Suetsugu,	D.,	Kinoshita,	M.,	Fukao,	Y.	

and	Kaneda,	Y.	 “3D	FDM	simulation	 for	very-low-frequency	

earthquakes	off	Kii	Peninsula”,	Abstr.	Seism.	Soc.	Japan,	P1-

06,	Hiroshima,	Japan	(2010).

[15]	 Kurahashi,	S.	and	 Irikura,	K.	 “Source	model	 for	generating	

strong	ground	motions	during	the	2011	off	the	Pacific	coast	

of	Tohoku	earthquake”,	Earth	Planets	Space,	Vol.	63,	571-576	

(2011).



17

● TSUBAME e-Science Journal No.6
Published	07/31/2012	by	GSIC,	Tokyo	Institute	of	Technology	©
ISSN	2185-6028
Design	&	Layout:	Kick	and	Punch
Editor:	 TSUBAME	e-Science	Journal	-	Editorial	room
	 Takayuki	AOKI,	Thirapong	PIPATPONGSA,
	 Toshio	WATANABE,	Atsushi	SASAKI,	Eri	Nakagawa
Address:		2-12-1-E2-1	O-okayama,	Meguro-ku,	Tokyo	152-8550
Tel:		 +81-3-5734-2087　Fax:		+81-3-5734-3198		
E-mail:		 tsubame_j@sim.gsic.titech.ac.jp
URL:		 http://www.gsic.titech.ac.jp/



International Research Collaboration

Application Guidance

Inquiry

Please see the following website for more details.
http://www.gsic.titech.ac.jp/en/InternationalCollaboration

The high performance of supercomputer TSUBAME has been extended to the 
international arena. We promote international research collaborations using 
TSUBAME between researchers of Tokyo Institute of Technology and overseas 
research institutions as well as research groups worldwide.

Recent research collaborations using TSUBAME

1. Simulation of Tsunamis Generated by Earthquakes using Parallel
　Computing Technique

2. Numerical Simulation of Energy Conversion with MHD Plasma-fluid Flow

3. GPU computing for Computational Fluid Dynamics

Candidates to initiate research collaborations are expected to conclude 
MOU (Memorandum of Understanding) with the partner organizations/
departments. Committee reviews the “Agreement for Collaboration” for joint 
research to ensure that the proposed research meet academic qualifications 
and contributions to international society. Overseas users must observe 
rules and regulations on using TSUBAME. User fees are paid by Tokyo Tech’s 
researcher as part of research collaboration. The results of joint research are 
expected to be released for academic publication.




