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Semidef inite programming (SDP) is one of the most impor tant problems among optimization problems at 
present. It is relevant to a wide range of f ields such as combinatorial optimization, structural optimization, 
control theory, economics, quantum chemistry, sensor network location and data mining. The capability to solve 
extremely large-scale SDP problems will have a significant effect on the current and future applications of SDP. In 
1995, Fujisawa et al. started the SDPA (Semidefinite programming algorithm) Project aimed at solving large-scale 
SDP problems with high numerical stability and accuracy. SDPA is one of the main codes to solve general SDPs. 
SDPARA is a parallel version of SDPA on multiple processors with distributed memory, and it replaces two major 
bottleneck parts (the generation of the Schur complement matrix and its Cholesky factorization) of SDPA by their 
parallel implementation. In particular, it has been successfully applied to combinatorial optimization and truss 
topology optimization. The new version of SDPARA (7.5.0-G) on a large-scale supercomputer called TSUBAME 2.0 [12] 
at the Tokyo Institute of Technology has successfully been used to solve the largest SDP problem (which has over 1.48 
million constraints), and created a new world record. Our implementation has also achieved 533 TFlops in double 
precision for large-scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs. [1]

Katsuki Fujisawa*  Toshio Endo**
*Chuo University & JST CREST　**Tokyo Institute of Technology & JST CREST

Semidefinite Programming (SDP) is a subfield of mathematical 

programming and is used to optimize an objective function over 

positive semidefinite matrices. SDP has been regarded as one of 

the most important optimization problems for several reasons. 

Solving extremely large-scale SDP problems is considered to 

be important and challenging. For example, it would be useful 

to obtain the optimal solution of the quadratic assignment 

problem (QAP), one of the most difficult NP-hard problems. If we 

could solve an SDP problem with more than 106  constraints, we 

could obtain a strong lower bound of the QAP with a problem 

size greater than or equal to 40.

 For solving SDP problems in polynomial time, the 

primal-dual interior-point method (PDIPM) [11] is well known as 

a powerful and stable method. In 1995, Fujisawa et al. started 

the SDPA Project [4] aimed at solving large-scale SDP problems 

with high numerical stabil i t y and accurac y. Semidef inite 

programming algorithm (SDPA) [4] is one of the main libraries 

for  so lv ing genera l  SDP problems that  have no sp e cia l 

structures such as a rank-1 condition, and an optimization 

software package is used along with the PDIPM for solving 

the standard SDP problem (formulation (1) in Section 2). SDPA 

incorporates special data structures for handling block diagonal 

data matrices, and efficient techniques for computing search 

directions when problems become large scale and/or sparse 
[3]. SDPA achieves good performance on a single processor [4]; 

however, when the size of an SDP problem increases, the use 

of the PDIPM introduces two major performance bottlenecks 

in each iteration, even if we exploit the sparsity of the data 

matrices: the computation of the Schur complement matrix 

(SCM) and the Cholesky factorization of the SCM.

 The semidefinite programming algorithm parallel 

version (SDPARA) [5], [6] is a parallel implementation of the SDPA 

library for multiple processor systems with distributed memory. 

In this implementation, performance bottlenecks are relaxed 

by parallelization techniques using MPI, OpenMP, ScaLAPACK 

[7], BLACS, optimized BLAS, and MUMPS [8]. Each process reads 

the input data and stores them and all variables in the process 

memor y space, while the SCM data are divided between 

processes. Thus, SDPARA can compute each row of the SCM in 

parallel, and apply the parallel Cholesky factorization provided 

by ScaLAPACK to the SCM. We have reported that SDPARA 

achieves high scalability for large-scale SDP problems [2], [5], [6] 

on supercomputers and have confirmed that SDPARA is much 

faster than other parallel implementations such as PCSDP [9] and 

PDSDP [10] when solving large-scale sparse SDP problems [5], [6]. 

By using existing SDPARA (version 7.4.0), we have successfully 

solved large-scale SDP problems with a sparse SCM and a size of

about 300,000, and created a world record in 2011 [2].

 The target of this study is highly challenging: in 

order to accommodate problems related to the QAP and truss 

topology optimization, our objective is to solve SDP problems 

with a dense SCM and a size larger than 106 . Aside from an 

increase in problem sizes, changes in the characteristics of 

problems (the density of the SCM) also pose new challenges. Let 

m be the SCM size (which equals the number of constraints) and 

n be the size of the data matrix. For the first bottleneck part

(computation of the SCM), we have previously developed an 

algorithm that decreases its time complexity O(mn3+m2n2)  to 

O(m2)   by exploiting the sparsity of the data matrix [5]. However, 

if the SCM is large and dense, the second bottleneck part 

(Cholesky factorization of the SCM), whose complexity is O(m3)  , 
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The standard form SDP is the following primal-dual form.

In this section, we explain the basic framework of the PDIPM 

on which SDPA and SDPARA are based. The most important 

theoretical aspects of the PDIPM is that it solves both primal and 

dual forms simultaneously and finds their optimal solution in 

polynomial time.

 The Karush-Kuhn-Tucker (KKT) conditions theoretically

guarantee that a point (    *,     *,     *) satisfying the system in (2) 

below is an optimal solution of (1) when the so-called Slater’s 

condition is satisfied.

dominates the entire execution time. In this study, we accelerate 

this part by using massively parallel GPUs with computational 

performance much higher than that of CPUs. In order to achieve 

scalable performance with thousands of GPUs, we utilize a high-

performance BLAS kernel along with optimization techniques 

to overlap computation, PCI-Express communication, and MPI 

communication.

 This paper describes the design and implementation 

of a new version of SDPARA (version 7.5.0-G). We have selected 

three types of large-scale SDP instances associated with recent 

applications of SDP in truss topology design, combinatorial 

optimization, and quantum chemistr y ;  however,  SDPARA 

can also achieve high performance when solving large-scale 

SDP problems in other important application areas. We have 

conducted the per formance evaluation of SDPARA 7.5.0-G 

on TSUBAME 2.0,  which is  a peta-scale GPU-accelerated 

supercomputer at the Tokyo Institute of Technology. In the 

evaluation, we solved the largest SDP problem (which has over 

1.48 million constraints), and created a new world record in 2012. 

Our implementation also achieved 533 TFlops in double precision 

for large-scale Cholesky factorization using 4,080 GPUs.

Semidefinete programming 2

Basic framework of the primal-dual
interior-point method 3

Figure 1   Largest SDP problem and its block 
 diagonal structure

We use   n for the space of  n×n symmetric matrices. The notation

                          indicates that            n is a positive semidefinite 

(positive definite) matrix. The innerproduct between                  n

and                   n  is defined by

 In most SDP applications, it is common for the input 

data matr ices   0 , . . . ,    m  to share the same diagonal block 

structure (n1,..., nh ). Each input data matrix     K ( k  = 1,...,m) consists 

of sub-matrices in the diagonal positions, as follows:

Note that                               and the variable matrices       and

share the same block structure. We define nmax as max ｛ n1,..., nh ｝.

For the blocks where            ,  the constraints of positive 

semidef initeness are equivalent to the constraints of the 

nonnegative orthant. Such blocks are sometimes called LP 

blocks.

The size of given SDP problems can be roughly measured in 

terms of five numbers:

　(1) m : the number of equality constraints in the dual form

     (which equals the size of the SCM)

　(2) n : the size of the variable matrices      and 

　(3) nmax : the size of the largest block of input data matrices

　(4) nnz : the total number of nonzero elements in all data

 matrices

 Figure 1 shows the largest SDP problem, which is solved 

in Section 6, and its block diagonal structure. The parameters m, n, 

nmax , and nnz  in this SDP problem are 1,484,406, 1,779,204, 1,682, 

and 23,476,376, respectively.
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As we have shown in Figure 2, in the PDIPM, the algorithm 

starts from a feasible or infeasible point. In each iteration, it 

computes the search direction ( d   , d    , d    )  from the current 

point towards the optimal solution, decides the step size, and 

advances by the step size in the search direction. If the current 

point reaches a small neighborhood of the optimal solution, 

the PDIPM terminates the iteration and returns the approximate 

optimal solution. The PDIPM is described in many papers (See [11] ). 

The framework we use relies on the HRVW/KSH/M approach [11], and 

we will use the appropriate norms ||・|| for matrices and vectors.

Algorithmic Framework of PDIPM
　Step 0   : Choose a feasible or infeasible initial point

                        such that

 Set the centering parameter                  , the boundary

 parameter                  , the threshold parameter           ,

 and the iteration number  s  = 0 .

　Step 1   : Compute the residuals of the primal feasibility     , the 

 dual feasibility     , and the primal-dual gap g :

　Step 3   : Maximize the step sizes ( lengths ) such that the 

 following positive definiteness conditions are satisf ied.

　Step 4   : Update the current point as follows:

 If                                            ( namely, all residuals above

 are sufficiently small ), stop the iteration and output

 (    s ,     s ,     s  ) as an approximate optimal solution.

　Step 2   : Compute the the search direction ( d   , d    , d     ).

　Step 2a : Compute the SCM     by the formula

　Step 2b : Apply the Cholesky factorization to      and obtain 

  a lower triangular matrix      such that                  .

　Step 2c : Obtain a component of the search direction d    by

 solving the equations

 for the right-hand-side vector r  computed as

 where                                  with

　Step 2d : Compute the remaining components of the search

 direction  ( d    , d      )  as follows:

 Set                   , and return to Step 1.

 Steps 2a and 2b correspond to the first and second 

bottleneck parts defined in Section 1, respectively. We shall define 

the computation in Steps 2a and 2b as ELEMENTS and CHOLESKY, 

respectively. As indicated in [5], ELEMENTS (O (mn  3+ m  2n  2) )  and 

CHOLESKY (O (m3) ) have often accounted for 80%  to 90%  of the 

total execution time of the PDIPM. Therefore, researchers have 

focused on reducing the time taken for these steps [4]. We have 

reduced the time complexity of ELEMENTS from (O  (mn 3+ m 2n 2) )  to 

O ( m2) when solving the sparse SDP problem [3].

Figure 2   Primal-dual interior-point method

A. Challenges

 A s  d e s c r i b e d a b ove,  t h e  tot a l  e xe c u t i o n  t im e 

of SDPARA is dominated by that of CHOLESK Y (Cholesk y 

factorization of SCM    ) when     is sufficiently large and dense. 

Accelerating cholesky Factorization 4
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Generally, dense matrix computation can be signif icantly 

accelerated by harnessing GPGPU computing; for example, 

Endo et al. have shown that the performance of the Linpack 

benchmark (LU factorization with pivoting) can be scalably 

increased by using more than 1200  accelerators [13]. The keys to 

scalability include

     ・ Overlapping computation on GPUs and PCI-Express (PCIe) 

 communication between GPUs and CPUs. 

     ・ Configuring the block size nb so that data reuse is promoted 

 and the amount of PCIe communication is reduced. In this 

 paper, nb = 1024 .

 While the parallel Cholesky factorization algorithm and 

Linpack have many common points, the former poses new 

challenges because of the following differences.

     ・ In each computation step, the part of the matrix to be 

 updated is the lower-triangle part, rather than a rectangle.

 Upon two-dimensional block-cyclic distribution, the shape  

 of the updated part in each process becomes more complex.

     ・ (Related to the abaove difference) The computation  amount 

 per step is halved compared to LU factorization. This makes  

 the computation / communication ratio even worse.

     ・ Cholesky factorization requires additional work called 

 ”panel transposition.”

B. Implementation and Optimization

 Hereafter, we call SDPARA whose CHOLESKY component 

is  acce ler ate d by GPUs “ SDPAR A (ver s ion 7. 5.0 - G).”  O ur 

accelerated CHOLESKY component has properties similar to 

the pdpotrf  function of ScaLAPACK. The dense matrix     , with 

a size of m  × m , is distributed among MPI processes in the two-

dimensional block-cyclic distribution with block size n b . When 

we let mb  =⎡m /nb ⎤be the number of blocks that are aligned 

in a row or a column, the CHOLESKY algorithm consists of mb  

steps. A single (k  -th) step proceeds as follows:

      ・ Diagonal block factorization:  The k  - th diagonal block is

 Cholesky-factorized locally. Then, the result block is

 broadcast to processes in the k  - th process column.

      ・ Panel factorization:  The k  - th block columns are called

 “panel”    , and the panel is factorized by using the dtrsm  

 BLAS kernel.

      ・ Panel broadcast and transposition:  We need to broadcast

     row-wise, obtain the transposition of      , and broadcast 

     t column-wise.

      ・ Update:  This is the most computation-intensive part. Each 

 process updates its own part of the rest matrix, taking the 

 corresponding part of     and     t. Let     ' be the rest matrix.

 Then     '=     '-    ×    t is computed. Thus, the DGEMM  BLAS

 kernel dominates the execution time. Note that updating 

 the lower-triangular part is sufficient; thus, we can omit the 

 computation of the unused upper part.

 The basic approaches we applied to accelerate this 

algorithm are as follows.

　1) We invoke one MPI process per GPU to drive it, and thus,

 three processes per node are invoked on TSUBAME 2.0 nodes.

　2) It is important to use the fast DTRSM  and DGEMM BLAS 

 kernels on GPUs. We used highly tuned kernels developed

 by NVIDIA, which are faster than those in the official CUBLAS

 library. The DGEMM  kernel achieves about 350 GFlops (on-

 board speed) on a M2050 GPU, while CUBLAS DGEMM 

 achieves about 300 GFlops 1.

　3) On GPU clusters, we have to decide where the datastructure 

 is located since the GPU device memory is separated from

 the host memory. In order to accommodate larger sizes of 

     , we store it on the host memory.

 Approaches 2) and 3) indicate that we need to divide the 

matrices into parts smaller than the device memory capacity 

and send the input matrices to the GPU via PCIe in order to 

perform partial computation. Of course, without overlapping 

computation and communication (as in “version 1” in Figure 3), 

the performance is strictly restricted. To ensure high  performance, 

the following optimization and configuration are adopted.

     ・ When the size of the partial matrix to be updated by a single

 GPU is r × s  , the computation cost in the “update” phase is

 O(r・s・nb) , while the communication cost is O(r・s +r・nb+s・nb). 

 To reduce the relative communication cost, the block size

 nb  should be sufficiently large. Here there is a trade-off since

 very large nb  degrades load balancing. After a preliminary 

 evaluation, we set nb  to be 1024.

     ・ In order to reduce and hide the PCIe communication cost,

 we overlap GPU computation and PCIe communication.

 With these methods (“version 2” in the figure) we can enjoy 

the accelerated performance. However, we have noticed that 

inter-node MPI communication costs still restrict the scalability. 

Although each node in TSUBAME 2.0 has a wide injection 

bandwidth (8 GB/s), the communication costs increase relatively 

when the computation is accelerated. Here, we further promote the 

overlapping policy described above; we overlap all computations, 

PCIe communication, and MPI communication (“version 3” in 

the figure). For this, the “Panel broadcast and transposition” 

and “Update” phases are reorganized; the transposed panel   t  

is divided into pieces before broadcasting, and each process 

transfers them to the GPU just after partial broadcast is completed. 

 As future improvement, we could overlap MPI communication 

for    and computation by using an optimization technique 

1  Unfortunately, the speed of 350 GFlops is still far from the theoretical peak of 515 GFlops. NVIDIA staff mention that this is because of the limitation of the architecture 
   of Fermi generation GPUs and that the speed will increase in next-generation GPUs.
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We have conducted the performance evaluation of SDPARA 

7.5.0-G with GPU-accelerated Cholesky factorization on the 

TSUBAME 2.0 supercomputer. Table I shows the problems 

considered in the evaluation; the problems have characteristics 

that lead to the SCM being dense. We used NVIDIA CUDA 4.0, 

MVAPICH2 1.5.1, and Intel compiler 11.1 as the underlying system 

software. We used BLAS kernels from NVIDIA for use on GPUs, as 

mentioned in SectionIV-B.

 We use different MPI processes for the different GPUs; 

thus, three processes run on a TSUBAME 2.0 node. A single 

process is configured to drive a GPU and three CPU cores, by 

considering the CPU affinity by using cudaSetDevice  CUDA API 

and sched_setaffinity  systemcall; for example, a process that 

uses GPU 0 in each node is bound to the cores in CPU 0. Three 

CPU cores are used in INIT, ELEMENTS, and so on, while they 

are unused in the DGEMM  or DTRSM  kernels in CHOLESKY. For 

these kernels, only GPUs are used 2 .

A. Performance of Accelerated Cholesky Factorization

 First, the measured performance for a moderate number 

of nodes is shown in Figure 4. The graph shows the speed of the 

CHOLESKY component in TeraFlops. We see that its speed for 

the QAP5  problem reaches 46.5 TFlops for 64 nodes (192 GPUs). 

This high performance is obviously impossible without GPUs 

since the theoretical peak performance of CPUs on 64 nodes is 

64 × 0.1408 = 9.01 TFlops. Compared to the peak performance 

of CPUs and GPUs (64 × 1.686 = 107.9 Tf lops),  the relative 

performance is 43.1%. This gap results from several factors, and 

the most important one is the limited performance of on-board 

DGEMM (only 68% of peak), which will be improved in next-

generation Kepler GPUs. A comparison between QAP5  and QAP4  

shows that the former shows better Flop performance since 

a larger matrix size is advantageous in CHOLESKY with O(m 3)   

computation and O(m 2)   communication.

 The graph also shows the ef fect of overlapping MPI 

communication by presenting a comparison between two 

CHOLESKY implementations: Version 3 and Version 2 described 

in Section 4 - B. By comparing QAP4/v3   and QAP4/v2  , we can see 

that the effect of overlapping increases with the larger number 

Performance evaluation 5

of nodes; the difference is 10% for 64 nodes.

 Figure 5 shows the performance of CHOLESKY on almost 

all nodes of TSUBAME 2.0 (1,360 nodes with 4,080 GPUs). For the 

QAP8   problem, where the SCM size  m  is 1,484,406, we achieve 

533TFlops, which is the maximum speed achieved to date for a 

mathematical optimization problem. As in the previous graph, 

we see that a larger problem corresponds to a higher speed.

 Since the peak performance of 1,360 nodes is 2,293 TFlops, 

the relative performance with QAP8  is 24%. This is lower than 

results shown in the previous graph. However, we note that there 

is plenty of space in the node memory owing to the optimization 

for memory usage reduction. In the case of QAP8  on 1,360 nodes, 

only 21 GB of the 54 GB memory is used per node. Thus, we can 

accommodate larger a problem with  m 〜 2, 000, 000 , which 

would further increase the speed.

Version 1   No overlapping

Version 2   GPU computation and PCIe
 communication are overlapped

Version 3   GPU computation, PCIe communication, 
 and MPI communication are overlapped

Figure 3   Several versions of the Cholesky 
 factorization algorithm

2  We made this decision on the basis of the preliminary evaluation, which showed that using both GPUs and CPUs slightly degraded the total performance.
   We consider this to be a result of the increased use of the CPU bus and memory bandwidth, which will be investigated in detail later.

cal led “ lookahead,” which has been introduced in High-

Performance Linpack [14].
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This paper described a high-performance solver, SDPARA 7.5.0-G, 

for large-scale, SDP problems. The key for high performance is 

the acceleration of Cholesky factorization by using thousands 

of GPUs. With 4,080 NVIDIA M2050 GPUs on the TSUBAME 2.0 

supercomputer, our implementation achieved 533 TFlops in 

double precision for a large-scale problem with m = 1,484,406. 

Since SDPARA is a general solver for real problems, we not only 

improved the dense matrix computation component but also 

reviewed the entire software package to eliminate bottleneck 

parts that have previously been hidden. In the review, we 

also made the following improvements: parallelization of 

the solver initialization phase (INIT) and modification of the 

data structure used for the generation of Schur complement 

matrix (ELEMENTS). With all these improvements, we have 

demonstrated that solving SDP problems with  m > 106  is now 

possible on modern accelerated supercomputers.
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With the advance of computers, large-scale and high-speed computations have become possible. In recent 
years, the application of GPU to scientif ic computations is a hot topic in computer science. We can investigate 
the phenomena such as phase transitions starting from the microscopic models in the framework of statistical 
mechanics. As a numerical approach to deal with many-body problems, the Monte Carlo simulation is widely used. 
Among the algorithms of Monte Carlo methods, the cluster-flip Monte Carlo method is a very efficient one, but the 
parallelization of the cluster-flip Monte Carlo method is not straightforward. In this paper, we describe the massive 
and fast GPU computation of Swendsen-Wang multi-cluster algorithm for classical spin systems. Especially, we 
implement the algorithm for multiple GPUs on the system of TSUBAME 2.0, and we realize the fast and large-scale 
computations.

Yukihiro Komura*  Yutaka Okabe*
*Department of Physics, Tokyo Metropolitan University

When we see the materials surrounding us from the microscopic 

viewpoint (atomic level),  they are composed of atoms or 

molecules of the order of Avogadro’s number (6×1023). It is well 

known that water, for example, takes three states of matter, 

gases, liquids, and solids.  The phenomenon that the state 

transforms with the change of macroscopic variables, such as 

temperature and pressure, is called phase transition. Statistical 

mechanics is a probabilistic approach to describe the laws 

of physics  among  macroscopic variables, such as pressure, 

volume, temperature, and so on, starting from the microscopic 

world. We can discuss the phase transition from the microscopic 

level. When we consider the phase transition in statistical 

mechanics ,  i t  is  rather easy to treat the magnetic phase 

transition. Magnetic materials such as iron lose the properties of 

magnets when the temperature increases.

 The simplest model of classical spin systems to deal 

with the magnetic phase transition is the Ising model (Fig.1). On 

the lattice sites, the spin (microscopic magnet) Si is placed, and 

the spin takes up or down direction. As a variable, Si takes ±1.  

The Hamiltonian (energy) of the Ising model is given by

Here, kb is the Boltzmann constant, and the summation of {Si} 

is taken over all the configurations. To take all the possible spin 

configurations means that when dealing with the Ising system 

of only 2500 spins,   the computational amount reaches 22500 

= 10752; the direct calculation needs an enormous amount of 

time. In the case of systems with no interaction such calculation 

of Boltzmann average may become simple, but systems with 

interaction cannot be simplified except for special cases.

 Thus, the probabilistic Markov Chain Monte Carlo 

simulation has developed as a numerical technique in the 

field of statistical mechanics. In the Markov Chain Monte Carlo 

algorithm, the method to generate states with the probability 

of the Boltzmann distribution, Eq. (2), is called Metropolis 

method [1]. If such states are generated, we can calculate the 

thermal average of a physical quantity at a certain temperature 

Introduction 1

The multiple GPU calculation
for the classical spin model

Here, J (>0) is the coupling constant, and the summation is taken 

over the nearest neighbor pairs <i,j>. The energy is equal to -J 

if the spin on the lattice site i and the nearest neighbor spin are 

parallel, and the energy becomes +J if the two spins are anti-

parallel. The important thing is that the local energy depends 

on the values of the two spins, which means that there is an 

interaction. 

 When the temperature dependence of physical 

quant i t ies  is  considered in the f ramework of  s tat is t ica l 

mechanics, we take an average that depends on temperature 

(Boltzmann average).  For example, the total energy of the 

system at a certain temperature T can be calculated through

Figure 1   The Ising model on the two-dimensional
 square lattice
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Let us star t with explaining the cluster- f l ip Monte Car lo 

method. This algorithm is an algorithm that the clusters of 

the spins are generated and then the spins in each cluster 

are updated at once. The cluster-f lip algorithm successfully 

reduced the problem of slow dynamics. In this paper, we deal 

with the multi-cluster-f lip algorithm proposed by Swendsen 

and Wang (SW) [2]; they applied the Fortuin and Kasteleyn [6] 

representation to identify clusters of spins. 

Cluster-flip Monte Carlo algorithm 2

by taking a simple average.  But the Metropolis method suffers 

from the problem of slow dynamics that it takes a long time 

to equilibrate, for example, at the temperature range near 

the phase transition point. To overcome this difficulty, several 

algorithms, such as the cluster spin-flip algorithm [2,3] and multi-

canonical algorithm [4], have been proposed.

 It goes without saying that the simulation is performed 

on the computer; the development of computer has changed 

the role of simulation. The drastic progress of the computational 

speed has made possible to treat larger system sizes, and 

more realistic and more complex systems become subjects of 

simulation. At the same time, the development of numerical 

techniques ranging from the computational algorithm to the 

analysis method has been the matter of research all the time.

 In recent years ,  the application of GPU (graphic 

processing unit) to scientific computations has been a hot topic 

in computer science.  If we can efficiently use the system of 

TSUMABE 2.0, a drastic advance in the field of simulation can be 

expected.

 As a Monte Carlo simulation of spin systems using 

GPUs,  Preis  et  a l . [5 ] repor ted the GPU calculat ion of  the 

Metropolis method, and the drastic speed-up of the calculation 

over the CPU calculation was realized. The Metropolis simulation 

for systems with short-range interaction is a problem of local 

computation, and the parallelization is rather simple. Instead, 

the cluster-f lip method is a non-local computation, and the 

parallelization is not straightforward. We have succeeded in 

realizing the GPU-based calculation for cluster-f lip method; 

fast and large-scale computations of the cluster-f lip Monte 

Carlo method are highly desired. In this paper,  we explain the 

calculation of cluster-flip Monte Carlo method using a single 

GPU and that using multiple GPUs, and the performance of our 

algorithm on the TSUBAME 2.0 is reported.

Figure 2   The procedure of the SW multi-cluster algorithm

 The procedure of the SW multi-cluster algorithm 

consists of three steps, which is shown in Fig. 2. One spin locates 

in one mesh in Fig. 2, and the spin variables Si are expressed as Si 

= 0, 1. There are three main steps in the SW algorithm:

　(1) Construct a bond lattice of active or non-active bonds

  depending upon the temperature. 

　(2) The active bonds partition the spins into clusters which are

  identified and labeled using a cluster-labeling algorithm.

　(3) All spins in each cluster are set randomly to 0 or 1.

The procedure from the step (1) to the step (3) is repeated, which 

is regarded as one Monte Carlo Step. The Hoshen-Kopelman 

algorithm [7], which is a special version of the class of union-and-

find algorithms [8], is often used for an efficient cluster-labeling 

algorithm. Integer labels are assigned to each spin in a cluster. 

Each cluster has its own distinct set of labels. The proper label 

of a cluster, which is defined to be the smallest label of any spin 

in the cluster, is found by the following function. The array label 

is used, and if label is a label belonging to a cluster, label[label] 

is the index of another label in the same cluster which has a 

smaller value if such a smaller value exists. The proper label for 

the cluster is found by evaluating label[label] repeatedly until 

the label[label] is unchanged. 

The multiple GPU calculation
for the classical spin model
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Table 1   The computational times per one Monte Carlo 
 Step (millisecond) for the two-dimensional Ising
 model at the critical temperature with a CPU and
 a single GPU.
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When we extend the CPU calculation to the GPU calculation, we 

should keep in mind to change the algorithm from a sequential 

computation to a parallel computation. This shift is very important 

to realize the GPU calculation. In the SW multi-cluster algorithm 

with GPU, the procedure from the step (1) to the step (3) remains 

unchanged. Thus, we check whether the SW multi-cluster 

algorithm with CPU is directly applicable to that with GPU. In the 

step (1), each bond can be generated independently. In the step 

(2), the method of cluster labeling with CPU cannot directly be 

applied to the single GPU calculation since the HK algorithm is a 

sequential computation. In the step (3), each spin can be updated 

independently if the new spin states are given in advance. From 

the above, the procedure with CPU in the steps (1) and (3) are 

directly applicable to that with GPU. However, we should modify 

the algorithm of cluster labeling in the step (2) so as not to use 

the sequential computation. 

 The cluster labeling algorithm with a single GPU 

was proposed by Hawick et. al.[9] and the refinement of that by 

Kalentev et al.[10] Those cluster algorithms are named the label 

equivalence algorithm. We employ the two label equivalence 

algorithms for the method of cluster labeling with a single 

GPU [11]. The concept of the label equivalence algorithm is 

basically equal to the HK algorithm; that is, each thread updates 

the label[label] until the label[label] is unchanged. However, 

the label equivalence algorithm repeats the kernel call with 

the label updates, which is dif ferent from the case of the HK 

algorithm. We note that the label equivalence algorithms are 

explained in Ref. [11] in detail.

The system size we can treat is limited for a single GPU. If we use 

a multiple GPU system such as TSBAME 2.0, a very large system 

can be treated directly, and the fast computation becomes 

possible. The GPU calculation itself is a parallel calculation, but 

there are several problems that we should bear in mind when 

performing multiple GPU calculation. First, the communication 

between multiple GPUs should be considered. Second, the 

calculation with a single GPU is the shared memory calculation, 

whereas the calculation with multiple GPUs is the distributed 

memory calculation. The difference of memory type becomes a 

serious problem in the extension of SW multi-cluster algorithm 

from a single GPU to multiple GPUs. 

 As a model, we take the two-dimensional Ising model 

again. The data transfers on three levels are needed, that is, the 

data transfer from GPU to CPU, that between CPUs and that 

from CPU to GPU. We use API of CUDA for the communication 

between CPU and GPU, and MPI library for the communication 

between CPUs. We arrange the total lattice with a super-lattice 

structure using multiple GPUs. Each GPU has the information 

of spins on a sub-lattice together with the arrays to preserve 

the data of surrounding boundary layers and to transfer the 

data of boundary layers. We illustrate the case of a 2 × 2 super-

lattice structure using 4 GPUs in Fig. 3. To arrange the data of 

surrounding boundary layers in each GPU, the calculation in 

the step (1) can be executed without the data transfer with 

The calculation with a single GPU 3

The calculation with multiple GPUs 4

 Now, we compare the per formance on the two-

dimensional Ising model with CPU to that with a single GPU. We 

have tested the performance of our code on NVIDIA GeForce 

GTX580. For comparison, we run the code on a current CPU, 

Intel(R) Xeon(R) CPU W3680 @ 3.33 GHz; we use only one core of 

the CPU. For compiler, we have used gcc 4.1.2 with option -O3. 

We employ the HK algorithm as the method of cluster labeling 

with CPU. Since the cluster size depends on the temperature, 

we compare the performance at the critical temperature of the 

two-dimensional Ising model kbTc/J= 2.269...[12]. We show the 

computational time per one Monte Carlo Step (millisecond) in 

Table 1. There, the linear system sizes L are L = 256, 1024 and 

4096. We can see from Table 1 that the computational times with 

GPU are highly accelerated compared to that with CPU. We also 

confirm that the computational speed using the algorithm of 

Kalentev et al. is superior to that of Hawick et al. for all system sizes.
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its neighbors. In the step (2), we employ a two-stage process 

of cluster labeling. After the cluster labeling within each GPU 

is finished, we check the bond between the sites of ‘‘nearest-

neighbor ’ ’ GPU. In the inter-GPU labeling step, we should 

consider the distributed memory, which will be discussed next. 

The treatment for distributed memory should be considered 

also in the step (3).

 If we directly apply the SW multi-cluster algorithm 

with a single GPU to that with multiple GPUs, the problems 

occur in the steps (2) and (3). In the step (2) of cluster labeling 

with a single GPU, each thread updates the label[label] until 

the label[label] is unchanged. On the other hand, in the step 

(2) with multiple GPUs, each thread has a possibility to access 

the array on different GPU memory. And, this access to different 

GPU memory generates errors in the step (2) because each GPU 

cannot get access to the different GPU memory. If we directly 

apply the step (3) of spin f lip with a single GPU to that with 

multiple GPUs, each GPU should check the label number in each 

GPU after the step (2) and make a decision about the targets 

of communication in all GPUs; then the new spin states are 

transferred from those targets to each GPU. But, that calculation 

with multiple GPUs needs an enormous amount of costs.

 Some attempts for the cluster labeling algorithm 

with multiple CPUs have been proposed: the master-slaves 

method [13], the method to prepare a global label array [14], and 

the method to exchange the boundary information with its 

neighbors until the all labels are unchanged (named a relaxation 

method) [15]. In a relaxation method, there are some versions; the 

method to set up the local root [15] and the method to generate 

the area of overlap [16]. In this paper, we employ the relaxation 

method since the amount of memory on a single GPU is not so 

much. 

Figure 3   The 2 × 2 super-lattice structure for 4 GPUs 
 and the information on a single GPU.

Figure 4   Plot of spin flips per a nano second with
  changing the number of GPUs for the two-
  dimensional Ising model at the critical
  temperature on the TSUBAME 2.0.

 The cluster labeling algorithm with multiple CPUs is 

realized by using one label variable. On the other hand, we use 

two label variables, that is, the local label and the global label, 

to realize the cluster labeling algorithm with multiple GPUs. To 

resolve the problem in the step (3), we store the new spin state 

in the label variable by using the bit manipulation. 

 We have tested the performance of the multiple GPU 

calculation of the SW cluster-flip algorithm on TSUBAME 2.0 with 

NVIDIA Tesla M2050 GPUs using CUDA 4.0 and openMPI 1.4.2. 

As a model, we use  the two-dimensional Ising model at the 

critical temperature. We give the double logarithmic plot of the 

average amount of spin flips per nano second as a function of 

the number of GPUs in Fig. 4. For the size of sub-lattice of each 

GPU, not only the data for 4096 × 4096 but also those for 2048 

× 2048 and 1024 × 1024 are plotted. The dependences on the 

number of GPUs with fixing the total linear system size as L = 

4096, 8192, 16384, 32768 and 65536 are shown. In the inset, the 

dependence on the number of GPUs with fixing the sub-lattice 

size as 4096 × 4096 is shown. We see that the performance 

of our code increases as a power of the number of GPUs. The 

coefficient of the power is estimated as 0.91 by the best-fitted 

curve shown in the inset. Since it takes extra time to dif fuse 

the label number from one GPU to all GPUs, the perfect weak 

scalability, that is, the power of 1.0, is not achieved, but we can 

say that the weak scalability is well satisfied for our code.

The multiple GPU calculation
for the classical spin model
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We proposed the GPU-based calculation of the SW multi-

cluster algorithm, which is one of the Markov Chain Monte Carlo 

algorithms in statistical mechanics, with a single GPU [11] and 

multiple GPUs [17]. The cluster labeling algorithm with a CPU is not 

directly applicable to that with GPU. However, we have realized 

the SW cluster algorithm by using the two label equivalence 

algorithms proposed by Hawick et al. [9] and that by Kalentev et al. [10]. 

 Moreover, we have extended the SW cluster algorithm 

with a single GPU to that with multiple GPUs. We cannot directly 

apply the cluster labeling algorithm with a single GPU to that with 

multiple GPUs because the memory types of a single GPU and 

multiple GPUs are different. By using the relaxation method and 

two label variables, we have realized the cluster labeling algorithm 

with multiple GPUs in the SW multi-cluster algorithm. In the step 

of cluster labeling with multiple GPUs, we employ a two-stage 

process; that is, we first make the cluster labeling within each 

GPU, and then the inter-GPU labeling is performed with reference 

to the label on the first-stage. We use some tricks for the step of 

spin update; we include the information on new spin state in the 

process of cluster labeling. We have tested the performance of the 

SW multi-cluster algorithm with multiple GPUs on TSUBAME 2.0 for 

the two-dimensional Ising model at the critical temperature. We 

have shown a performance with good scalability for multiple GPU 

computations although the cluster-flip algorithm is a nonlocal 

problem which is not so easy for parallelization. 

 The SW cluster-flip algorithm using multiple GPUs can 

be applied to a wide range of spin problems. As an example, 

we have already studied the large-scale calculation for the 

two-dimensional classical XY model [18]. Moreover, the cluster 

labeling using multiple GPUs can be applied to several problems 

including the percolation, the image processing, and so on. 

We are now attempting to refine the cluster labeling algorithm 

with multiple GPUs and to develop the implementation of the 

algorithms on the problems in various fields.
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In Science fiction novels and movies, robots communicate naturally with humans. In order to realize such robots, 
it is necessary to make them understand language and also to provide them with knowledge that is common to 
humans. However, it is very difficult to express such knowledge manually, owing to the vastness thereof. As such, 
the development of robots has been affected by this deadlock for a long time. Owing to the recent progress in 
computer networks, and the web in particular, a large number of texts has been accumulated and it becomes 
possible to acquire knowledge from such texts. This article introduces automatic knowledge acquisition from a large 
web text collection and linguistic analysis based on the acquired knowledge.

Daisuke Kawahara*  Sadao Kurohashi*
*Graduate School of Informatics, Kyoto University

Recently,  we have become accustomed to using speech 

interfaces for smart phones, whitch facilitate the execution of 

certain specific tasks in practice. However, it is still not possible 

for computers to communicate naturally with humans. To realize 

such computers, it is necessary to develop computer systems that 

can understand and use natural language at the same level as 

humans. 

 The following two sentences are classical examples of 

syntactic ambiguities in Japanese sentences.

　（1） a. クロールで泳ぐ少女を見た

 b. 望遠鏡で泳ぐ少女を見た

These two sentences have the same style, but "クロールで" 

(crawl) and "望遠鏡で" (telescope) have different modifying 

heads (the underlined part modies the doubly-underlined part). 

This kind of syntactic ambiguity cannot be resolved by Japanese 

grammar, but by precisely considering the relations between 

words. To do that, linguistic knowledge of words such as "クロー

ルで泳ぐ" (swim crawl) and "望遠鏡で見る" (see with telescope) is 

required. However, the amount of knowledge required is too vast 

to be expressed manually.

 In recent years, a massive number of texts can be 

obtained from the web, and studies that automatically acquire 

linguistic knowledge from such a large text collection have 

arisen. We automatically acquire the linguistic knowledge from 

a huge text collection crawled from the web, and develop 

an analyzer based on the acquired knowledge. This article 

introduces that this knowledge acquisition process was carried 

out in an extremely short period using the large computational 

resources of TSUBAME.

Introduction 1

Knowledge Acquisition from 
a Large Web Corpus and
its Applications

 As the acquired linguistic knowledge, this ar ticle 

describes case frames, which represent aggregated predicate-

argument structures, namely "who does what." This is one of basic 

linguistic knowledge known by humans. We compile case frames 

in the following way[1]:

   1. Extraction of Japanese sentences from a web page 

collection (corpus creation)

   2. Syntactic parsing of the corpus

   3. Filtering and clustering of syntactic parses to produce 

 case frames

This time, we transmitted the corpus that had been created on 

other clusters to TSUBAME, and performed the processes of 

syntactic analysis of the corpus and case frame compilation on 

TSUBAME.

 In the remainder of this article, we first describe the 

method of case frame compilation. Then, we explain linguistic 

analysis based on acquired case frames. Finally, we report the 

experimental results on TSUBAME.

A case frame represents the relations between a predicate and 

its arguments for each usage of the predicate. For example, the 

following is a case frame for the predicate " 焼く " :

　（2） { 私、人、… ｝ が 　{ オーブン、フライパン、… ｝ で

 { パン、肉、… ｝ を　焼く

 Such case f r ames are automat ica l ly acquire d by 

app l y ing s y nt ac t ic p ar s ing to a huge cor pus , e x t r ac t in g 

syntactically unambiguous relations between a predicate and 

Automatic Compilation of
Case Frames 2
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its arguments from the resulting parses and clustering them. 

Syntactically unambiguous relations consist of those arguments 

that have only one modif ying candidate head based on the 

grammatical rules of the syntac tic parser. In the fol lowing 

examples, the underlined arguments demarcated with a ○ are 

extracted as unambiguous ones:

　（3） a. 今日は石窯で ○ パンを ○ 焼いています。

 b. 80 種類ものパンを ○ 焼いていますが、…

 c. その後、パンを × 焼いた余熱を利用し…

 d. 直径が × 15センチのケーキを焼きます

In (3 a) and (3b), since the sentence end and the subordinate 

clause " 〜 が " are considered to be strong boundaries, the 

arguments " 石 窯でパンを" (masonry oven, bread) and "パンを" 

(bread), which unambiguously modify "焼く" (bake), are extracted 

from these sentences, respectively.

 O n t h e o t h e r h a n d , t h e u n d e r l i n e d a r g u m e n t s 

demarcated with a × in (3c) and (3d) are not extracted due to the 

ambiguity of modifying heads. In (3c), the head of the underlined 

argument "パンを" (bread) is correctly analyzed as "焼いた" (baked), 

but this argument is not extracted because it has two candidate 

heads "焼いた" (baked) and " 利用し" (use). In (3d), the underlined 

argument "直径が" (diameter) is not extracted either, because it 

has two candidate heads " 15センチ" (15cm) and "焼きます" (bake). 

Since the syntactic parser incorrectly analyzes the head of "直径

が" (diameter) as " 焼きます" (bake), extracting such ambiguous 

relations would produce erroneous case frames. This filtering can 

be done on the basis of the grammatical rules in the syntactic 

parser, which handle such exceptional phrases.

 T h e b i g g e s t p r o b l e m i n a u t o m a t i c c a s e f r a m e 

compilation is sense ambiguity of predicates. In case of "焼く," it 

is necessary to distinguish expressions with different meanings 

and usages such as "パン を 焼 く" (bake bread) and " 手 を 焼 く" 

(have difficulty). To deal with this problem, predicate-argument 

structures are distinguished by coupling a verb and its closest 

argument. This is because the closest argument is thought to 

strongly influence the meaning and usage of the predicate. For 

" 焼く," by making a couple of "パン を 焼く" (bake bread), " 肉 を

焼く" (broil meat) and "手 を焼く" (have difficulty), it is possible 

to separate predicate-argument structures according to their 

meanings and usages and to acquire a case frame for each of 

them. Further, by applying clustering based on word similarities, 

similar case frames such as "パンを焼く" (bake bread) , and " 肉を

焼く" (broil meat) can be merged to produce final case frames as 

given in Table 1. The word similarities are measured on the basis 

of distributional similarities calculated from the huge corpus[3].

By integrating the automatically compiled case frames into 

syntactic parsing, we can now resolve the syntactic ambiguities 

in examples (1a) and (1b)[2]. For example, it is difficult to acquire 

the relation " クロールで 泳ぐ " (swim crawl), which is required to 

correctly analyze example (1a), from a newswire corpus comprising 

tens of thousands of sentences. However, it is included in the 

case frames compiled from a large corpus. That is to say, wide-

coverage knowledge on relations between content words is 

successfully captured in the case frames. These case frames enable 

to disambiguate syntactic ambiguities as in example (1).

 Further, it is possible to detect the hidden cases of topic-

marked phrases and clausal modifiees. For example, in the two 

sentences in (1), "少女 " (girl) has a "が" (nominative) relation to "泳

ぐ" (swim). This relation can be analyzed by predicate-argument 

structure analysis based on the case frames.

 This kind of method, which learns relations between 

words from a large corpus and exploits them in analysis, has been 

applied to other languages [4, 7].

Predicate-argument Structure Analysis 
based on Case Frames 3

Table 1    Acquired case frames for yaku. Example
 words are expressed only in English due
 to space limitation. The number following
 each word denotes its frequency. `CS'
 indicates a case slot.
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First, we extracted Japanese sentences from three billion web 

pages, eliminated duplicated sentences and obtained a corpus 

comprising approximately 15 billion sentences. This extraction 

had been conducted on other PC clusters and the extracted 

corpus was transmitted to TSUBAME. We then applied syntactic 

parsing to this corpus using TSUBAME. To carry out this process, 

we needed computational power of approximately 200,000 CPU 

core hours. The smallest unit in this process is a sentence, and 

thus we were able to implement it in an embarrassingly parallel 

way by split ting the corpus into small processing units each 

cousisting of approximately 10,000 sentences.

 Secondly, we acquired case frames from the parses of 

15 billion sentences using the method of case frame compilation 

described in section 2.1 As a result, we acquired case frames for 

approximately 40,000 predicates. To perform this process, we 

needed computational power of approximately 10 0,0 0 0 CPU 

core hours. By integrating the acquired case frames into our base 

syntactic parser, we developed a predicate-argument structure 

analyzer.

 Thirdly, to investigate the relationship between corpus 

size and the accuracy of the analyzers, we created a corpus of 1.5 

million, 6 million, 25 million, 100 million, 400 million, 1.6 billion 

and 6.4 billion sentences by sampling the above corpus consisting 

of 15 billion sentences. We conducted case frame compilation 

from each corpus and developed analyzers based on these case 

frames. Figure 1 shows the changes in accuracy and coverage 

for the varying sizes of corpora. In this figure, "coverage of case 

frames" represents how many predicate-argument structures 

in the test sentences are included in the case frames, "synonym 

recognition" means the recognition of synonymous phrases such 

as "景気が悪化する" (economy gets worse) and "景気が冷え込む" 

(economy gets cold), and "anaphora resolution" means an analysis 

of detecting omitted nouns such as the subject of a verb[5 ]. 

From this figure, we can see the improvements in accuracy and 

coverage as the size of corpus increases.

 To conduct the above computation on TSUBAME, we 

used the grid shell, GXP2, which has been developed at the Taura 

laboratory at the University of Tokyo. As the queue for TSUBAME, 

we mainly used the reservation queue (H queue) with at most 300 

nodes (3,600 CPU cores) in parallel.

Experimental Results 4

Figure 1   Changes in accuracy and coverage
  for varying sizes of corpora

1  The acquired case frames can be searched from http://nlp.ist.i.kyoto-u.ac.jp/index.php? 京都大学格フレーム.
2  http://www.logos.ic.i.u-tokyo.ac.jp/gxp/
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Figure 2   A search result of search engine TSUBAKI

In this article, we have described case frame compilation from 

a huge text collection collected from the web and syntactic 

and pre dicate -argument s t ruc ture analys is based on the 

acquired case frames. The process of case frame compilation 

was per formed in an extremely short period using the large 

computational resources of TSUBAME.

 A s an appl icat ion of the automat ica l ly acquire d 

linguistic knowledge and the analyzer based on this knowledge, 

we have been developing the search engine infrastructure, 

TSUBAKI[6]. The biggest characteristic of TSUBAKI is the precise 

search exploiting synonym knowledge and linguistic structure 

(as in Figure 2). In this way, the automatically acquired linguistic 

knowledge and deep analysis can be exploited in practical  

applications effectively.

 The accuracy of the analyses and the coverage of case 

frames are expected to be improved with an increasing corpus 

size. In future, we will try to increase the size of the corpus to 

acquire more knowledge. For this purpose, we will use TSUBAME 

on a larger scale.

Conclusion 5
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International Research Collaboration

Application Guidance

Inquiry

Please see the following website for more details.
http://www.gsic.titech.ac.jp/en/InternationalCollaboration

The high performance of supercomputer TSUBAME has been extended to the 
international arena. We promote international research collaborations using 
TSUBAME between researchers of Tokyo Institute of Technology and overseas 
research institutions as well as research groups worldwide.

Recent research collaborations using TSUBAME

1. Simulation of Tsunamis Generated by Earthquakes using Parallel
　Computing Technique

2. Numerical Simulation of Energy Conversion with MHD Plasma-fluid Flow

3. GPU computing for Computational Fluid Dynamics

Candidates to initiate research collaborations are expected to conclude 
MOU (Memorandum of Understanding) with the partner organizations/
departments. Committee reviews the “Agreement for Collaboration” for joint 
research to ensure that the proposed research meet academic qualifications 
and contributions to international society. Overseas users must observe 
rules and regulations on using TSUBAME. User fees are paid by Tokyo Tech’s 
researcher as part of research collaboration. The results of joint research are 
expected to be released for academic publication.
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