年報
2007年度 第6号

東京工業大学学術国際情報センター
目次

巻頭言 .. 1

トピックス「マイクロソフトとの包括契約について」 .. 3
「先端研究施設共用イノベーション創出事業【産業戦略利用】」 7

1. 組織・運営 ... 11
 1-1 組織図 ... 11
 1-2 教員構成 ... 12
 1-3 事務組織 ... 13
 1-4 運営委員会開催状況 .. 14
 1-5 人事異動 ... 16

2. 情報基盤サービス ... 18
 2-1 研究用計算機システム .. 18
 2-1-1 構 成 ... 18
 2-1-2 運 用 ... 20
 2-1-3 実 績 ... 21
 2-2 教育用計算機システム .. 23
 2-2-1 構 成 ... 23
 2-2-2 運 用 ... 24
 2-2-3 実 績 ... 24
 2-3 ネットワークシステム .. 26
 2-3-1 構 成 ... 26
 2-3-2 運 用 ... 27
 2-3-3 実 績 ... 29
 2-4 キャンパス共通認証・認可システム .. 30
 2-4-1 構 成 ... 30
 2-4-2 運 用 ... 30
 2-4-3 実 績 ... 31
 2-5 ソフトウェア包括契約 ... 33
 2-5-1 概 要 ... 33
 2-5-2 運 用 ... 33
 2-5-3 実 績 ... 35
 2-6 構成・運用・実績等の外部発表 ... 37
3. 情報基盤推進活動 ... 38
 3-1 TitechGrid Cluster .. 38
 3-2 ファイル交換ソフトウェア検知サービス 54
 3-3 情報蓄積活用活動 .. 55
 3-3-1 概要 ... 55
 3-3-2 T2R2 システムの特徴 ... 56
 3-3-3 19年度開発項目 .. 57
 3-3-4 T2R2 システムの利用状況 ... 58
 3-3-5 その他の活動 ... 60

4. 国際協働 ... 61
 4-1 GSIC・タイ国チュラロンコーン大学の部局間MOUの締結 61
 4-2 国際共同研究 .. 62
 4-2-1 英国、National Institute for Medical Researchとのタンパク質
 立体構造予測に関する国際共同研究 62
 4-2-2 米国、オハイオ州立大学計算機学科とのタンパク質の
 フォールディング解析に関する国際共同研究 62
 4-3 国際共同研究ワークショップ ... 63
 4-3-1 GSIC-AIT共同開催ワークショップ／シンポジウム 63
 4-3-2 ラオスルアンパバーンにおけるシンポジウム 64
 4-4 海外拠点を活用した国際交流活動 65
 4-4-1 国際連合人間の安全保障基金（UNHFS）プロジェクト
 モンゴル・ゴビ3県における学校再建と遠隔教育の
 トップレベルの国際交流プログラム 65
 4-4-2 日タイ修好120周年記念の国際交流プログラム 66

5. イベント及び啓蒙活動 .. 67
 5-1 学術国際情報センター主催講演会 67
 5-1-1 GSIC ゲスト講演会 2007 No.01 67
 5-1-2 GSIC ゲスト講演会 2007 No.02 67
 5-1-3 GSIC ゲスト講演会 2007 No.03 68
 5-1-4 GSIC ゲスト講演会 2007 No.04 68
 5-2 学術国際情報センター主催セミナー 69
 5-2-1 GSIC セミナー2007 No.01 69
 5-2-2 GSIC セミナー2007 No.02 69
6. 広報活動 …………………………………………………………………………………… 73
 6-1 マスコミ報道等 …………………………………………………………………… 73
 6-1-1 オンラインメディア ………………………………………………………… 73
 6-1-2 新聞・雑誌 …………………………………………………………………… 73
 6-1-3 テレビ ……………………………………………………………………… 73
 6-2 見学者受入状況 …………………………………………………………………… 74

7. 予算執行状況 …………………………………………………………………………… 78

8. 研究活動報告 …………………………………………………………………………… 79
 8-1 情報基盤部門 ……………………………………………………………………… 79
 伊東利哉 ……………………………………………………………………… 79
 橋田治夫 ……………………………………………………………………… 81
 幸田勝吉 ……………………………………………………………………… 86
 直井 聡 ……………………………………………………………………… 88
 8-2 研究・教育基盤部門 ……………………………………………………………… 90
 松岡 聡 ……………………………………………………………………… 90
 馬越庸恭 …………………………………………………………………… 98
 望月祐洋 …………………………………………………………………… 100
 西川武志 …………………………………………………………………… 101
 遠藤敏夫 …………………………………………………………………… 104
 谷 啓二 …………………………………………………………………… 107
 8-3 学術国際交流部門 ……………………………………………………………… 109
 青木幸之 …………………………………………………………………… 109
 山口しのぶ ………………………………………………………………… 113
 ビバートボンサー ディラボン ……………………………………………… 116
 太田元規 …………………………………………………………………… 118
 本間寛臣 …………………………………………………………………… 121
 8-4 受賞学術賞等 ……………………………………………………………………… 123
巻頭言

学術国際情報センター長 渡辺 治

学術国際情報センターは、東京工業大学における情報基盤と情報科学技術研究基盤の充実、そして情報科学技術を活用した国際交流の促進を目的として活動を行なってきました。

平成19年度も、情報科学技術に基づく教育・研究のための情報システムの整備、そして情報科学技術に関する国際共同研究を推進してきましたが、その中でも、以下の報告のように、いくつか重要な事業を行なってきました。情報基盤では、19年度より単年度ベースで、東京工業大学キャンパスアグリーメントによるソフトウェアの提供の包括契約をマイクロソフト（株）と締結し、東工大独自のシステムによるMicrosoft Office等のソフトウェアの配布を開始しました。情報の活用分野では、東工大発の学術論文等の一元的蓄積・管理・発信を行うT2R2 (Tokyo Tech Research Repository)システムを独自に開発し運用を始めました。情報ネットワークに関しては、東工大発の著作権侵害等発生の防止のため、ファイル交換ソフト自動検知システムを導入しました。一方、情報科学技術研究基盤に関しては、18年度から運用を開始した東工大キャンパススパコングリッドTSUBAMEシステムが、19年度も進化を続け、導入直後と比較して計算能力で約150%も増強に成功し、2007年11月に発表されたThe 30th Top500のランキングで4期連続となる日本1位（総合順位でも16位）に輝きました。このTSUBAMEシステムは、教育研究のための計算資源だけでなく前記のT2R2システムや図書館情報システムへなどのホスティングを行っており、全学の情報基盤の中核的な存在になりつつあります。また、本年度より文部科学省が開始した「先端研究施設共用イノベーション創出事業」（産業戦略利用）の一つとして、TSUBAMEシステムの共同研究利用を目的とした「みんなのスパコン」TSUBAMEによるベータスケールへの飛翔」が採択され、産学官の研究者による戦略的かつ効率的な研究開発や、研究機関や研究分野を越えた横断的な研究開発活動がTSUBAMEシステムを中心として開始され、着実な成果をあげつつあります。

学術国際情報センターを取り巻く状況も大きく変わりつつあります。学内では、本年度から、東工大における情報基盤全般の整備・拡充・運用を統括的に運営する機関として、情報基盤統括室が設置され、その活動が10月より始まりました。情報基盤統括室（以下、統括室）は、情報担当副学長理事のもと、図書館や事務組織も含め、東工大の情報基盤の整備・拡充・運営に関する企画や予算立案から長期的な戦略まで、審議・立案する全学組織です。この新たな全学的な情報基盤の中枢に対し、本センターは統括室の企画や施策の実施機関という位置づけになり、これまで行ってきた様々な事業を、より全学的な観点から統括的に行なうことができる体制となりました。さらに、本センターには、その実務
経験や研究成果に基づき、統括室に対する事業の提案や統括室の企画・立案の技術的な裏付けの提供などの役割も期待されています。一方、全国的には、次世代ペタコンの計画が進む中で、7大学の情報基盤センターならびに各計算機センターの役割の再検討が始まており、その中で強力な研究開発能力と豊富な国際共同研究の経験を持つ本センターへの期待も高まっています。このような情勢変化の中、本センターは学内外の任務や期待に応じられるような活動を続けて行く所存です。そのためにも、この1年間の成果を公表して世に問い、ご批判、ご指導をうけることは、今後の本センターのあり方を見定めていく上で極めて重要です。本センターの様々な活動、ならびに教員の研究成果等を本年報でご覧頂き、これまでの活動・成果・方向性に対しご意見、ご助言を頂ければ幸いです。

東工大情報基盤統括室概念図
東京工業大学はマイクロソフトとの間で、キャンパスアグリーメントと呼ばれるソフトウェア包括契約を平成19年4月に結びました。以下では、キャンパスアグリーメントの概要と利用法について紹介します。

キャンパスアグリーメント
キャンパスアグリーメントとは、従来のライセンスのようにパソコンの台数に対してライセンスを発行されるものではなく、契約機関に所属する利用者（教職員・学生）の人数に対してライセンスが発行される非永続なボリュームライセンス契約です。

【契約対象者】
東工大ICカード身分証保持者（アクセスカード、入館カードを除く）全員

【対象コンピュータ】
* 大学経費で購入した大学所有のコンピュータ
* 対象者が保有する私物コンピュータ1台

【提供ソフトウェア】
平成20年4月の時点で下記のオフィスとウィンドウズOSです。
* Microsoft Office
 o Office 2003 Professional
 o Office 2007 Enterprise
 o Office 2004 for MAC
 o Office 2008 for MAC
* Microsoft Windows Upgrade
 o Windows Vista Ultimate Upgrade
 o Windows XP Professional Upgrade

提供するソフトウェアのインストール方法
キャンパスアグリーメントでは、提供するソフトウェアに対する厳格な管理責任が本学に課されています。そこで、平成19年4月のサービス開始時から、東工大独自の提供方法として、大学所有のコンピュータについては、ICカード身分証を用いた本人認証の後、ダウンロードインストールによって行うことにしました（図1）。他方、個人所有のコンピュータについては、教職員は本人認証後のダウンロードインストール、学生はインストー
ル DVD の購入にて、それぞれ行うことになりました。このような個人認証による厳密な管理が行えたのも、他大学に先駆けて全学的な認証認可システムが整備されていたことにあります。尚、平成20年4月からは、セキュリティ上の問題点を回避するため、個人所有のコンピュータについては、教職員と学生の区別をせず、全てインストール DVD の購入にて行うことになりました（図2）。ご不便をおかけすることをお詫びすると共に、ご協力をよろしくお願いします。

大学所有PC

図1 大学所有PCへのソフトウェアのインストール方法
キャンパスアグリーメントによる効果
さて、キャンパスアグリーメントには、2つの大きな効果があります。1つは経済的効果です。平成20年2月20日の時点で、キャンパスアグリーメントによってインストールされたオフィスと Windows の総数と、仮にこれらのソフトを全て生協にて購入した場合の価格を表に示します。

<table>
<thead>
<tr>
<th>ソフト名</th>
<th>インストール総数</th>
<th>生協で購入した場合の価格</th>
</tr>
</thead>
<tbody>
<tr>
<td>オフィス</td>
<td>6699</td>
<td>211,812,500 円</td>
</tr>
<tr>
<td>Windows</td>
<td>1509</td>
<td>37,802,310 円</td>
</tr>
<tr>
<td>計</td>
<td>8208</td>
<td>249,614,810 円</td>
</tr>
</tbody>
</table>

一方、平成19年度のキャンパスアグリーメントの契約価格は 41,800,000 円であり、大学全体としてみればソフトウェア購入代金の2億円以上の節約が出来たことになります。また学生に対しても、廉価でソフトウェアが購入できるという利点があります。
もう1つの効果は、ソフトウェアの適正利用にあります。ソフトウェアの不法コピーによる不正使用の摘発が幾つかの大学においてなされ、多額の賠償金を支払う事例が報告されています。オフィスや Windows のような多くのユーザがいるソフトウェアをキャンパスアグリーメントによって提供することによって、このような不正使用のリスクを未然に防ぎます。
ぐ事ができるというのも重要な効果です。

キャンパスアグリーメントに関する注意事項
キャンパスアグリーメントによって提供されたソフトウェアの利用可能な期間は本学とマイクロソフト社の契約期間中に限られていますので、今後、何らかの理由で本学が契約を打ち切った場合は、本契約によって大学ならびに教職員所有のコンピュータにインストールされたソフトウェアを消去する必要が生じます。また、本学職員が本学を離職された場合、個人所有のコンピュータにインストールされたソフトウェアは消去する必要がございます。ご注意下さるようにお願いします。
先端研究施設共用イノベーション創出事業【産業戦略利用】

学術国際情報センター長 渡辺 治

『みんなのスパコン』 TSUBAME によるベタスケールへの飛翔

【事業概要】
「先端研究施設共用イノベーション創出事業」【産業戦略利用】は、大学、独立行政法人等の研究機関が有する先端的な研究施設・機器の共用を進め、イノベーションにつながる成果を創出するために、平成19年度から文部科学省が新たに開始した事業である。

“『みんなのスパコン』 TSUBAME によるベタスケールへの飛翔”は、文部科学省の先端研究施設共用イノベーション創出事業【産業戦略利用】の17件のうち1件として採択され、東京大学が実施する「先端的大規模計算シミュレーションプログラム利用サービス」と連携して、平成19年7月1日から実施を開始した。本事業を通じて、産学官の研究者による戦略的かつ効率的な研究開発や、研究機関や研究分野を越えた横断的な研究開発活動を推進することにより、継続的に産学官の知の融合によるイノベーションを加速していくことを目指した。

図1 先端研究施設共用イノベーション創出事業【産業戦略利用】採択機関・研究施設
“みんなのスパコン”TSUBAMEによるペタスケールへの飛翔”において、理論演算性能85TFlops、22TBメモリ、1.6PBオンラインストレッジディスクを有し、TOP500リスト2007年6月にて国内・アジア共に1位を誇るスーパコンピューティングキャンパスグリッド基盤システムが1年間に供給可能な資源の最大15%を提供した。

図2 文部科学省研究施設共用総合ナビゲーションサイト（http://kyoyonavi.mext.go.jp/）における東京工業大学学術国際情報センターTSUBAME Grid Cluster施設情報ページ

【事業実施と成果】
[安心安全利用環境の構築]
本事業の利用者のために独立したデータ保存領域を恒久的なもの(ihome)および一時的なもの(iwork)を学内とは別に用意し、データセキュリティの向上を図った。ジョブ管理システムでは、本事業の利用者のジョブに関して利用者アカウント、ジョブ名等を匿名化するよう改修を行い、各課題のグループ外の利用者に何をやっているかの情報が漏れない措置を施した。平成20年3月にセキュリティラックを導入し、本事業用のファイルサーバを物理的に東工大内向けのサーバとは隔離した場所に設置するとともにVPNルータの導入を行った。
利便性の高い利用環境の構築

TSUBAME 利用にあたる基本的な質問回答を東工大内と独立して行えるように平成19年10月に質問回答追跡システムの改修を行い、運用を開始した。計算機の利用にあたっては学内向けのマニュアルの他に本事業利用者向けの簡易ガイドを作成して採択利用者に送付した。

【平成19年度利用課題採択および実施】
本事業の広報として日本機械学会年会予稿集、情報処理学会誌、日本薬学会誌に広告を出稿した。日本機械学会年会、HPCS2005、日本薬学会年会にブースを出展し、広報活動を行った。250組織以上にコンタクトを取り、40以上の組織から返信があり、30以上の組織が応募を検討し、最終的に延べ15件の応募があった。

【定期公募】
「戦略分野利用推進」枠および「新規利用拡大」枠に関して、7月17日から9月18日まで課題募集を実施した。第1回（7月末締切）、第2回（9月18日締切）いずれも戦略分野利用推進枠2件、新規利用拡大枠2件の応募があった。

【随時公募】
新規利用拡大枠では毎月15日を期限として募集し10月に1件、11月に1件の応募があり、戦略分野利用推進枠は配分計算資源に余裕があったため追加公募を10月9日から12月15日まで行い延べ4件の応募があった。結局、新規利用拡大枠では12件程度の採択予定に対し、6件の申請があり、審査の結果6件を採択した。戦略分野利用推進枠では、「計算化学手法による創薬技術の開発」および「大規模流体-構造連成解析技術の開発」、それぞれ2件程度の採択予定に対し、前者は延べ8件の応募に対し4件を採択し、後者は1件の応募に対し1件を審査の結果、採択した。

【利用課題実施】
平成19年8月戦略分野利用推進1件、新規利用拡大2件、10月戦略分野利用推進1件、新規利用拡大2件、12月新規利用拡大2件、平成20年1月戦略分野利用推進3件が、それぞれ利用を開始した。利用に際しては施設共用技術指導研究員により利用に際しての技術指導、大規模並列化のチューニング指導、問題解決のための指導を行った。

【プロジェクトの総合的推進】
施設共用技術指導研究員兼共用促進リエゾン員、施設共用技術指導研究補佐員を10月1日より採用し、施設共用の技術指導、企業利用者募集、利用進め管理を行った。事業ホームページ開設整備、利用制度の整備、東京大学の事業との連携を行った。
<table>
<thead>
<tr>
<th>番号</th>
<th>申請課題名</th>
<th>申請代表者</th>
<th>会社名</th>
<th>課題種別</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>巨大生体分子の非経験的分子軌道法による設計指針構築</td>
<td>中村振一郎</td>
<td>株式会社三菱化学科学技術研究センター</td>
<td>計算化学手法による創薬技術の開発</td>
</tr>
<tr>
<td>2</td>
<td>銀行業・保険業におけるALM（Asset Liability Management）システムの開発</td>
<td>鳥居秀行</td>
<td>ニューメリカルテクノロジーズ株式会社</td>
<td>新規利用拡大</td>
</tr>
<tr>
<td>3</td>
<td>大規模分散検索エンジン製品の開発</td>
<td>清兼義弘</td>
<td>ビジネスサーチテクノロジ株式会社</td>
<td>新規利用拡大</td>
</tr>
<tr>
<td>4</td>
<td>タンパク質一次構造の網羅的解析による創薬技術の開発</td>
<td>金澤光洋</td>
<td>ライフィクス株式会社</td>
<td>計算化学手法による創薬技術の開発</td>
</tr>
<tr>
<td>5</td>
<td>ワイドギャップナノ構造体精密加工のシミュレーション</td>
<td>宮本良之</td>
<td>日本電気株式会社</td>
<td>新規利用拡大</td>
</tr>
<tr>
<td>6</td>
<td>機能性無機材料の光学的電子的物理性と構造設計の研究</td>
<td>善甫康成</td>
<td>住友化学株式会社</td>
<td>新規利用拡大</td>
</tr>
<tr>
<td>7</td>
<td>混相流シミュレーションコードの並列拡張性能の評価</td>
<td>桑原諸兄</td>
<td>株式会社計算流体力学研究所</td>
<td>新規利用拡大</td>
</tr>
<tr>
<td>8</td>
<td>高層ビルの大規模耐震構造解析</td>
<td>秋葉博</td>
<td>株式会社アライドエンジニアリング</td>
<td>新規利用拡大</td>
</tr>
<tr>
<td>9</td>
<td>コンピュータ支援によるポリアミン誘導体医薬品の開発</td>
<td>五十嵐一衛</td>
<td>株式会社アミンファーマ研究所</td>
<td>計算化学手法による創薬技術の開発</td>
</tr>
<tr>
<td>10</td>
<td>CONFLEXを用いた配座探索および結晶多形解析</td>
<td>大田一男</td>
<td>コンフレックス株式会社</td>
<td>計算化学手法による創薬技術の開発</td>
</tr>
<tr>
<td>11</td>
<td>電磁場中大規模粉体挙動シミュレーションによる電子写真設計プロセス革新</td>
<td>渡邊孝宏</td>
<td>株式会社リコー</td>
<td>大規模流体系構造連成解析技術の開発</td>
</tr>
</tbody>
</table>
1. 組織・運営

1-1 組織図

センター長

運営委員会

情報基盤検討専門委員会
ネットワークシステム専門委員会
情報蓄積・活用専門委員会
研究システム専門委員会
教育システム専門委員会
国際協働専門委員会
広報専門委員会

副センター長
（情報担当）

情報基盤部門
情報流通分野
情報蓄積・活用分野

研究・教育基盤部門
問題解決支援環境分野
遠隔・マルチメディア教育分野

副センター長
（国際交流担当）

学術国際交流部門
国際交流分野
国際共同研究分野

事務
学術情報部情報基盤課

情報基盤課長
課長補佐
基盤企画係
認証認可システム係
コンピュータシステム係
ネットワークシステム係
1-2 敎員構成

センター長（兼） 教 授 渡辺 治【大学院情報理工学研究科】
副センター長（情報担当） 教 授 植松 友彦【大学院理工学研究科】
副センター長（国際担当） 教 授 西原 明法【教育工学開発センター】

情報基盤部門 教 授 伊東 利哉（情報流通分野）
教 授 横田 治夫（情報蓄積・活用分野）
准 教 授 飯田 勝吉（情報流通分野）
客員 教 授 直井 聡【株式会社富士通研究所】
客員准教授 高木 浩光【独立行政法人産業技術総合研究所】

＜協力教員：情報流通分野＞
助 教 篠宮 俊輔【大学院情報理工学研究科】

研究・教育基盤部門 教 授 松岡 聡（問題解決支援環境分野）
教 授 馬越 勇恭（遠隔・マルチメディア教育分野）
准 教 授 望月 祐洋（遠隔・マルチメディア教育分野）
特任准教授 西川 武志（問題解決支援環境分野）
助 教 松田 裕幸（問題解決支援環境分野）
客員 教 授 谷 啓二【独立行政法人日本原子力研究開発機構】
客員 教 授 尾崎 史郎【独立行政法人メディア教育開発センター】

学術国際交流部門 教 授 青木 尊之（国際共同研究分野）
教 授 山口 しおぶ（国際共同研究分野）
准 教 授 PIPATPONGSA THIRAPONG（国際交流分野）
准 教 授 太田 元規（国際共同研究分野）
客員 教 授 本間 寛臣【国立大学法人豊橋技術科学大学】

※【 】は本務先
1-3 事務組織

情報基盤課長 五味 照明
課長補佐 日置 繁明

基盤企画係（庶務及び会計）
係長（兼） 日置 繁明
主任 松本 直子
係員 石井 理恵
補佐員 金子 純子 佐藤 奈都子 宮口 豊子
補佐員 寺瀬 眞知子（国際棟事務室）

認証認可システム係（認証認可システムの構築運用管理）
係長 山崎 孝治
係員 昆野 長典
補佐員 岸本 幸一
技術専門員 太刀川 博之
技術職員 新里 卓史

コンピュータシステム係（研究・教育用計算機システムの運用管理及び遠隔マルチメディア教育に関する事務）
係長 小野 悦
係員 山梨 毅
係員 大網 弘孝
係員 鶴見 慶
補佐員 中田 百紀
補佐員 三宅 葉子（すずかけ台分室）
主任技術専門員 久能 めぐみ
技術専門員 根木 悦
技術職員 安良岡 由規

ネットワークシステム係（学内基幹ネットワークの運用管理）
係長 江尻 佳代
係員 森谷 寛
補佐員 木下 裕子
技術職員 隅水 良幸
技術職員 小松崎 靖
1-4 運営委員会開催状況

第1回運営委員会
開催日 2007年5月25日（金）

1. 審議事項
 （1）副委員長の選出について
 （2）情報基盤部門情報流通分野教授再任審査委員会の設置について
 （3）情報基盤部門情報蓄積・活用分野教授再任審査委員会の設置について
 （4）研究・教育基盤部門問題解決支援環境分野教授再任審査委員会の設置について
 （5）研究・教育基盤部門遠隔・マルチメディア教育分野教授再任審査委員会の設置について
 （6）専門委員会委員の選出について
 （7）平成19年度GSIC予算（案）について
 （8）タイ国チュラロンコーン大学とのMOU（部局間国際交流協定）締結について
 （9）第1種研究生の受け入れについて（太田研）
 （10）第3種研究生の受け入れについて（青木研）

2. 報告事項
 （1）第13回スーパーコンピューティングコンテスト（SuperCon2007）募集要項について
 （2）情報基盤部会の開催について
 （3）先端研究施設共用イノベーション創出事業について

第2回運営委員会
開催日 2007年9月27日（木）

1. 審議事項
 （1）情報基盤部門情報流通分野教授再任審査について
 （2）情報基盤部門情報蓄積・活用分野教授再任審査について
 （3）研究・教育基盤部門問題解決支援環境分野教授再任審査について
 （4）研究・教育基盤部門遠隔・マルチメディア教育分野教授再任審査について
 （5）客員研究員の受け入れについて①
 （6）客員研究員の受け入れについて②
 （7）特任准教授の業務計画変更について
 （8）研究生の退学について

2. 報告事項
 （1）第13回スーパーコンピューティングコンテスト（SuperCon2007）について
 （2）各専門委員会・部門報告
 （3）業務報告
第3回運営委員会
開催日 2008年1月15日（火）
1. 審議事項
 （1）大学LANの管理・運営体制について
 （2）情報基盤部門情報流通分野教員選考委員会設置について
 （3）客員教員選考委員会設置について
 （4）MOU（部局間国際交流協定）締結について

2. 報告事項
 （1）情報基盤統括室について
 （2）各専門委員会
 （3）業務報告

第4回運営委員会
開催日 2008年2月15日（金）
1. 審議事項
 （1）情報基盤部門情報流通分野教員の選考について
 （2）客員教員の選考について
 （3）東京工業大学特別研究員の称号付与について

2. 報告事項
 （1）国立情報学研究所NAREGI 100TFlops グリッド実験におけるTsubameの利用について
 （2）第3回情報基盤統括室会議について
 （3）各専門委員会
 （4）業務報告

第5回運営委員会
開催日 2008年3月21日（金）
1. 審議事項
 （1）各専門委員会の構成と名称について

2. 報告事項
 （1）新規教員等について
 （2）職員の割愛について
 （3）第4回情報基盤統括室会議について
 （4）今後の学術情報基盤の在り方に関する意見交換会（第6回）について
 （5）各専門委員会
 （6）業務報告
1-5 人事異動

2007. 4. 1付

<table>
<thead>
<tr>
<th>新所属等</th>
<th>氏名</th>
<th>旧所属等</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>センター長</td>
<td>渡辺 治</td>
<td>大学院情報理工学研究科</td>
<td>兼務</td>
</tr>
<tr>
<td>副センター長</td>
<td>植松 友彦</td>
<td>大学院理工学研究科</td>
<td>兼務</td>
</tr>
<tr>
<td>副センター長</td>
<td>西原 明法</td>
<td>教育工学開発センター</td>
<td>兼務</td>
</tr>
<tr>
<td>研究・教育基盤部門 客員教授</td>
<td>尾崎 史郎</td>
<td>独立行政法人メディア教育開発センター 教授</td>
<td>採用</td>
</tr>
<tr>
<td>情報基盤部門 助教授</td>
<td>飯田 勝吉</td>
<td>情報基盤部門 講師</td>
<td>昇任</td>
</tr>
<tr>
<td>学術情報部情報基盤課長</td>
<td>五味 照明</td>
<td>国立大学法人岐阜大学 学術情報部情報戦略課長</td>
<td>採用</td>
</tr>
<tr>
<td>学術情報部情報基盤課 基盤企画係 係員</td>
<td>石井 理恵</td>
<td>財務部契約課契約第３係</td>
<td>配置換</td>
</tr>
<tr>
<td>学術情報部情報基盤課 コンピュータシステム係 主任技術専門員</td>
<td>久能 恵み</td>
<td>大学院生命理工学研究科 生体分子機能工学専攻</td>
<td>配置換 昇任</td>
</tr>
<tr>
<td>学術情報部情報基盤課 コンピュータシステム係 技術専門員</td>
<td>根本 忍</td>
<td>大学院理工学研究科（工系） 有機・高分子物質専攻</td>
<td>配置換</td>
</tr>
<tr>
<td>学術情報部情報基盤課 ネットワークシステム係 技術職員</td>
<td>隅水 良幸</td>
<td>原子炉工学研究所</td>
<td>配置換</td>
</tr>
<tr>
<td>学術情報部情報基盤課 ネットワークシステム係 技術職員</td>
<td>小松崎 靖</td>
<td>大岡山第二事務区 社会理工事務係</td>
<td>配置換</td>
</tr>
</tbody>
</table>

2007. 5. 2付

<table>
<thead>
<tr>
<th>新所属等</th>
<th>氏名</th>
<th>旧所属等</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>後藤 聡</td>
<td>学術情報部情報基盤課 ネットワークシステム係</td>
<td>退職</td>
<td></td>
</tr>
</tbody>
</table>
2007.10.1付

<table>
<thead>
<tr>
<th>新所属等</th>
<th>氏名</th>
<th>旧所属等</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>学術情報部情報基盤課基盤企画係主任</td>
<td>松本 直子</td>
<td>財務部契約課契約第1係</td>
<td>配置換</td>
</tr>
<tr>
<td>すずかけ台事務部会計課契約係主任</td>
<td>大屋 隆史</td>
<td>学術情報部情報基盤課基盤企画係</td>
<td>配置換</td>
</tr>
</tbody>
</table>

2007.12.1付

<table>
<thead>
<tr>
<th>新所属等</th>
<th>氏名</th>
<th>旧所属等</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>大学院情報理工学研究科グローバルCOE「計算世界観の深化と展開」特任准教授</td>
<td>遠藤 敏夫</td>
<td>学術国際情報センター研究・教育基盤部門</td>
<td>配置換</td>
</tr>
</tbody>
</table>

2008.3.31付

<table>
<thead>
<tr>
<th>新所属等</th>
<th>氏名</th>
<th>旧所属等</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>国立大学法人名古屋大学大学院情報科学研究科教授</td>
<td>太田 元規</td>
<td>学術国際情報センター学術国際交流部門</td>
<td>退職</td>
</tr>
<tr>
<td>国立大学法人千葉大学情報部情報企画課</td>
<td>大網 弘孝</td>
<td>学術情報部情報基盤課コンピュータシステム係</td>
<td>退職</td>
</tr>
</tbody>
</table>
2．情報基盤サービス

2-1 研究用計算機システム

2-1-1 構 成

東京工業大学 學術国際情報センター TSUBAME Grid Cluster

研究用支援システムは、平成 18 年 4 月に「スーパーコンピューティングキャンパスグリッド基盤システム」(TSUBAME Grid Cluster) が導入され、教職員、大学院学生及び学士論文研究者を対象とした学術研究に利用されている。

TSUBAME Grid Cluster は、NEC のシステムインテグレーション技術を中心に、NEC、AMD、Sun Microsystems、ClearSpeed、Voltaire、Cluster File System、NAREGI の優れた技術を用いて構築されており、大規模並列計算機及び流体解析、構造解析、計算科学等の大規模計算処理をおこなう Sun Fire X4600 及び高速演算アクセラレータボード ClearSpeed (総合演算性能(ピーク) 85TFlops)、高性能ストレッジサーバ Sun Fire X4500 (総容量 1PB)、超高信頼ストレッジシステム NEC iStorage S1800AT (総容量 0.5PB) を導入している。

平成 18 年度に旧スーパーコンピュータシステムで導入していたベクトル型スーパーコンピュータからのプログラム移行を支援するためのベクトル型コンピュータ NEC SX-8i 及び急激なストレージ需要に対応するための高度研究用大規模ストレッジ基盤(NESTRE)を導入、
平成19年度には分子動力学シミュレーションユーザの高速化のニーズを満たすのみならず、
TSUBAMEを含む本センターの計算資源への負荷の軽減のために分子動力学アクセラレータ
を導入するなど、絶え間なく利用技術向上並びに設備増強を実施している。
その結果、平成19年10月に行われたLinpack測定では56.43TFlops*を達成し、同年11
月に発表されたThe 30th Top500のランキングで4期連続となる日本1位、総合順位でも16
位と健闘した。

*: 導入当初の計測値より18.25TFlops、148%の性能向上

○スーパーコンピューティングキャンパスグリッド基盤システム
(TSUBAME Grid Cluster)
◇演算ノード：Sun Mictosystems Sun Fire X4600
【ハードウェア構成】

<table>
<thead>
<tr>
<th>ノード数</th>
<th>655ノード</th>
</tr>
</thead>
<tbody>
<tr>
<td>プロセッサ</td>
<td>AMD Opteron (Dual Core)</td>
</tr>
<tr>
<td>プロセッサ数</td>
<td>5,240 CPU / 10,480 Core</td>
</tr>
<tr>
<td>演算性能</td>
<td>50TFlops (ピーク性能)</td>
</tr>
<tr>
<td>主記憶容量</td>
<td>21.4テラバイト</td>
</tr>
</tbody>
</table>

【ソフトウェア構成】

<table>
<thead>
<tr>
<th>OS</th>
<th>Linux</th>
</tr>
</thead>
<tbody>
<tr>
<td>コンパイラ等</td>
<td>C, C++, Fortran</td>
</tr>
<tr>
<td>ライブラリ</td>
<td>OpenMP, MPI, Voltaire MPI, ScaLAPACK, BLAS, LAPACK</td>
</tr>
<tr>
<td>アプリケーション</td>
<td>PGI CDK, IMSL, Intel compiler, ABAQUS, MSC/NASTRAN, MSC/PATRAN, AVS/Express PCE, AVS/Express Developer, EnSight, Gaussian, GaussView, Linda, Materials Explorer, Materials Studio, Discovery Studio Modeling, MOPAC, Molpro, AMBER, SAS, Mathematica, MATLAB</td>
</tr>
</tbody>
</table>

◇高速演算アクセラレータボード：ClearSpeed CSX600
【ハードウェア構成】

<table>
<thead>
<tr>
<th>枚数</th>
<th>360枚</th>
</tr>
</thead>
<tbody>
<tr>
<td>演算性能</td>
<td>35TFlops (ピーク性能)</td>
</tr>
</tbody>
</table>

◇高性能ストレッジサーバ：Sun Mictosystems Sun Fire X4500
【ハードウェア構成】

<table>
<thead>
<tr>
<th>ノード数</th>
<th>45ノード</th>
</tr>
</thead>
<tbody>
<tr>
<td>総容量</td>
<td>1ペタバイト</td>
</tr>
</tbody>
</table>
◇ 超高信頼ストレッジシステム： NEC iStorage S1800AT
【ハードウェア構成】

| 総容量 | 0.1 ベタバイト |

◇ベクトル型コンピュータ： 日本電気株式会社 SX-8i
【ハードウェア構成】

プロセッサ数	1CPU
演算性能	16GFLOPS/CPU(ピーク性能)
主記憶容量	16 ギガバイト
ファイル容量	292 ギガバイト

【ソフトウェア構成】

OS	SUPER-UX
コンパイラ等	C, C++, Fortran90
ライブラリ	ASL, MathKisan, MPI, MPI2

◇高度研究用大規模ストレッジ基盤： Sun Microsystems Sun FireX4500
【ハードウェア構成】

| ノード数 | 20 ノード |
| 総容量 | 0.5 ベタバイト |

◇分子動力学シミュレーション加速装置： ClearSpeed X620
【ハードウェア構成】

| 枚数 | 252 枚 |
| 演算性能 | 15TFlops (ピーク性能) |

2-1-2 運 用
1) 24 時間運転
計算機システムは定期点検を除き、1 日 24 時間 365 日運転している。従って、利用者はキャンパスネットワークを介し、研究室から 24 時間計算機システムを利用することが可能である。

2) 大岡山センター及びすずかけ台分室の夜間利用
大岡山センター及びすずかけ台分室は、月曜日から金曜日までの平日は午前 8 時 30 分から午後 5 時まで開館しており、利用者は端末室内の設備を利用できる。
午後 5 時以降については全館施錠するが、午後 10 時までは IC カード化された学生証あるいは身分証明書により入館可能である。

20
3) ホスティングサービス

TSUBAMEの一部を利用して学内向けホスティングサービスを行っている。
2007年3月末現在、以下のプロジェクトがTSUBAMEホスティングを利用している。

1. TOKYO TECH OCW	6. 建物情報管理システム
2. 大学情報DB	7. G-COE「計算世界観の深化と展開」
3. Titech Chem RS	8. TSUBAME ASP
5. 高大連携プロジェクト	

2-1-3 実績【TSUBAME Grid Cluster統計資料 (2007年4月〜2008年3月)】

利用者登録状況

<table>
<thead>
<tr>
<th></th>
<th>2007年</th>
<th>2008年</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録者数</td>
<td>4月 720</td>
<td>5月 806</td>
</tr>
<tr>
<td></td>
<td>6月 898</td>
<td>7月 957</td>
</tr>
<tr>
<td></td>
<td>8月 1020</td>
<td>9月 1107</td>
</tr>
<tr>
<td></td>
<td>10月 1209</td>
<td>11月 1283</td>
</tr>
<tr>
<td></td>
<td>12月 1330</td>
<td>1月 1367</td>
</tr>
<tr>
<td></td>
<td>2月 1385</td>
<td>3月 1402</td>
</tr>
</tbody>
</table>

所属別登録状況(2007年3月現在)
利用状況

<table>
<thead>
<tr>
<th></th>
<th>実利用者数</th>
<th>接続回数</th>
<th>接続時間(時:分)</th>
<th>CPU 時間 TSS (時:分:秒)</th>
<th>TSS batch 合計 (時:分:秒)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6月</td>
<td>409</td>
<td>10435</td>
<td>27013:29:08</td>
<td>3619:04:12</td>
<td>2175037:03:00</td>
</tr>
<tr>
<td>7月</td>
<td>430</td>
<td>9426</td>
<td>22337:07:49</td>
<td>4331:21:36</td>
<td>2020795:38:24</td>
</tr>
<tr>
<td>8月*1</td>
<td>342</td>
<td>5028</td>
<td>13965:34:29</td>
<td>1118:04:12</td>
<td>897456:29:24</td>
</tr>
<tr>
<td>12月</td>
<td>488</td>
<td>13106</td>
<td>31869:12:23</td>
<td>1356:09:00</td>
<td>3245773:34:12</td>
</tr>
<tr>
<td>2月</td>
<td>467</td>
<td>10483</td>
<td>32214:00:53</td>
<td>514:36:36</td>
<td>2871587:46:12</td>
</tr>
<tr>
<td>3月*2</td>
<td>339</td>
<td>4026</td>
<td>20513:17:06</td>
<td>276:24:36</td>
<td>2156067:27:00</td>
</tr>
</tbody>
</table>

*1: 8月以降 TSS での実行時間制限を30分に変更。 *2: 3/24 現在。
2-2 教育用計算機システム

2-2-1 構成

教育用支援設備は学部1年生を対象にする情報基礎科目教育と学部2年生以上を対象にする専門科目教育の内容、及び教育効率を考慮して、1クラスの学生数80人を単位に教室（演習室、実習室）は4つに分れている。

なお、分れている教室それぞれにiMac80台とポストスクリプトプリンタ5台の構成で、以下のシステム構成図のとおりキャンパスネットに接続されている。

【ハードウェア構成】

<table>
<thead>
<tr>
<th>クライアント端末 (iMac G5)</th>
<th>学術国際情報センター3階実習室</th>
<th>84台</th>
</tr>
</thead>
<tbody>
<tr>
<td>大岡山情報ネットワーク演習室</td>
<td>大岡山情報ネットワーク演習室</td>
<td>164台</td>
</tr>
<tr>
<td>すずかけ台情報ネットワーク演習室</td>
<td>すずかけ台情報ネットワーク演習室</td>
<td>83台</td>
</tr>
<tr>
<td>ファイルサーバ (NEC iStorage)</td>
<td>総容量 5.8テラバイト</td>
<td>1台</td>
</tr>
<tr>
<td>目黒情報管理センター1階</td>
<td>大岡山情報ネットワーク演習室</td>
<td>1台</td>
</tr>
<tr>
<td>すずかけ台情報ネットワーク演習室</td>
<td>すずかけ台情報ネットワーク演習室</td>
<td>1台</td>
</tr>
</tbody>
</table>
【ソフトウェア構成】

<table>
<thead>
<tr>
<th>オペレーティングシステム</th>
<th>MacOS X</th>
</tr>
</thead>
<tbody>
<tr>
<td>アプリケーション</td>
<td>Mathematica, MATLAB, Spartan, MOPAC, JMP, Microsoft Office,</td>
</tr>
<tr>
<td>プログラミング言語処理系</td>
<td>C, C++, Fortran77, Fortran90, Perl, Ruby, Basic, Pascal, Java2SDK, Prolog, Common Lisp</td>
</tr>
</tbody>
</table>

2-2-2 運用

(1) 利用者登録

学部学生については、全学認証システムと連携することにより、4月の時点で全学生が利用できるようになっている。

また大学院生については、別途申請することにより全学認証システムからのデータ提供を受け、利用できる。

(2) ネットワークセキュリティ

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>telnet</td>
<td>学内のみ許可</td>
</tr>
<tr>
<td>www</td>
<td>学外の参照は許可、学外からの参照は禁止</td>
</tr>
<tr>
<td>ftp</td>
<td>学内のみ許可</td>
</tr>
</tbody>
</table>

(3) 夜間利用

平日17:00以降に演習室(実習室)に入室する場合はICカード(学生証)を使う。ただし、入室は次のとおり時間制限がある。

1) センター3階実習室: 22:00 まで。
2) 大岡山演習棟及びすずかけ演習室: 21:00 まで。

演習室の利用時間が実習室より短いのは、大岡山は空調機の音が地域住民に騒音となる為。また、すすかけ台は附属図書館と入り口が同じで図書館の閉館に合わせている為である。
なお土曜・日曜及び祭日は防犯上の理由から入室を禁止している。

(4) 利用期限

学部学生については学生証の有効期間に準ずる。
大学院生については、当該年度末まで利用可能。

2-2-3 実績【教育用計算機システム統計資料(2007年4月〜2008年3月)】

利用者登録状況

<table>
<thead>
<tr>
<th></th>
<th>学部1年生</th>
<th>学部2〜4年生</th>
<th>大学院生</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録者数</td>
<td>1132</td>
<td>3547</td>
<td>363</td>
</tr>
<tr>
<td>月別及び教室別教育システム利用状況</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ログイン件数

<table>
<thead>
<tr>
<th>月</th>
<th>センター1実習室</th>
<th>センター2実習室</th>
<th>演習棟1演習室</th>
<th>演習棟2演習室</th>
<th>すずかけ台演習室</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月</td>
<td>1318</td>
<td>450</td>
<td>3003</td>
<td>2754</td>
<td>976</td>
</tr>
<tr>
<td>5月</td>
<td>2124</td>
<td>750</td>
<td>4443</td>
<td>4136</td>
<td>1065</td>
</tr>
<tr>
<td>6月</td>
<td>2778</td>
<td>1120</td>
<td>5339</td>
<td>5780</td>
<td>1248</td>
</tr>
<tr>
<td>7月</td>
<td>2182</td>
<td>966</td>
<td>3438</td>
<td>5384</td>
<td>1051</td>
</tr>
<tr>
<td>8月</td>
<td>261</td>
<td>75</td>
<td>1391</td>
<td>1904</td>
<td>217</td>
</tr>
<tr>
<td>9月</td>
<td>97</td>
<td>96</td>
<td>534</td>
<td>349</td>
<td>94</td>
</tr>
<tr>
<td>10月</td>
<td>1261</td>
<td>727</td>
<td>3045</td>
<td>2861</td>
<td>517</td>
</tr>
<tr>
<td>11月</td>
<td>1959</td>
<td>1101</td>
<td>3775</td>
<td>3413</td>
<td>572</td>
</tr>
<tr>
<td>12月</td>
<td>1369</td>
<td>838</td>
<td>2090</td>
<td>2069</td>
<td>606</td>
</tr>
<tr>
<td>1月</td>
<td>1444</td>
<td>817</td>
<td>2176</td>
<td>2097</td>
<td>508</td>
</tr>
<tr>
<td>2月</td>
<td>703</td>
<td>302</td>
<td>0</td>
<td>0</td>
<td>94</td>
</tr>
</tbody>
</table>

* 2月, 3月は演習棟移転によるシステム停止の影響を含む*
2-3 ネットワークシステム

2-3-1 構 成
キャンパス情報ネットワーク(Titanet)は、(1)耐健性、(2)高速性、(3)安全性の3つを柱として設計されたスター型配線のネットワークシステムである。大岡山・すずかけ台および田町の各キャンパスに基幹ルータを設置し、その配下の各地区にある建物に拠点スイッチを、さらに地区内の主要建物に建物スイッチをそれぞれ設置している。基幹ルータ及び拠点スイッチについては、障害が発生しても瞬時に切り替えられる冗長化構成としている。建物スイッチには、上流1ギガを2ポート、下流に100メガを48ポート備えたスイッチを導入し、研究室あたり1ポート以上割り当て可能とし、利用状況に応じて機器の増設、交換を行っており、より高速にデータ伝送したい場合にはギガビットのポートを提供可能としている。

学外接続については、ギガビットインターフェースを備えたプロキシ専用サーバ及びファイアウォールを通じて、大岡山キャンパスから学術情報ネットワーク(SINET3)、WIDE/JGN2研究プロジェクトと接続している。また、バックアップ用として、商用ISP(すずかけ台地区；ベストエフォート100メガビット、田町地区；100メガビット)と接続している。

図2-3にキャンパス情報ネットワークシステムの概念図を示した。

○ キャンパス間ネットワーク
2004年度から回線業者よりDFを借用し、以下のとおり接続している。
(1) 大岡山キャンパス—すずかけ台キャンパス間(4芯)：4芯のうち2芯は光多重化装置(WDM)を用いて6ギガビット(6ギガビットのうち2ギガビットはスーパーSINET研究プロジェクト用として使用)で接続している。2芯は10ギガビットイーサネットと1ギガビットイーサネットとして接続している。

(2) 大岡山キャンパス—田町キャンパス(2芯)：2004年度のDF導入によりギガビット接続となり、附属高校でのIT教育の推進を実現している。
また、回線や機器のメンテナンスや障害に備えてVPNを使用したバックアップ線を用意しており、光ファイバーの回線が使用できない場合にもキャンパス間内線電話を含むほとんどのネットワークサービスを維持できるようになっている。

○ キャンパス無線LAN
キャンパス公衆ネットワーク(無線LAN)は2004年度より構築を開始し、2007年5月現在で、約600の無線アクセスポイントから構成されている。学生が主に利用する講義室、情報ネットワーク演習室、図書館、食堂、講堂、サークル棟およびフェライト会議室、デジタル多目的ホール、すずかけホールなどの会議用のスペースをカバーしており、無線LANの規格としては、IEEE 802.11 a/b/gに対応している。
また、すずかけ台J2棟講義室の情報コンセントをキャンパス公衆ネットワークの一部とし
一体の運用をしている。接続時の認証はキャンパス共通認証・認可システムを用いたウェブ認証方式を採用するなど、セキュリティを考慮にいれた設計になっている。利用者がウェブブラウザを起動すると、キャンパス共通認証・認可システムのポータルページが表示され、そこでICカードまたはマトリックスコード認証を選択し、認証手続きを行うことで接続できるようになっている。これによって、学生・教職員のネットワークアクセス環境が飛躍的に向上している。

図 2-3 キャンパス情報ネットワークシステム（概念図）

2-3-2 運用
前述した基幹ネットワークの提供に加え、以下の各種サービスも提供している。

(1)サーバ代行サービス（DNS サーバ代行サービス、WWW サーバ代行サービス）
各種サーバをセンター内に設置して集中管理を行っている。これにより、各支線においての管理作業（①ログ情報の監視、②セキュリティパッチの適用、③ソフトウェア更新作業、④障害時対応（ネットワーク停止等による障害の拡大防止、被害調査及び報告、システムの復旧作業等など）を大幅に削減することができると同時に、ネットワークセキュリティを強化することが可能となっている。
なお、WWW サーバ代行サービスの提供に際しては、最低限の利用負担金をいただいており、その収入については各種サーバの維持管理に充てている。
ファイル交換ソフトウェア検知サービス

2007年10月より、本学キャンパスネットワークを介した著作権侵害行為の防止強化のため、ファイル交換ソフトウェア検知サービスの提供を開始した。このサービスは、学外との通信内容を機械的に判断し、著作権侵害行為に荷担するおそれのあるソフトウェアを検知し、「使用ポリシー」に違反する場合には遮断し、支線ネットワークの連絡担当者に通知するサービスである。

2008年3月末日時点での検知対象は、BitTorrent, Gnutella, Kazaa, Share, WinMX, Winny, eDonky, eDonkey2000, Direct Connectとなっている。また、これらのソフトウェアと同等の通信を行うソフトウェアも検知されることとなっている。

特定用途用メール送信サーバサービス

WWWサーバ等に設置したメール送信プログラムを利用する場合を対象として、メール送信サーバを提供している。

DNSサーバサービス

学内を対象として、DNSサーバ(フルリソルバ)を提供している。

ファイアウォールサービス

専用ファイアウォール機器による高速処理を行っている。

支線毎に、ウェブ(HTTP)やメール(POP3, SMTP)などのサービスごとの条件を指定でき、不要なポートを閉じておくことで、不正侵入の可能性を減少させる効果がある。また、入力(inbound)と出力(outbound)のトラフィックを個別に指定可能であり、学外のサービスを利用するが支線の端末にはアクセスできないような設定も可能としている。

スクリーニングサービス

東工大の学内ネットワーク幹線と学外との接続点において、ホスト単位で通信の可、不可の設定を行っている。このサービスを利用することにより、同一の支線内や、学内との通信のみを行なうことを目的としたホストについて、学外からの通信を制限でき、不正規アクセスの対象となることを防ぐことが可能になっている。

プロキシサービス

学外からのアクセスを対象に、WWW、ftp、ストリーミング等のリクエストを中継している。これにより、スクリーニングが掛かっている、もしくはプライベートアドレスが割り当てられているクライアントからWWWやftp等が利用できる。

自動IPv6トンネリング防止サービス

IPv6 over IPv4 トンネリングを遮断し、希望する支線からのIPv6 over IPv4 トンネリング(6to4、Teredo、手動トンネリング)通過を適宜許可している。

時刻情報(NTP)サービス

2005, 2006年度にGPS, CDMAを時刻源とする時刻サーバを大岡山キャンパス・すずかけ
台キャンパスに導入した。
これにより、各計算機に内蔵されている時計を正確に標準時刻に合わせることが可能になり、ファイルのタイムスタンプや、メールの送信時刻の不一致による障害の回避や、ネットワークトラブル発生時の異なる計算機間でのログの解析が容易になる。

(10) 研究プロジェクトへの支援
2002年10月にスーパーSINET用ノード装置が導入され、対外接続の高速化とともに、「高エネルギー・核融合科学」、「宇宙科学・天文学」、「遺伝子情報解析(バイオインフォマティクス)」、「スーパーコンピュータ等を連動する分散コンピューティング(GRID)」等の先端的研究分野における本学の研究プロジェクト向けにギガビット専用線の提供及びキャンパスネット経由での接続環境が提供された。
これら学内の研究プロジェクトに対して、スーパーSINET(現SINET3)ノードから研究プロジェクトの所属する研究室までの構内ギガビット専用線路、研究機器接続用ネットワークスイッチ等の提供並びにネットワーク構築のための技術支援を行っている。
また、JGN2, APAN接続プロジェクトについても同様の支援を行っている。

2-3-3 実績
サーバ代行サービス登録件数
2-4 キャンパス共通認証・認可システム

2-4-1 構成
平成17年度、国立大学法人では初めてPKI（公開鍵暗号方式を利用したセキュリティ基盤）を用いた「全学共通認証・認可システム」の導入を行い、平成18年4月から本学構成員全員に対し全学通の情報基盤に対するアカウント（以下、東工大共通アカウントという。）を付与すると値に「東工大ICカード」、「全学共通メールアカウント」を提供している。

図2-4に共通認証・認可システム及び全学共通メールシステムの構成概念図を示す。

2-4-2 運用
（1）東工大ポータル
学内の情報基盤サービスや各種情報サービス（以下、情報サービスという。）に対する統一的な利用の窓口として「東工大ポータル（Tokyo Tech Portal）」と呼ばれるウェブページを用意している。この東工大ポータルに一度ログインすることにより、各種情報サービスを利用ることができるようになっている。利用並びにシステム管理者にとって大幅に利便性が向上した。

（2）利用可能な情報サービス
2007年度末現在、東工大ポータル上から利用可能な情報サービスは以下のとおりであ
る。今後、教務 WEB システム、人事給与システム（仮称）、スーパーコンピュータなどとの連携も計画している。また、個人の利用環境に合わせカスタマイズ可能な「My 東工大ポータル」化も検討している。
・全学共通メール（ウェブメール、管理者機能など）
・東工大キャンパス公衆ネットワーク（無線 LAN）
・物品等請求システム
・講義支援システム (LMS)
・学内ネットワーク環境への接続 (SSL-VPN 接続)
・Tokyo Tech OCW
・MS ソフトウェアの提供
・東工大リサーチリポジトリ (T2R2)
・TDL オンラインリクエスト

2-4-3 実績
(1) 認証・認可システム／全学共通メールの運用状況を以下に示す。

<table>
<thead>
<tr>
<th>年月</th>
<th>事項</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008年3月</td>
<td>J2棟及びR1棟入館管理システムとの自動連携開始</td>
<td></td>
</tr>
<tr>
<td>2008年1月</td>
<td>TDLオンラインリクエスト運用開始</td>
<td></td>
</tr>
<tr>
<td>2007年12月</td>
<td>T2R2との自動連携開始</td>
<td></td>
</tr>
<tr>
<td>2007年10月</td>
<td>迷惑電子メール対策システム運用開始</td>
<td></td>
</tr>
<tr>
<td>2007年8月</td>
<td>T2R2正式運用</td>
<td></td>
</tr>
<tr>
<td>2007年4月</td>
<td>MSソフトウェア提供開始</td>
<td></td>
</tr>
</tbody>
</table>

(2) 全学共通メールの利用状況を以下に示す。
・全学共通メールアドレス発行件数（2008年3月31日現在）

<table>
<thead>
<tr>
<th>全学共通メールアカウント発行件数</th>
<th>12,439</th>
</tr>
</thead>
<tbody>
<tr>
<td>（内訳）常勤職員</td>
<td>1,735 （14%）</td>
</tr>
<tr>
<td>非常勤職員</td>
<td>1,192 （10%）</td>
</tr>
<tr>
<td>アクセスカード所有者</td>
<td>380 （3%）</td>
</tr>
<tr>
<td>学部学生</td>
<td>3,475 （35%）</td>
</tr>
<tr>
<td>大学院学生（修士課程）</td>
<td>4,019 （32%）</td>
</tr>
<tr>
<td>大学院学生（博士後期課程）</td>
<td>1,514 （12%）</td>
</tr>
<tr>
<td>研究生等</td>
<td>124 （1%）</td>
</tr>
</tbody>
</table>
全学共通メール利用状況（2007年4月1日〜2008年3月31日）

表2-4 全学共通メール利用状況
2-5 ソフトウェア包括契約

2-5-1 概要
学内でも広く使われている Microsoft Windows 及び Microsoft Office について、平成 19年 4月にキャンパス包括ライセンス契約(Campus Agreement)を締結した。これは、研究室等における上記ソフトウェアの購入経費の軽減(大学全体での経費削減)、不正コピーの抑止を目的に導入したものである。

その結果、平成 19年度の実績で約2 億円の経費が削減され、加えて、無償で提供されるオプションにより本学学生が上記ソフトウェアを個人所有の PC にインストールすることも可能となり、学生の学習・研究環境整備にも貢献している。

また、提供するソフトウェアに対する管理を厳密に行う手段として、全学認証システムとの連携による本人認証を行っている。

【包括契約で提供されるソフトウェア】

<table>
<thead>
<tr>
<th>Microsoft Office</th>
<th>Windows 版</th>
<th>Office 2003 Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Office 2007 Enterprise</td>
</tr>
<tr>
<td></td>
<td>Mac 版</td>
<td>Office 2004 for MAC</td>
</tr>
<tr>
<td>Microsoft Windows Upgrade</td>
<td>Windows Vista Ultimate Upgrade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Windows Vista Business Upgrade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Windows XP Professional Upgrade</td>
<td></td>
</tr>
</tbody>
</table>

2-5-2 運用

1) 利用資格
アクセスカード、入館カードを除く東工大 IC カード身分証を保持する学生、教職員が利用できる。

2) インストール対象となるコンピュータ
以下の条件を満たすコンピュータにインストールすることができる。
・大学の経費で購入した大学所有のコンピュータ（大学の物品及びレンタル品を含む）
・利用資格を有する者が所有する個人所有のコンピュータ（ただし、一人当たり MS Office／OS 共にいずれかのバージョン 1 つを 1 台分利用可能）

3) 提供方法
a）大学所有コンピュータへの提供
Step1:【教室系】常勤講師以上の方が作業／【事務系】筆頭係長が作業
IC カードリーダを使って東工大ポータルにログイン ⇒ 誓約書を提出
Step2: 教室系: 常勤講師以上の方作業 / 事務系: 筆頭係長が作業

<table>
<thead>
<tr>
<th>大学公式ログイン (マトリックス認証可)</th>
<th>パスコード取得</th>
</tr>
</thead>
</table>

Step3: 教室系: 教職員・非常勤職員・学生作業 / 事務系: 常勤職員作業

<table>
<thead>
<tr>
<th>大学公式ログイン (マトリックス認証可)</th>
<th>ソフトウェアをダウンロード*</th>
</tr>
</thead>
</table>

* パスコード取得から24時間以内に作業する必要があります

Step1: 常勤職員作業

<table>
<thead>
<tr>
<th>ICカードリーダを使って大学公式ログイン</th>
<th>誓約書提出</th>
</tr>
</thead>
</table>

Step2: 常勤職員作業

<table>
<thead>
<tr>
<th>大学公式ログイン (マトリックス認証可)</th>
<th>パスコード取得</th>
</tr>
</thead>
</table>

Step3: 常勤職員作業

<table>
<thead>
<tr>
<th>大学公式ログイン (マトリックス認証可)</th>
<th>ソフトウェアをダウンロード*</th>
</tr>
</thead>
</table>

* パスコード取得から24時間以内に作業する必要があります

b) 個人所有コンピュータへの提供【教室系教職員】

Step1: 常勤職員作業

<table>
<thead>
<tr>
<th>IC カードリーダを使って東工大ポータルにログイン</th>
<th>誓約書提出</th>
</tr>
</thead>
</table>

Step2: 常勤職員作業

<table>
<thead>
<tr>
<th>東工大ポータルにログイン (マトリックス認証可)</th>
<th>パスコード取得</th>
</tr>
</thead>
</table>

Step3: 常勤職員作業

<table>
<thead>
<tr>
<th>東工大ポータルにログイン (マトリックス認証可)</th>
<th>ソフトウェアをダウンロード*</th>
</tr>
</thead>
</table>

* パスコード取得から24時間以内に作業する必要があります

c) 個人所有コンピュータへの提供【事務系職員】

Step1: 筆頭係長作業

<table>
<thead>
<tr>
<th>IC カードリーダを使って東工大ポータルにログイン</th>
<th>誓約書提出</th>
</tr>
</thead>
</table>

Step2: 筆頭係長作業

<table>
<thead>
<tr>
<th>東工大ポータルにログイン (マトリックス認証可)</th>
<th>パスコード取得</th>
</tr>
</thead>
</table>

Step3: 常勤職員作業

<table>
<thead>
<tr>
<th>東工大ポータルにログイン (マトリックス認証可)</th>
<th>ソフトウェアをダウンロード*</th>
</tr>
</thead>
</table>

* パスコード取得から24時間以内に作業する必要があります

d) 個人所有コンピュータへの提供【学生】

Step1: 学生証を持って生協へ

Step2: 誓約書と学生使用条件許諾書にサイン (生協が学生証のコピーを保管)

Step3: メディアを購入 (価格1,400円。各メディア1種1枚まで購入可)
2-5-3 実績

Microsoft Windows Vista 配布数

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月</td>
<td>5月</td>
<td>6月</td>
<td>7月</td>
</tr>
<tr>
<td>教職員</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>学生</td>
<td>10</td>
<td>3</td>
<td>141</td>
</tr>
<tr>
<td>計</td>
<td>10</td>
<td>3</td>
<td>141</td>
</tr>
</tbody>
</table>

Microsoft Windows XP 配布数

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月</td>
<td>5月</td>
<td>6月</td>
<td>7月</td>
</tr>
<tr>
<td>教職員</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>学生</td>
<td>7</td>
<td>3</td>
<td>76</td>
</tr>
<tr>
<td>計</td>
<td>7</td>
<td>3</td>
<td>76</td>
</tr>
</tbody>
</table>

Microsoft Office 2003 (Windows版) 配布数

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月</td>
<td>5月</td>
<td>6月</td>
<td>7月</td>
</tr>
<tr>
<td>教職員</td>
<td>24</td>
<td>137</td>
<td>355</td>
</tr>
<tr>
<td>事務局</td>
<td>-</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>学生</td>
<td>7</td>
<td>3</td>
<td>58</td>
</tr>
<tr>
<td>計</td>
<td>31</td>
<td>140</td>
<td>419</td>
</tr>
</tbody>
</table>

Microsoft Office 2007 (Windows版) 配布数

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月</td>
<td>5月</td>
<td>6月</td>
<td>7月</td>
</tr>
<tr>
<td>教職員</td>
<td>74</td>
<td>249</td>
<td>529</td>
</tr>
<tr>
<td>事務局</td>
<td>-</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>学生</td>
<td>423</td>
<td>68</td>
<td>748</td>
</tr>
<tr>
<td>計</td>
<td>497</td>
<td>328</td>
<td>1294</td>
</tr>
</tbody>
</table>

Microsoft Office 2004 (Mac版) 配布数

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月</td>
<td>5月</td>
<td>6月</td>
<td>7月</td>
</tr>
<tr>
<td>教職員</td>
<td>-</td>
<td>34</td>
<td>79</td>
</tr>
<tr>
<td>学生</td>
<td>22</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>計</td>
<td>22</td>
<td>45</td>
<td>123</td>
</tr>
</tbody>
</table>
Microsoft Office 2008 (Mac 版) 配布数

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4月</td>
<td>5月</td>
<td>6月</td>
</tr>
<tr>
<td>教職員</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>学生</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>計</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
2-6 構成・運用・実績等の外部発表

認証認可システム係

外部発表

・平成19年度国立大学法人等電子事務局研究発表会（2007年9月19日）
 題目：「キャンパス共通認証・認可システムの概要」
 発表者：技術部情報基盤支援センター技術職員 新里卓史

・電子情報通信学会インターネットアーキテクチャ研究会（2008年1月25日）
 題目：「東京工業大学におけるキャンパス共通認証認可システムを用いた安全な
 ソフトウェア配布機構の設計と実装」
 発表者：技術部情報基盤支援センター技術職員 新里卓史

・電子情報通信学会ネットワークシステム研究会（2008年3月7日）
 題目：「NSF FINDにおけるポストIPネットワークの研究動向」
 発表者：学術情報部情報基盤課認証認可システム係補佐員 岸本幸一

・電子情報通信学会2008総合大会インターネットアーキテクチャ研究会
 （2008年3月21日）
 題目：「東京工業大学におけるキャンパス共通認証認可システムを用いた安全な
 ソフトウェア配布機構」
 発表者：学術国際情報センター准教授 飯田勝吉（技術職員 新里卓史の代理）
3. 情報基盤推進活動

3-1 TiTech Grid Cluster

TSUBAMEのH19年度現状と将来計画
研究システム専門委員会報告資料 2008/03/24

東京工業大学 学術国際情報センター(GSIC) /
国立情報学研究所(客員)
教授 松岡 聡
matsu@is.titech.ac.jp
TSUBAME構築の目標---単なるスパコンではない

1. 東工大のシンボル: 世界トップレベルの情報インフラ保持

東京工業大学

![東京工業大学のマーク]

2. 研究推進: 莫大な計算パワー・ストレッジ(1ペタバイト以上)・みんなのスパコン

大規模災害・都市環境・社会システムシミュレーション
大規模ナノ物性シミュレーション
データサイエンス
脳の血流シミュレーション
ゲノム創薬
蛋白質構造解析
科学の飛躍的な研究推進と教育

3. 産学連携等の推進、大型プロジェクトへの呼び水、アライアンスを組む他大学計算ユーズホスティング

Top500リスト: 世界でトップ10へ

シミュレーション
科学の飛躍的な研究推進と教育

4. 学内の分散した情報基盤の集約化・ホスティング

東京工業大学

![東京工業大学のマーク]

XX国

大学

YY私立大学

ZZ社

2006年4月東工大スパコン "TSUBAME" (スパコンとしての調達分)

Voltaire ISR9288 Infiniband x8
- 10Gbps x2
- 1310+50 Ports
- 13.5Terabits/s

ストレッジ
- 1 Petabyte (Sun "Thumper")
- 0.1Petabyte (NEC iStore)
- Lustre ファイルシステム
- >400Gbps

ストレッジ

- 4
- 50
- 500G
- 48dsk

Sun/AMD高性能計算クラスタ
- (Opteron Dual core 8-Way)
- 10480core/655ノード
- 50.4TeraFlops
- OS(現状): Linux

(検討中) Solaris, Windows, NAREGIグリッドミドル

2006年6月現在

アジア No.1, 世界No.7

38.18TeraFlops

(Top500計測値)

ClearSpeed CSX600
SIMD accelerator
360 boards,
35 TeraFlops
TSUBAMEの’06-07年度機能拡張
（GSICセンター全体の複合システム）

Voltaire ISR9288 Infiniband x8
10Gbps x2 + 1310+50 Ports
-13.5Terabits/s
(3Tbits bisection)
10Gbps+External NW

NEC SX-8i
(for porting)
(平成17年度ベクトル計算機追加)

Storage
1.5PB+60Petabyte (Sun x4500 x2)
0.1Petabyte (NEC iStore)

Lustre FS, NFS, CIF, WebDAV (over IP)
50GB/s aggregate I/O BW

Top500にて4期連続で
我国最速のスーパーコンピューティング
Top500@56.43TFlops
(平成17年度末110TFlops)

Sun x4600 (16 Opteron Cores)
32~128GB SRAM
10480core/655Nodes
21.4TeraBytes
50.4TeraFlops

OS Linux (Suse 9, 10)
NAREGI Grid MW

Integer Workload Accelerator
8.2TeraFlops

ClearSpeed CSX600
SIMD accelerator
(平成17年度
分子動力学
アクセラレータ)

TSUBAMEの一年半の運用成果：全目標達成

1. 東工大のシンボル：世界トップレベルの情報インフラ

文部科学省先端研究施設通用インフラ構築連携事業【産業戦略利用】

Global COE
「計算世界観」
Microsoft 包括契約
HPC Institute/TOK

NAREGI/NII-GSI
全国サイバーサイエンスインフラ
NAREGI 開発への貢献

2. 研究推進: 莫大な計算パワー・ストレッジ(1ペタバイト以上)・みんなのスパコン

TSUBAME「みんなのスーパーコンピュータ」
- 高等教育の実施子供によるユーザ数増加 1300人へ倍増
- コア運用ニーズの追加(アプリ・性能評価・グリッド試験運用など)
- 各種ITサービスのホスティング
27-29th TOP500アジア最速スパコン
(4期連続日本最速)

TSUBAMEのテレビ出演

NHKサイエンスゼロ
2007 3月

テレビ東京「ジパング」
2007 4月

他、NHKニュース
(2007年11月)など
多数の新聞・雑誌報道など

（Unix Magazine, 20ページ特集記事）

The Wall Street Journal,
日経、毎日、朝日など

東工大のシンボルとしてのTSUBAME :
本学で最も訪問者が多い研究施設

- 年間100件あまりの内外の訪問者(本年度現在で80件近く)
 - 大臣から外国の北欧の高校生まで
 - DoE, DoD, NSF, NASA, CNRS(フランス), 等のセンター長クラス

Dr. Phil Papadopoulos
(Cray Microsoft)

Dr. Burton Smith
(Ibm, Director Computing
Lawrence Berkeley NL)

Dr. Rick Stevens
(Vice Director,
Argonne National Labs)

Dr. Guy L. Steele @ Sun
Micro, Prof. Serge Petition @ U. Paris,
Prof. M. Iida @Aoyama U

Baidu Inc. Search Engine (百度)
TSUBAMEの認知度 on (2008/2/6, 日本語のページ)

- “TSUBAME” 2006稼動 - 合計20,000件程度

c.f.
- 「東工大」「東京工業大学」 - 332,000件
- 「東工大ポータル」 2006稼動 - 643件
- 「TITANET」 1994稼動 - 404件

- 「地球シミュレータ」 2002稼動 - 66,400件
- 「白川英樹」 - 28,400件

TSUBAMEの「経済効果」
- TSUBAMEに依存した学内研究の合計資金 -

 (総額、ただし研究費で運用経費ではない)

- 科研費・受託研究費・COEなどで、TSUBAMEの有料サービスを利用している研究費
 - 以下は除く
 - 無料サービス利用
 - 先端イノベーションなどの企業利用
 - GSICの大規模実験
 - 現状の集計：平成19年度では合計12.47億円
 - 間接経費2億円以上(集計中)
2006年度末NESTREシステムによるストレージ拡張

NESTRE x4500 x 20台
～0.5PB

総合 1.1PB => 1.6PBに
高信頼大容量サービス

TSUBAME拡張ストレージ利用による賞

SC07 Storage Challenge

Breaking News:
Argonne, Virginia Tech Win Storage Challenge Competition

BLACKSBURG, Va., Nov. 26 — A team of researchers led by Parve Bhalja of Argonne National Laboratory and Wei Fang of Virginia Tech won an international competition for the most effective approach in using large-scale storage for high performance computing. The award was presented Nov. 14 at SC07, the world's premier conference on high performance computing and networking.

Using a novel software framework for distributed I/O called ParallelDAG, the team of researchers from Argonne National Laboratory, Virginia Tech, and North Carolina State University uncovered the sequence of all completed executed queries against each other. The team was credited for discovering missing genes and to speed future searches by generating a complete genome similarity tree. The ParallelDAG software framework used a semantics-based approach to create a metadata representation that was four orders of magnitude smaller than the actual output data.

"Using ParallelDAG, the entire genome similarity tree, corresponding to a petabyte of data, can fit into a 4-gigabyte iPod nano," said Bhalja.

This entire task required many millions of CPU-hours of computational capability and generated a petabyte of uncompressed output. Since most supercomputer centers provide both the computational and storage resources required for this task simultaneously, the researchers relied on a worldwide supercomputer that aggregated the compute resources from various locations within the U.S. and the

SC07 Storage Challenge

The leading source for global news and information covering the ecosystem of high performance computing / November 26, 2007

HighPerformance
Networks
Enterprise
Storage

Breaking News:
Argonne, Virginia Tech Win Storage Challenge Competition

BLACKSBURG, Va., Nov. 26 — A team of researchers led by Parve Bhalja of Argonne National Laboratory and Wei Fang of Virginia Tech won an international competition for the most effective approach in using large-scale storage for high performance computing. The award was presented Nov. 14 at SC07, the world's premier conference on high performance computing and networking.

Using a novel software framework for distributed I/O called ParallelDAG, the team of researchers from Argonne National Laboratory, Virginia Tech, and North Carolina State University uncovered the sequence of all completed executed queries against each other. The team was credited for discovering missing genes and to speed future searches by generating a complete genome similarity tree. The ParallelDAG software framework used a semantics-based approach to create a metadata representation that was four orders of magnitude smaller than the actual output data.

"Using ParallelDAG, the entire genome similarity tree, corresponding to a petabyte of data, can fit into a 4-gigabyte iPod nano," said Bhalja.

This entire task required many millions of CPU-hours of computational capability and generated a petabyte of uncompressed output. Since most supercomputer centers provide both the computational and storage resources required for this task simultaneously, the researchers relied on a worldwide supercomputer that aggregated the compute resources from various locations within the U.S. and the

SC07 Storage Challenge

The leading source for global news and information covering the ecosystem of high performance computing / November 26, 2007

HighPerformance
Networks
Enterprise
Storage

Breaking News:
Argonne, Virginia Tech Win Storage Challenge Competition

BLACKSBURG, Va., Nov. 26 — A team of researchers led by Parve Bhalja of Argonne National Laboratory and Wei Fang of Virginia Tech won an international competition for the most effective approach in using large-scale storage for high performance computing. The award was presented Nov. 14 at SC07, the world's premier conference on high performance computing and networking.

Using a novel software framework for distributed I/O called ParallelDAG, the team of researchers from Argonne National Laboratory, Virginia Tech, and North Carolina State University uncovered the sequence of all completed executed queries against each other. The team was credited for discovering missing genes and to speed future searches by generating a complete genome similarity tree. The ParallelDAG software framework used a semantics-based approach to create a metadata representation that was four orders of magnitude smaller than the actual output data.

"Using ParallelDAG, the entire genome similarity tree, corresponding to a petabyte of data, can fit into a 4-gigabyte iPod nano," said Bhalja.

This entire task required many millions of CPU-hours of computational capability and generated a petabyte of uncompressed output. Since most supercomputer centers provide both the computational and storage resources required for this task simultaneously, the researchers relied on a worldwide supercomputer that aggregated the compute resources from various locations within the U.S. and the
分子動力学用ClearSpeed拡張
（2007年11月）

Advance™ Dual CSX600 PCI-X追加

- PCI-X accelerator boards with peak performance of 96GFlops
 - CSX600 SIMD proc x 2 + 1GB DRAM on board
 - 0.5GFlops PE x 96 per processor
 - 8” single-slot PCI-X
 - 25W / board

- すでにTSUBAMEでは655ノード中360枚装備していたが、今回ほぼ全ノードまで拡張配備、主に分子動力学用（他のアプリも間接的に利益が）

両者とも~80GFlops / node、消費電力1300W (x4600 Opteron) vs. 25W (ClearSpeed)

ClearSpeed拡張による性能向上

- 47.38TF with 648 nodes and 360 Accelerators for the 28th Top500 (48.88TF for the 29th Top500, #14)
 - +24% improvement over No Acc (38.18TF)
 - +25.5GFlops per accelerator
 - Matrix size N=1148160 (It was 1334160 in No Acc)
 - 5.9hours
- With new DGEMM&648 cards, 56.43TF (16th on the 30th Top500)
アプリ例：様々な乱流場のDNS
（東工大・店橋研）

TSUBAME ジョブ統計
Dec. 2006-Aug.2007 (#Jobs)
1400人のユーザ

- 797,886 Jobs (~3270 daily)
- 597,438 serial jobs (74.8%)
- 121,108 <=8p jobs (15.2%)
- 129,398 ISV Application Jobs (16.2%)
- However, >32p jobs account for 2/3 of cumulative CPU usage
 Coexistence of ease-of-use in both
 - short duration parameter survey
 - large scale MPI

予想通りのジョブ配分
TSUBAMEの危機的な混雑度

CPU稼働率

長い待ち時間（数日単位）

過去1ヶ月

高いCPUノード稼働率（2008年2月13日）

みんなのスパコン

スパコンを全学教育研究で活用

「みんなの全学アカウント」

- スパコンを用いた高度教育
 - スパコンではじめて可能になる高度シミュレーションを学部の学生演習・実験で
- グリッド技術を用いた研究室のIT環境とスパコンとのシームレス化
- ポータルによる高度アプリ利用

アプリポータル事例: WebMO
量子化学プログラム(Gaussian, NWChem, GAMESS, MOPAC, Molpro等)をWebブラウザから簡単に利用できるインターフェース

1. 認証 2. ジョブ管理
3. 分子編集 4. 計算条件設定

デスクトップがそのまま数千プロセッサになったみたい😊
みんなのスパコン

(4) スパコンによるIT統合の新潮流

- All University AAA and E-mail system
 - 50TB of Thumper, 9 Galaxy 1 nodes from TSUBAME
- 全学ストレッジサービス(試行中・H20より本格運用)
 - 全学全員数十GB (パソコンでマウント可)
 - 研究結果のレポジトリ化 (シミュレーション結果など)
- 高度研究用アプリの教育利用(Open CourseWar®)
- 図書館業務のホスティング
- 事務系のホスティング(VMIによる)

先端研究施設共用イノベーション創出
事業【産業戦略利用】

- 企業のパソコン・クラスタ上の所有ソフトがそのまま、数十倍の速度や規模で動作
 単にCPUパワーだけでなく、メモリ・ストレージ・ネットワークも
 「アキバのプログラムは動くがアキバでは買えないスパコン」
- アジアーのスパコンを、既存シミュレーション利用者以外(ICT、金融、流通、サービス業界等)にも開放
- 本学への産学連携・共同研究の呼び水

Ruby
A Programmer’s Best Friend

The Apache Software Foundation
http://www.apache.org/

Perl Java OpenEJB Struts

48
採用課題一覧 (2008/1) 11件

戦略分野利用推進
- 巨大生体分子の非経験的分子軌道法による設計指針構築 三菱化学科学技術研究センター
- タンパク質一次構造の網羅的解析による創業技術の開発 (株)ライフィクス
- コンピュータ支援によるポリアミン誘導体医薬品の開発 (株)アミンファーマ研究所
- CONFLEXを用いた配座探索および結晶多形解析 (株)コンフレックス
- 電磁場中大規模粉体運動シミュレーションによる電子写真設計プロセス革新 (株)リコー

新規利用拡大
- 銀行業・保険業におけるALM(Asset Liability Management)システムの開発 (株)ニューメリカルテクノロジーズ
- 大規模分散検索エンジン製品の開発 (株)ビジネスサーチテクノロジーズ
- ワイドギャップナノ構造体精密加工のシミュレーション (株)日本電気
- 機能性無機材料の光学的電子的特性と構造設計の研究 (株)住友化学
- 混相流シミュレーションコードの並列拡張性能の評価 (株)計算流体力学研究所
- 高層ビルの大規模耐震構造解析 (株)アライドエンジニアリング

その他、東芝・三菱住友UFJ・ニッセイなどが応募予定

三井住友系の金融ベンチャー
Numerical Technologies

「移植は一日」 「3000CPUのモンテカルロで画期的な成果」 「自分で用意したら数十億円」
GlobalCOE「計算世界観」

科学の対象を計算を中心に見直そう！
新視点の改革

HPCSプロジェクト
by 米国 DARPA
目標：スーパコン生産性向上
手法：巨大システム開発
超大規模予算
従来型改革
改革が必要！

複雑・大規模

例）物質分析→物質合成
・社会システムの分析
さらなる要望
数々の成果

GlobalCOEによるHPC人材育成
実践ができる数理計算科学者の育成
「計算世界観」を実践できる人材

目ざす人物像

解析・設計の理論
・アルゴリズム
・離散構造解析
・確率構造解析

HPC実践技術
・モデル化技法
・プログラミング
・システム実現

自らの専門＋

計算世界観
・異分野に乗り込む
・交流力
・吸収力

対象分野の研究者

実践もできる博士

1. 魅力的なテーマ
2. 組織的な指導体制
3. 多くの分野へ

人材不足！
H20年度へ向けて

- 更なる性能向上 ⇒ TSUBAME 1.5
 - Top500日本一維持または奪還
- Global COEマシンなどの資源バーターによる一体化による増強
- 教育・事務系を含むホスティングの更なる強化
 - 教育でのさらなる活用も ⇒ システム統合へ
- 本格的大規模データ基盤・データグリッドサービスの開始
- 全国基盤センター化へ向けた国立情報学研究所と連携したCSI(サイバーサイエンスインフラ)グリッド運用
 - NAREGIグリッドミドル v.1.0の運用開始
- 特任教員(連携研究員含む)やSEの拡充
 - 特任教員 ⇒ ネットワーク・認証を合わせて4名追加
 - TSUBAME SEも実質1名増加(データ・ホスティングなど)
- 課金体制の見直し
 - 公平性の確保 ⇒ より高いレベルのQoSを妥当な対価で
- TSUBAME2.0へ向けたアクティビティ開始

TSUBAME2.0へ向けた今後の進展

2010-11 TSUBAME 2.0
⇒ TSUBAME 1.5 260-600TeraFlops @ 4Q2008
⇒ Sustained Petaflop @ 3Q2010-1Q2011
Sustain leadership in Japan

US

Petascales
(Peak)
(2008)

US NSF/DoE
(2010)

Japanese NLP
>10PF(2012)

US >10P
(2011-12?)

Others

TSUBAME 1.5
Upgrade? (4Q2008)

TSUBAME 1.1 Upgrade 111TF, 1.6
PB, 128GB nodes (1Q2008)

TSUBAME 1.0 85TF (1Q2006)
In the Supercomputing Landscape, Petaflops class is already here... in early 2008

Other Petaflops 2008/2009
- LANL/IBM "Roadrunner"
- JICS/Cray (?) (NSF Track 2)
- ORNL/Cray
- ANL/IBM BG/P
- EU Machines (Julich...)

2008 LLNL/IBM "BlueGene/P"
~300,000 PPC Cores, ~1PFlops
~72 racks, ~400m2 floorspace
~3MW Power, copper cabling

2008Q1 TACC/Sun "Ranger"
~52,600 "Barcelona" Opteron
CPU Cores, ~500TFlops
~100 racks, ~300m2 floorspace
2.4MW Power, 1.4km IB cx4
copper cabling
2 Petabytes HDD

> 10 Petaflops
> million cores
> 10s Petabytes
planned for 2011-2012
in the US, Japan, (EU),
(other APAC)

2010年TSUBAME 2.0の概要

・ 我が国初のペタフロップスマシン(?)
 - 世界的なリーダーシップ、単なるマシンでなくレファレンス
 - わが国初のペタフロップスマシン
・ 性能・消費電力等様々な技術革新⇒世界基準スーパコンへ
 - 低調達コスト・低消費電力・高バンド幅・最適設計
・ 現状のTSUBAMEアーキテクチャとの連続性
 - 現TSUBAMEからも、研究室や企業のパソコンからも簡単に
・ 大規模大容量データ
 - 10ペタバイト級・長期間(10年単位)データアーカイブのサポート
・ 研究室などインフラよりシームレスな運用・ホスティング
 - OSや環境の選択・仮想マシンによる運用も
 - NII-サイバーサイエンス ナショナルグリッドのリソースセンター
・ 高信頼なITサービスのホスティング
 すでに概要設計、さらに各メーカーとの技術協議は開始
 - 高セキュリティ・高信頼・高アベイラビリティ
 - 学内の更に多くのサービスをホスティングへ(特に教育システム統合)
TSUBAMEの電力性能は優れているが。。。今後10倍以上の向上が必要

<table>
<thead>
<tr>
<th>Machine</th>
<th>CPU Cores</th>
<th>Watts</th>
<th>Peak GFLOPS</th>
<th>Peak MFLOPS/Watt</th>
<th>Watts/CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSUBAME (Opteron)</td>
<td>10480</td>
<td>800,000</td>
<td>50,400</td>
<td>63</td>
<td>76.336</td>
</tr>
<tr>
<td>TSUBAME (w/ClearSpeed)</td>
<td>11,200</td>
<td>810,000</td>
<td>103,000</td>
<td>127.16</td>
<td>72.321</td>
</tr>
<tr>
<td>Earth Simulator</td>
<td>5120</td>
<td>6,000,000</td>
<td>40,000</td>
<td>6.7</td>
<td>1171.9</td>
</tr>
<tr>
<td>ASCI Purple (LLNL)</td>
<td>12240</td>
<td>6,000,000</td>
<td>77,824</td>
<td>12.971</td>
<td>490.2</td>
</tr>
<tr>
<td>AIST Supercluster</td>
<td>3188</td>
<td>522,240</td>
<td>14400</td>
<td>27.574</td>
<td>163.81</td>
</tr>
<tr>
<td>LLNL BG/L (rack)</td>
<td>2048</td>
<td>25,000</td>
<td>5734.4</td>
<td>229.38</td>
<td>12.207</td>
</tr>
<tr>
<td>Next Gen BG/P (rack)</td>
<td>4096</td>
<td>30,000</td>
<td>16384</td>
<td>546.13</td>
<td>7.3242</td>
</tr>
<tr>
<td>TSUBAME Next Gen (2010)</td>
<td>40000</td>
<td>800,000</td>
<td>2000000</td>
<td>2500</td>
<td>20</td>
</tr>
</tbody>
</table>
平成19年10月15日より「ファイル交換ソフトウェア検知サービス」を開始した。本サービス導入の目的は、本学キャンパスネットワークの自由な利用を可能な限り阻害せずに、本学キャンパスネットワークを介した著作権侵害行為を未然に防止し、本学の社会的信用を担保することにある。本サービスの開始当初の概要は以下の通り。

(1) 検知対象: BitTorrent, Gnutella, Kazaa, Napster, Share, WinMX, Winny, eDonky。
ただし、BitTorrentに関しては、研究目的で利用が必要な場合は、情報化最高責任者(CIO: Chief Information Officer)に対して申請を行い、その利用を許可
(2) 検知対象が検知された場合は、その通信が行われたIPアドレスをファイアウォールで自動的に遮断し、その旨を当該連絡担当者に通知
(3) 当該IPアドレスを利用している組織において調査を行い、原因が特定されたのち、当該連絡担当者の権限により指定のWebページにおいて通信遮断を解除

しかし、サービス開始後、約1か月が経過した時点で、以下のような問題点が確認された。
(1) 上記の検知対象と同等の通信を行うプロトコルが本サービスにより検知され、通信遮断の通知を受けた利用者側での原因特定が行いにくいこと
(2) Napsterがかつてのように著作権侵害に利用される可能性が低いこと
(3) 上記検知対象の一部が学術情報センターで提供するプロキシ・サーバ経由での利用が可能であるため、検知対象の通信が本学プロキシ・サーバ経由の通信に対して検知された場合、全学に影響が及ぶこと

そこで、本サービスの本来の目的である「本学キャンパスネットワークの自由な利用を可能な限り阻害せずに、本学キャンパスネットワークを介した著作権侵害行為を未然に防ぐこと」を達成するために、情報基盤統括室における議論を経て、
(1) eDonkey2000を検知対象として追加
(2) Napsterを検知対象から除外
(3) 検知対象(BitTorrent, Gnutella, Kazaa, Share, WinMX, Winny, eDonky, eDonkey2000)全てに関して、業務上・職務上利用が必要な場合は、情報化最高責任者(CIO: Chief Information Officer)に対して申請を行い、その利用を許可

のサービス形態の見直しを行った。このサービス形態変更を受けて、学術情報センターより情報化最高責任者への申請を行い、本学プロキシ・サーバーにおいて検知対象全ての利用申請を行い、本サービスの安全性・利便性を向上させるための調査を開始した。

今後も、状況に応じてサービス形態の見直しと本サービスの機能改善を継続的に進める予定である。なお、本サービスの詳細に関しては、以下のURLを参照されたい。

http://www.noc.titech.ac.jp/service/policy_violation.shtml
3-3 情報蓄積活用活動

3-3-1 概要
情報基盤部門情報蓄積・活用分野では、学術国際情報センターの中期目標に従い、学内に散在する貴重な知の資産である教育および研究コンテンツを蓄積し、利用者にとって付加価値の高い検索・配信サービスを行うことを目指している。

平成16年度からは、附属図書館および大規模知識資源センター等と協力して、東工大の知的資源を蓄積・配信する機関リポジトリとしてTokyo Tech STAR (Science and Technology Academic Repository)のコンセプトを提案し、教育・研究内容に関するリポジトリの構築を推進している。Tokyo Tech STARは、図1に示すように教育コンテンツを蓄積・配信するCourseWareHouse、学術研究コンテンツを蓄積・配信するResearch Repository、研究成果物を蓄積・配信するDigital Museumの3本柱からなり、それぞれに外部にオープン可能な部分を、Tokyo Tech OCW (Open Course Ware)、Tokyo Tech ORR (Open Research Repository)、Tokyo Tech ODM (Open Digital Museum)と呼ぶ。（なお、図1は、後述するT2R2システム内でのSTARを説明するWebページのスナップショットであり、検索画面と同様に学外からもアクセス可能である）。

図1 T2R2システム内におけるSTARの説明
STARの中で学術研究コンテンツを蓄積・配信するResearch Repositoryに関し、情報基盤部会の下にリサーチリポジトリワーキンググループ（RRWG）を立ち上げ、学内の論文情報を蓄積・配信するためのシステムであるT2R2（Tokyo Tech Research Repository）システムの開発を行っている。

以下、平成19年度のリサーチリポジトリワーキンググループ（RRWG）のメンバーを示す。

横田治夫 学術国際情報センター教授【主査】
馬越庸恭 学術国際情報センター教授
柴山悦哉 大学院情報理工学研究科数理・計算科学専攻教授
徳永健伸 大学院情報理工学研究科計算工学専攻教授
赤間啓之 大学院社会工学研究科人間行動システム専攻准教授
奥村学 精密工学研究所准教授
望月祐洋 学術国際情報センター准教授
井上修 情報図書館課長
五味照明 情報基盤課長
塚松恵美子 情報図書館課長補佐
日置繁明 情報基盤課長補佐
渋谷真理子 情報図書館課専門職員（電子図書館担当）
津久井祐子 情報図書館課職員

3-3-2 T2R2システムの特徴

T2R2システムは、情報を入力する学内研究者の入力インタフェースと、学外からもアクセス可能なコンテンツに対する検索機能を提供する検索インタフェースを持ち、学内の学術論文等を効率的に収集し、様々な用途に有用な利用を図ることを目的とする。このため、コンテンツの充実に不可欠な研究者自身による継続的な入力の促進するように、入力が容易に入力可能な蓄積環境を提供する。さらに、研究者が入力したことのメリットを実感できるように、蓄積されたコンテンツの多目的な利用環境の提供を行う。

入力インタフェースは、全学認証認可システムと連携して、ICカードを持つ研究者が認証後の東工大ポータル画面から入力し、その研究者が関係する論文に関する情報を入力、編集、削除することができる。なお、従来の研究者情報システムは、研究者に付随した論文に関する情報管理を主として研究者情報等を管理していたのに対し、T2R2システムは個々の研究論文等の管理をして研究論文等を管理していたのに対し、T2R2システムは個々の研究論文等の従来システムは個々の研究論文等の管理を主体として管理することを特徴とする。つまり、ある論文の連名者が複数存在する場合にも、一人が入力すればよく、どの連名者からも入力、変更等が可能で、入力コストを削減することができる。さらに、pdfの論文をアップロードして解析することで、論文題目や著者情報を抽出することが可能であり、入力のコストを下げることに貢献している（図2参照）。
また、一度入力された論文情報を多目的に有効利用するために、入力した研究者自身が作成する各種申請書、報告書等に格納されたコンテンツから抽出した書誌情報等を利用できる。このため、格納された論文情報は、Web上のHTML形式だけでなくCSV、BibTeX等の様々な形態の出力を可能とした。さらに、また、研究者の認証情報を活用することで、組織やプロジェクト単位で論文業績を管理でき、研究者自身やプロジェクトのホームページから登録された学術情報をカスタマイズして発信できるように、Webサービスによるデータ提供を行っている。これにより、T2R2システムの登録内容を更新するだけで、自分のホームページ上の業績情報の内容が自動的に更新されると同時に、それらに対する高度な検索機能も提供できるようになる。

3-3-3 19年度開発項目
T2R2システムにおける平成19年度の具体的な開発項目は以下のものである。

1) データ入力機能の強化のために、論文情報入力フォームの改善、個別項目の入力可否や巻・号・ページの指定方法、登録時のデータチェックおよび修正などの改善、一括インポートの機能強化、一括インポートから著者リンクも登録可能とする変更、一括エクスポート機能の新設、学会情報・論文誌情報の導入、論文誌や学会の情報の保持、業績
情報に掲載論文誌や発行学会との関連情報を追加、学会・論文誌ごとに本文へのリンクなどの表示の可否を設定、代表論文等の選択UI等を新たに開発した。

2) データ出力機能の強化のため、科研費申請書・報告書の出力機能の導入、業績一覧生成の際の指定条件の強化、著者表記の形式、項目ごとの表示順序提示、検索機能の強化、詳細検索フォームの新設、検索条件の論理式記述の導入、個別の項目ごとに and や orなどを用いた検索可能化、組織での絞込検索の導入、英語版ページの開発、学内サイト、学外サイト共に英語版のページ作成等を行った。

3) 管理機能の新設として、全体管理者および組織別管理者の権限を導入することで管理者が自著以外の業績情報の変更や各種統計情報の閲覧可能化、利用統計の集計機能の開発、業績情報の登録件数やアクセス件数などを集計表示する機能を作成、各種のデータ出力ツールの作成、教員総覧用のデータ出力、ReaD向けのデータ出力、各組織向けのデータ出力ツールの作成等を行った。

4) 研究者情報の整備・拡充のために、研究者情報の充実化、従来の教員および博士課程の学生に加え修士・学部の学生の情報を登録、個人情報の編集機能の導入、氏名の表記や所属組織の情報の修正機能を導入、退職・卒業した研究者の情報の保持、研究者の異動・退職・卒業等の情報を保持できる変更等を行った。

3-3-4 T2R2 システムの利用状況
平成19年1月から試行運用を行い、平成19年8月31日からは全学運用を開始している。以下、平成20年3月10日現在の利用状況を報告する。

1) データ登録状況
a) メタデータ登録総数（研究者情報システムからの移行、試行運用時入力を含む）

学術論文	22,960
一般雑誌論文	2,879
会議発表論文	29,534
著書	2,291
テクニカルレポート	26
研究報告	819
学位論文	12
プレプリント	2
その他*	86,078
計	144,601

*業績種別不明
b) 本文データ登録総数（研究者情報システムからの移行、試行運用時入力を含む）
352件

c) 全学運用開始後のメタデータ登録数

<table>
<thead>
<tr>
<th></th>
<th>新規登録</th>
<th>修正</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>学術論文</td>
<td>1,146</td>
<td>753</td>
<td>1,899</td>
</tr>
<tr>
<td>一般雑誌論文</td>
<td>190</td>
<td>90</td>
<td>280</td>
</tr>
<tr>
<td>会議発表論文</td>
<td>2,420</td>
<td>1,333</td>
<td>3,753</td>
</tr>
<tr>
<td>著書</td>
<td>86</td>
<td>100</td>
<td>186</td>
</tr>
<tr>
<td>テクニカルレポート</td>
<td>23</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>研究報告</td>
<td>24</td>
<td>29</td>
<td>53</td>
</tr>
<tr>
<td>学位論文</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>プレプリント</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>計</td>
<td>3,900</td>
<td>2,306</td>
<td>6,206</td>
</tr>
</tbody>
</table>

d) 全学運用開始後の本文データ登録数
234件

2）T2R2システムへのアクセス数

a) 全学運用開始後の学外公開ページへのアクセス数

<table>
<thead>
<tr>
<th>検索場面</th>
<th>件数</th>
</tr>
</thead>
<tbody>
<tr>
<td>業績情報検索フォーム</td>
<td>2,684件*</td>
</tr>
<tr>
<td>業績情報詳細検索フォーム</td>
<td>1,681件</td>
</tr>
<tr>
<td>業績情報検索結果画面</td>
<td>84,383件</td>
</tr>
<tr>
<td>業績情報詳細情報画面</td>
<td>1,265,222件</td>
</tr>
<tr>
<td>研究者検索フォーム</td>
<td>2,672件</td>
</tr>
<tr>
<td>研究者検索結果画面</td>
<td>3,167件</td>
</tr>
<tr>
<td>研究者情報画面</td>
<td>125,451件</td>
</tr>
<tr>
<td>組織情報画面</td>
<td>17,534件</td>
</tr>
<tr>
<td>その他の html など</td>
<td>65,770件</td>
</tr>
<tr>
<td>（T2R2 トップページも含む）</td>
<td></td>
</tr>
</tbody>
</table>
b) 2007年9月1日以降の学内ページのアクセス数

104,112件

3-3-5 その他の活動

これまでに、CourseWareHouse関連にして、現在稼働中のTokyo Tech OCWに協力するとともに、蓄積された講義資料や講義ビデオ、あるいは学術論文を、独自開発した検索インタフェースを介して学内外に提供し、遠隔教育や講義の復習、欠席した講義の独習、研究のための基礎知識形成、あるいは知的興味を広げる作業等に提供する方法を検討してきた。また、これらと関連して、広報等のビデオコンテンツの蓄積およびストリーム配信のサービスや、コンテンツ作成支援機材の貸し出しサービスも引き続き行っている。
4. 国際協働

4-1 GSIC・タイ国チュラロンコーン大学の部局間 MOU の締結

学術国際交流部門 ピバットポンサー・ティラポン

自然災害予測に関する研究分野において現地還元型の国際共同研究を進めるため、タイ国チュラロンコーン大学工学部（Faculty of Engineering, Chulalongkorn University）との部局間国際交流協定の下（2007年6月20日締結）、TSUBAMEを使用した国際協同研究とし、並列処理技術を用いた地震による津波のシミュレーション（Simulation of Tsunamis Generated by Earthquakes using Parallel Computing Technique）の研究課題で国際協働専門委員会に承認された。相手方は土木工学科（教員1名、学生1名）並びにコンピュータ工学科（教員1名、学生3名）からなる研究グループの構成員である。リアルタイムの津波シミュレーション高速化技術を目指し、相手方のPCクラスターで並列化した津波解析プログラムを本学のTSUBAMEで実行し、TSUBAMEでの計算効率の検証および並列化性能を調べ、大規模計算に向けてチューニングを行う予定である。

国際共同研究を通じて本学研究者の双方に利益をもたらすことを目的とし、平成19年度から初めてTSUBAMEの外部利用は可能になった。東工大学内の研究者が海外の研究者および研究グループとTSUBAMEを使用する共同研究を認可するため、TSUBAMEを利用した国際交流協定を組織間で締結することは必須の条項である。また、学外利用者の情報も提出の上、利用に関する使用契約のAgreementもGSICと交わす必要があるため、チュラロンコーン大学工学部の研究協力者との間で国際共同研究のAgreementを2007年11月16日に交わした。今後は、このような国際共同研究が可能であることを学内に周知できる仕組みを構築していく。

チュラロンコーン大学による南シナ海における津波シミュレーションの計算結果

並列化効率、精度検証および可視化について議論・打ち合わせ
4-2 国際共同研究

学術国際交流部門 太田元規

4-2-1 英国, National Institute for Medical Research とのタンパク質立体構造予測に関する国際共同研究

2006年4月にNational Institute for Medical Research（NIMR）の数理生物学部門長であるDr. William Taylor博士を外国人客員教授として招聘し、タンパク質の立体構造予測に関する国際共同研究を開始した。Taylor博士が開発したプログラムは多くのランダム構造を発生させ、それらをラフに評価して大量の予測構造を出力する。よってその中から確からしい構造を選択する必要がある。我々はこれまでに、タンパク質の配列と構造の適合性を評価するスコア関数を開発しており、このスコアが確からしい構造の選択に有効なのかと考えた。開発したスコア関数は今までに人工タンパク質の設計やタンパク質の熱安定性予測などで実績がある。本年度はこの、スコア関数を利用し予測構造を評価するプログラムとスクリプトを用意し、5月にロンドンに赴いてNIMRのクラスタマシンにインストールして動作確認をするとともに、これまでの研究経過、今後の研究計画などについて議論を行った。

4-2-2 米国、オハイオ州立大学計算機科学科とのタンパク質のフォールディング軌道解析に関する国際共同研究

TSUBAMEなどのスーパーコンピュータを駆使してタンパク質を対象とした大規模な分子動力学計算は可能だが、得られた軌道からどのようにして有意な情報を抽出するか、その解析方法はまだ開発途上である。オハイオ州立大のYusu Wang博士のグループとは、新しい軌道解析法について昨年度から国際共同研究を行っている。タンパク質配列からマルチプルアラインメントを作成する時に、部分オーダーアラインメント法というものがあるが（2本の紐の模様の似た部分だけを対応付けするようにして多くの紐を連結させるような方法）、これをTrpCageというタンパク質のフォールディング軌道のアラインメント問題に応用した。軌道はかなり多様化しており一般的なフォールディングの道筋は見出しにくいという結果であったが、タンパク質のN末とC末が接近したリングネック構造を経てフォールドするという現象を再確認した。今後の研究方針などを確認するために11月にオハイオ州立大学を訪問し、議論を行った。
4-3 国際共同研究ワークショップ

4-3-1 GSIC - AIT 共同開催ワークショップ/シンポジウム
“2nd International Workshop on Numerical Simulation for Disastrous Phenomena”

学術国際交流部門 青木尊之

学術国際情報センターとAsian Institute of Technology（AIT）のSchool of Engineering and Technology（SET）との国際交流協定に基づき、第2回災害の数値シミュレーションに関するワークショップ“2nd International Workshop on Numerical Simulation for Disastrous Phenomena”を1月31日アジア工科大学にてGSICとAITで共同開催した。

Asian Institute of Technology, School of Engineering and Technologyの学部長のProf. Worsakと東京工業大学、学術国際情報センターの青木尊之教授のOpening Addressから始まり、それぞれがKeynote Lectureとして“A Characteristic-Based Split Finite Element Method for Tsunami Propagation”および“TSUBAME Supercomputer and Contribution to Science and Engineering”の題目で自然災害シミュレーションの重要性とスパコンTSUBAMEを利用した共同研究への発展について述べた。

午前の前半のTsunami and Earthquakeセッションでは、津波シミュレーションや地震防災に関する5件の最新研究成果が発表された。午後の後半のOptimization and HPCセッションでは、自然災害を含むさまざまなアプリケーションにおける最適化とHPCに関する4件の講演発表があった。

午後の前半のGeo-Hazardセッションでは、地盤材料である軟岩の構成式パラメータについて、粒子・流体連成解析による地盤材料の変形解析、構造物基礎周辺の地下トンネル掘削時の地盤の挙動、地盤材料の構成式に用いる降伏面の特異点処理、FEMとMPS法によるハイブリッド手法の境界条件の取り扱い、GPUによる流体計算の高速化についてなどの6件の発表があった。午後の後半のEnvironment and RS-Chairmanセッションでは、斜面崩壊と地盤材料について、森林の季節アセスメント、気象モデルを用いたオゾンモデル、大気汚染等の5件の発表があった。

参加者69名（東工大12名、AIT47名、岐阜大学3名、Chulalongkorn大学3名、Burapha大学2名、名古屋工業大学1名、日本大学1名）による終始活発な討論がなされた。現地での会場の準備を含め、AIT、SETの本多潔准教授に多大なるサポートをして頂いたことに心から感謝の意を表する。
4-3-2 ラオスルアンパバーンにおけるシンポジウム

学術国際交流部門 山口しのぶ

2004年より国際機関との連携を重視した研究活動の一環として、UNESCO世界文化遺産センター、ラオス政府との三者協定締結のもと、UNESCO世界文化遺産地域の維持可能な開発における情報技術（ICT）の応用に関する研究に取り組んだ。3年間の協働研究の成果発表および現地研究機関への還元をめざし、2007年12月にプロジェクト現地であるラオス・ルアンパバーンにてシンポジウムを開催した。シンポジウムでは、2年間の研修を経て完成したFOSS(Free and Open Source Software)を活用した文化遺産データベース、フォトデータベース、遺産修復データベース構築を現地ICTチームが発表。ルアンパバーン地域開発と遺産保存に活用できるGISの導入に関する初期ニーズアセスメントの結果が東工大チームより発表された。海外共同研究者によるルアンパバーン初のICTセンターの評価が行なわれ、訪問者10,000人を超す訪問者・データベース使用率は高く評価された。参加者は現地政府、研究機関を含む40名。各プレゼンテーションの後、現地機関との活発な意見交換、議論がなされた。
4-4 海外拠点を活用した国際交流活動

4-4-1 国際連合人間の安全保障基金（UNHSF）プロジェクト：モンゴル・ゴビ

3県における学校再建と遠隔教育導入

学術国際交流部門 山口しのぶ

ユネスコ東アジア事務所との国際協働研究事業 2004 年から 2006 年まで実施された国際連
合人間の安全保障基金（UNHSF）モンゴルプロジェクトに大学院生を中心とした 11 名の学
生を参加する交流プログラムを実施した。本 ACCU/ユネスコ青年交流信託基金事業プログラ
ラム“持続可能な開発への理解を目指して：モンゴルにおける遠隔教育教材開発活動に関
する視察・ワークショップを通じての考察”では、国際開発工学を学ぶ大学院生が、現地の
プロジェクト視察やワークショップ参加を通じて、持続可能な開発プロジェクトを促進し
うる要因について考察し、その重要性を理解することを目的とした。2007 年 3 月に 2 週間、
モンゴル・ゴビ砂漠地方 2 県のプロジェクト 3 校における現地調査を実施。プロジェクト
サイトのインフラ視察、現地プロジェクト遠隔教材の試行への参加、プロジェクト参加者
への聞き取り調査を行なった。帰国後、ユネスコ東アジア事務所との連携の下、1）プロ
ジェクトの効果についての観察、分析、2）遠隔教材の使用状況および、利点・留意点に
ついて整理し、3）本経験を通じての開発プロジェクトの持続可能性についての考察をま
とめ、分析ペーパーは、ユネスコウェブサイトに掲載された。このような連携を通じ、国
際協力現場で必要とされる積極性、判断力、行動力、柔軟性を若手研究者が習得することを
視野に入れている。

モンゴルの学校教師・生徒と共に
（バヤンホンゴル県ジャガラン村にて）
プロジェクト校での遠隔教材の評価
（ザブハン県ウルヤスタイにて）
4-4-2 日タイ修好120周年記念の国際交流プログラム

学術国際交流部門 ビバットボンサー・ディラボン、山口しのぶ

日タイ修好 120周年記念事業とし、外務省に認定された東京工業大学の国際交流プログラム“JAYSES: 日本アジア理工系学生交流プログラム”を国際室とともに企画・運営・実施した。8月26日〜9月4日に東工大生15名を引率し、様々なタイ・日系企業および大学・政府機関合わせて13カ所を訪問した。現地視察の間にタイの主要4大学；チュラロンコン大学 (CU), モンクット王工科大学ラカバン校 (KMITL), シリントーン国際工科大学 (SIIT), カセサート大学 (KU) の学生23名とともにトピックごとにグループを作って情報・意見交換を行い、日タイ関係の今後に向けてアジアの若者の視点から展望と提言をまとめた。活動公開は下記のとおりである。

- 9月2日：タイ全国ネットT V局チャンネル3から8分間特集放送（8月29日取材）
- 9月2日：タイ蔵前同窓会（学長、副学長出席）
- 9月3日：タイ国家科学技術開発機構での発表会（在タイ日本大使館参事官出席）
- 10月10日：最終報告会（西8号館10階大会議室）
- 12月：東工大クロニクル12月号 P.28〜30
- 12月：活動報告書・DVD（関係部局への学内外配布）
- オフィシャルサイト（http://www.ttot.ipo.titech.ac.jp/JAYSES2007/）

本プログラムは、特定の専門に特化せずに、実社会で科学技術がどのように応用され、影響を与えているのかを実際に企業やプロジェクト関係者から聞き、総合的に考察し、バックグラウンドの異なる同世代の学生とディスカッションができるよう成果が得られた。今回の行事に対し、GSICの現地産学官連携スキームを活用し、また公式サイト設立・情報アーカイブ化に重要な役割を担った。

「日タイ修好120周年記念事業」並びにJAYSES2007のロゴマーク

訪問・視察の様子（タイ国最大米輸出業者の倉庫）
5. イベント及び啓蒙活動

5-1 学術国際情報センター主催講演会

5-1-1 GSIC 講演会 2007 No.01

Ⅰ. タイトル：科学技術文明は22世紀を展望できるか

Ⅱ. 講師
東京工業大学原子炉工学研究所教授
元・日本経済新聞社論説委員

Ⅲ. 日時：2007年7月6日（金）17:30－19:00

Ⅳ. 会場：東京工業大学 大岡山キャンパス 本館（4F）第1会議室

Ⅴ. 主催：GSIC（学術国際情報センター）

Ⅵ. 司会：馬越庸恭 GSIC 教授

Ⅶ. 実行委員会：遠隔マルチメディア教育分野

Ⅷ. 開催主旨：21世紀に入り、社会システムはグローバルな次元でつぎつぎと大きな綻びを見せ始めているが、巨大な装置産業とリンクした現代科学技術文明は、果たして人類を22世紀へ橋渡しすることができるのか？できるとすれば、それはどのようにして達成され得るかについて、鳥井弘之 東京工業大学 原子炉工学研究所 教授（元・日本経済新聞社論説委員）に語って頂いた。

5-1-2 GSIC 講演会 2007 No.02

Ⅰ. タイトル：OCW オープンコースウェアをめぐる

Ⅱ. 講師
マサチューセッツ工科大学教授
東京工業大学 GSIC 客員教授 （2007.06.01 - 2007.08.31）

Ⅲ. 日時：2007年7月13日（金）16:50－18:20

Ⅳ. 会場：東京工業大学 大岡山キャンパス 本館（4F）第1会議室

Ⅴ. 主催：GSIC（学術国際情報センター）

Ⅵ. 司会：馬越庸恭 GSIC 教授

Ⅶ. 実行委員会：遠隔マルチメディア教育分野

Ⅷ. 開催主旨：OCWは優れたOER（Open Educational Resources）の一環としても注目を集め、世界の様々な地域でコンソーシアムを形成しながら、グローバルな広がりを見せ始めている。今回は、MIT OCW立ち上げから国際的なOCWコンソーシアム形成に至るまで、中心的な役割を果たしてきたマサチューセッツ工科大学の宮川（繁）教授に、OCWオープンコースウェアに関する目下の動向および今後の有り得る展開について、最新の情報をお元に語って頂いた。
5-1-3 GSIC 講演会 2007 No.03

Ⅰ. タイトル：大学の教育コンテンツ情報発信と（意外に面白い）著作権

Ⅱ. 講師：尾崎 史郎 氏
（独立行政法人）NIME（メディア教育開発センター）教授
東京工業大学 GSIC 客員教授 （2007年度）

Ⅲ. 日時：2007年7月20日（金）16:50–18:20

Ⅳ. 会場：東京工業大学 大岡山キャンパス 本館（4F）第1会議室

Ⅴ. 主催：GSIC（学術国際情報センター）

Ⅵ. 司会：馬越庸恭 GSIC 教授

Ⅶ. 実行委員会：遠隔マルチメディア教育分野

Ⅷ. 開催主旨：OCW（オープンコースウェア）等、大学から社会へ向けた教育面に於ける情報発信が盛んになってきた。従来型の「教室内」で完結する伝統的な授業形態で利用される著作物の扱いと、全世界に開かれたインターネットへ打ち上げる（digital）教育コンテンツに含まれる著作物利用とは、著作権法上大きな違いがある。

扱い方を誤ると却って大学の社会的信用を損なってしまう可能性は無しとしない。今回、文化庁でマルチメディア著作権室長を務め、現在はNIME（メディア教育開発センター）所属の尾崎（史郎）教授に、（digital）教育コンテンツの（Webへの）情報発信者に（最低限）、留意すべき著作権の基礎知識について興味深いケースを例に挙げながら分かりやすく解説をして頂いた。

5-1-4 GSIC 講演会 2007 No.04

Ⅰ. タイトル：テニュア（tenure）とは—MITの場合—

Ⅱ. 講師：宮川 繁 氏
マサチューセッツ工科大学教授

Ⅲ. 日時：2007年11月12日（月）17:20–18:50

Ⅳ. 会場：東京工業大学 大岡山キャンパス
大岡山西8号館（10F）大会議室

Ⅴ. 主催：GSIC（学術国際情報センター）

Ⅵ. 共催：Global Edge Institute

Ⅶ. 司会：馬越庸恭 GSIC 教授

Ⅷ. 実行委員会：遠隔マルチメディア教育分野

Ⅸ. 開催主旨：日本の大学でテニュア（tenure）が全面的に導入されるとどうなるのか？コトバとして知ってはいても、リアルに想像することはむずかしい。今回は、東京工業大学に設置されたGlobal Edge Instituteとの共催で、M I Tのtenure 教授として豊富な経験をお持ちのマサチューセッツ工科大学、宮川（繁）教授に、tenure の運用が大学
の faculty にとって実際的にどのような意味と重みを持つことになるのかについて、具体的事例を交えながら語って頂いた。

5-2 学術国際情報センター主催セミナー

5-2-1 GSIC セミナー 2007 No.01

Ⅰ. タイトル：OCW 運営の仕組み - 北海道大学のケース
Ⅱ. 講師：合川（正幸）北大 OCW 特任准教授
Ⅲ. 日時：2008年1月24日（木）17:20 - 18:50
Ⅳ. 会場：東京工業大学 大岡山キャンパス 大岡山西8号館〈10F〉大会議室
Ⅴ. 主催：GSIC（学術国際情報センター）
Ⅵ. 司会：馬越庸恭 GSIC 教授
Ⅶ. 実行委員会：遠隔マルチメディア教育分野
Ⅸ. 開催主旨：OCW は、大学の教育情報面に関する21世紀的公開の試みとして、大学経営の戦略と不可分に結び付っていますが、sustainability の次元で加盟各大学は苦労しながら工夫を重ねております。今回は、OCW の運営について全学的参加のシステムを匠に構築された北海道大学のケースについて、合川（正幸）北海道大学 OCW 特任准教授に紹介して頂いた。

5-2-2 GSIC セミナー 2007 No.02

Ⅰ. タイトル：OCW（オープンコースウェア）と FD（ファカルティー・ディヴェロップメント） --- 七枚のヴェールを脱ぐ日本の Higher Education （高等教育）---
Ⅱ. 講師：田口（真奈）NIME （メディア教育開発センター）准教授
Ⅲ. 日時：2008年2月20日（月）17:20 - 18:50
Ⅳ. 会場：GSIC（情報棟）〈2F〉会議室
Ⅴ. 主催：GSIC（学術国際情報センター）〈2F〉会議室
Ⅵ. 司会：馬越庸恭 GSIC 教授
Ⅶ. 実行委員会：遠隔マルチメディア教育分野
Ⅸ. 開催主旨：最近、OCW（オープンコースウェア）の FD（ファカルティー・ディヴェロップメント）効果が注目されているが、今回は、OCW がどのような心理的メカニズムによって FD の効果を発揮し得るのかについて、教育評価の専門家として幅広い知識をお持ちの 田口（真奈）先生に、御自身の Harvard University での経験を踏まえて、縦横に語って頂いた。
5-3 スーパーコンピューティングコンテスト

研究・教育基盤部門 松田裕幸

第13回スーパーコンピューティングコンテスト

2007年6月29日までに27校39チームの応募があり、東工大、阪大それぞれ10チームが7月30日から8月3日まで開催される本選に進んだ。そして、2007年度は阪大のスーパーコンピュータSX-8を使った初めての大会となった。

予選課題は、指定された金額に対応できるだけ少ない枚数のコインの組み合わせを選ぶというもの。コインの種類は複数ある。問題を3段階にわけ、できるだけ多くの応募を可能にした。結果39チームはここ数年では最も多い数となった。

本選課題は、異なる座標を持つN個の星の集まりを半径Rの球（複数可）に含む形で分割するというもの。この時、使用した球の個数は答えの優劣とは関係なく、制限時間内に、無れなかった星の数がより少ないものを上位とした。

本選は、東工大、阪大それぞれで4チームを選抜し、ついで、この8チームを対象により最終順位を決めた。その結果、一関高専のSnowdropチームが見事優勝した。

2008年度は東工大が主催予定。

コンテスト詳細：
5-4 講習会

研究システム
2007年春の講習会実施報告

【大岡山地区】

1.	UNIX入門	4月18日(水)
2.	EnSight入門	5月9日(水)
3.	AVS Express (流体編)	5月10日(木)
4.	AVS Express (分子編)	5月11日(金)
5.	Gaussian入門	5月14日(月)
6.	Mathematica入門（初級編）	5月15日(火)
7.	プログラムチューニング講習会(シングル)	5月16日(水)
8.	ABAQUS入門	5月17日(木)
9.	Amber入門	5月18日(金)
10.	MOPAC入門	5月21日(月)
11.	Materials Explorer入門	5月22日(火)
12.	プログラムチューニング講習会(並列)	5月23日(水)
13.	Materials Studio入門	5月24日(木)
14.	Discovery Studio入門	5月25日(金)
15.	Molpro入門	5月29日(火)
16.	MSC.Nastran/MSC.Ptran入門	5月30日(水), 31日(木)
17.	MATLAB入門	6月5日(火)
18.	MATLAB Simulink入門	6月5日(火)
19.	SASプログラミングI(BASE SAS)	6月7日(木)
20.	IMSL入門(IMSL Fortran,Cライブラリ)	6月12日(火)

【すずかけ台地区】

| 1. | UNIX入門 | 4月20日(金) |

2007年秋の講習会実施報告

【大岡山地区】

1.	UNIX入門	9月28日(金)
2.	AVS Express (流体編)	10月2日(火)
3.	AVS Express (分子編)	10月3日(木)
4.	EnSight入門	10月4日(木)
5.	Mathematica入門（初級編）	10月5日(金)
6.	Amber 入門	10月9日(火)
7.	Gaussian 入門	10月10日(水)
8.	MATLAB 入門	10月11日(木)
9.	Simulink 入門 (MATLAB オプション製品)	10月11日(木)
10.	ABAQUS 入門	10月15日(月)
11.	Molpro 入門	10月17日(水)
12.	Materials Studio	10月18日(木)
13.	Discovery Studio	10月19日(金)
14.	Materials Explorer 入門	10月22日(月)
15.	MOPAC 入門	10月23日(火)
16.	MSC.Nastran/MSC.Patran	10月25日(木)、26日(金)
17.	SAS プログラミングⅠ (BASE SAS)	10月29日(月)
18.	プログラムチューニング講習会 (シングル)	10月31日(水)
19.	IMSL 入門 (IMSL Fortran,C ライブラリ)	11月1日(木)
20.	プログラムチューニング講習会 (並列)	11月7日(水)

【すずかけ台地区】

| 1. | UNIX 入門 | 9月27日(木) |
6．広報活動

6-1 マスコミ報道等

6-1-1 オンラインメディア

 http://www.hpcwire.com/offthewire/17904564.html
 http://www.hpcwire.com/offthewire/17903939.html
- Asahi.com: 「スーパコン、無料で貸します」東大など8大学、民間に」 [07/24/2007]
 http://www.hpcwire.com/offthewire/17901334.html
- PC Watch: 「4年連続で IBM BlueGene/L がスーパコン性能 1位～日本のトップは東工大の
 TSUBAME で14位」 [06/27/2007]
- ITmedia News: 「スーパーコンピュータ Top500、IBM が依然トップ。日本勢はトップ 10 狙に」
 [06/27/2007]

6-1-2 新聞・雑誌

- 日刊工業新聞: 「アクセルレータボード 東工大、300枚導入」 [01/21/2008]
- 読売新聞新報: 「スーパコン 日本最大産業」 [12/09/2007]
- フジサンケイビジネスアイ新聞: 「スーパコン性能ランキング 米国勢トップ10 独占
 日本勢維持 日本勢、16位最高」 [11/15/2007]
- フジサンケイビジネスアイ新聞: 「企業にスーパコン開放 東大、東工大などユーザ拡大狙う」
 [07/25/2007]
- 朝日新聞: 「スーパコン無償開放 東大など企業の研究開発に」 [07/25/2007]
- 毎日新聞: 「スーパコン利用を民間に無償開放 国立8大学」 [07/25/2007]
- 日刊工業新聞: 「スーパコン 民間企業に無償提供 東大など最長で1年間」 [07/25/2007]
- Yomiuri PC, 読売新聞社 [06/2007]
- 駿台アセント, 駿台予備学校, vol.3 [2007]

6-1-3 テレビ

6-2 見学者受入状況

<table>
<thead>
<tr>
<th>月</th>
<th>日</th>
<th>見学者所属</th>
<th>人数</th>
<th>うち学外者</th>
<th>うち外国人</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月</td>
<td>17日</td>
<td>文部科学省学術基盤整備室</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>18日</td>
<td>本学総務部人事課（19年度初任職員研修受講者）</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18日</td>
<td>本学大学院理工学研究科・原子核工学専攻計算物理工学</td>
<td>49</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23日</td>
<td>Computational Scientist/Operation Manager National Center for Atmospheric Research (NCAR)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23日</td>
<td>経済産業省産業技術環境局環境政策課環境経済室長</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5月</td>
<td>7日</td>
<td>Sun Microsystems Inc サン・マイクロシステムズ（株）</td>
<td>7</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>14日</td>
<td>The National Center for Atmospheric Reserch（米国）</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>16日</td>
<td>株式会社アスキー</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>22日</td>
<td>交通新聞社『月刊散歩の達人』</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25日</td>
<td>University of Tennessee</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6月</td>
<td>1日</td>
<td>本学監事フリー・フォトグラファー</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6日</td>
<td>イラン・イスラム共和国政府</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6日</td>
<td>九州大学情報基盤センター</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12日</td>
<td>中国科学院、海上技術安全研究所本学総合理工学研究科</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20日</td>
<td>本学工学部機械科学科3年</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20日</td>
<td>気象庁（情報通信課、数値予報課）</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21日</td>
<td>松山高校、本学原子炉工学研究所</td>
<td>22</td>
<td>20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21日</td>
<td>岐阜大学学術情報部情報戦略課基幹システム係</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>日付</td>
<td>機関名</td>
<td>パラメータ1</td>
<td>パラメータ2</td>
<td>パラメータ3</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>22日</td>
<td>華南師範大学教育情報学院</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>22日</td>
<td>産業技術総合研究所</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>29日</td>
<td>Director of Computer and Networking Center</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>National Cheng Kung University, Taiwan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7月</td>
<td>産業技術総合研究所</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11日</td>
<td>ノベル (株)</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12日</td>
<td>東京都立大泉高等学校</td>
<td>35</td>
<td>32</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>27日</td>
<td>産業技術総合研究所</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8月</td>
<td>産業技術総合研究所</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6日</td>
<td>Asian Institute of Technology</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13日</td>
<td>ノベル (株)</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14日</td>
<td>千代田ラフト</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14日</td>
<td>栄養科学院</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>National Cheng Kung University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15日</td>
<td>日本経済新聞社</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>23日</td>
<td>千代田ラフト</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>28日</td>
<td>千代田ラフト</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>29日</td>
<td>天津大学 (中国)</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>31日</td>
<td>旭川高専</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9月</td>
<td>Shanghai Supercomputer Center</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>25日</td>
<td>梨花女子大学 (韓国)</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>立命館大学「中国の大学管理運営幹部特別研修」視察団</td>
<td>35</td>
<td>33</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>12日</td>
<td>理化学研究所所本所施設部施設企画課</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16日</td>
<td>Minho University, Portugal</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16日</td>
<td>タイ王国教育省高等教育委員会他</td>
<td>33</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>日付</td>
<td>場所</td>
<td>件数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17日</td>
<td>中国黒龍江工程学院院</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22日</td>
<td>アムステルダム自由大学</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23日</td>
<td>IT Training Center,University of the Philippines,Diliman</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23日</td>
<td>防衛省情報本部</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30日</td>
<td>防衛省情報本部</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11月</td>
<td>神奈川県立横浜翠嵐高等学校</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2日</td>
<td>National Cheng Kung University, Taiwan</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9日</td>
<td>韓国 KNIH ゲノムセンター</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9日</td>
<td>上海交通大学</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11日</td>
<td>NHK 科学文化部</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27日</td>
<td>Baidu/China</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27日</td>
<td>栃木県立宇都宮高等学校</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30日</td>
<td>Novell Inc.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30日</td>
<td>読売新聞社(文科省記者クラブ)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12月</td>
<td>日経 BP 社 日経コンピュータ編集部</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4日</td>
<td>文部科学省</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7日</td>
<td>本学理工学研究科国際開発工学専攻</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7日</td>
<td>Louisiana State University</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12日</td>
<td>San Diego Supercomputer Center,UCSD</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12日</td>
<td>ETH Zurich</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12日</td>
<td>THAI GRID CENTER,KASET SART UNIVERSITY</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14日</td>
<td>立命館大学「大学管理運営幹部特別研修」（中国）</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14日</td>
<td>Microsoft Research Asia</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>日付</td>
<td>事件名</td>
<td>件数</td>
<td>件数</td>
<td>件数</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>18日</td>
<td>NHK放送技術研究所次世代記録デバイス研究グループ (株)リコー研究開発本部</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18日</td>
<td>（株）ケイ・ジー・ティー、（有）Think&Win、NTT東日本</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20日</td>
<td>Korea Soohyup Bank</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1月15日</td>
<td>（株）テック・インデックス Linux Consortium サービス部会メンバー</td>
<td>25</td>
<td>24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16日</td>
<td>電気情報通信学会東京支部</td>
<td>80</td>
<td>70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17日</td>
<td>日商エレクトロニクス（株） 日刊工業新聞社</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17日</td>
<td>本学情報理工学研究科計算工学修士学生</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17日</td>
<td>日本経済新聞社編集局産業部</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>22日</td>
<td>国立情報学研究所学術基盤推進部実務研修生（鳥取大学職員）</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>23日</td>
<td>サン・マイクロシステムズ、nVIDIA</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>31日</td>
<td>九州大学情報システム部情報企画課</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>31日</td>
<td>マレーシア政府各省庁</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2月12日</td>
<td>東洋ビジネス印刷（株）デジタル制作部</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3月11日</td>
<td>兵庫県産業労働部産業政策局他</td>
<td>11</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14日</td>
<td>日本AMD（株）</td>
<td>60</td>
<td>60</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>18日</td>
<td>宮崎大学学術研究協力部情報図書課</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>27日</td>
<td>科学技術振興機構システム施設部</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>27日</td>
<td>火薬学会・爆発安全専門部会</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>計82件</td>
<td>739</td>
<td>557</td>
<td>212</td>
<td></td>
</tr>
</tbody>
</table>
7. 予算執行状況

1. 平成19年度法人運営費決算額

<table>
<thead>
<tr>
<th>項目</th>
<th>金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>研究経費</td>
<td>36,800千円</td>
</tr>
<tr>
<td>教育研究支援経費</td>
<td>1,235,879千円</td>
</tr>
<tr>
<td>（うち電子計算機賃借料）</td>
<td>613,324千円</td>
</tr>
<tr>
<td>一般管理費</td>
<td>297千円</td>
</tr>
<tr>
<td>合 計</td>
<td>1,272,976千円</td>
</tr>
</tbody>
</table>

2. 外部資金受入状況

<table>
<thead>
<tr>
<th>項目</th>
<th>件数</th>
<th>金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>奨学寄付金</td>
<td>4件</td>
<td>4,545千円</td>
</tr>
<tr>
<td>受託研究</td>
<td>8件</td>
<td>175,028千円</td>
</tr>
<tr>
<td>民間等との共同研究</td>
<td>6件</td>
<td>34,621千円</td>
</tr>
<tr>
<td>科学研究費補助金</td>
<td></td>
<td></td>
</tr>
<tr>
<td>特定領域研究</td>
<td>3件</td>
<td>24,200千円</td>
</tr>
<tr>
<td>基盤研究A</td>
<td>1件</td>
<td>6,600千円</td>
</tr>
<tr>
<td>基盤研究B</td>
<td>3件</td>
<td>13,200千円</td>
</tr>
<tr>
<td>特別研究員奨励費</td>
<td>2件</td>
<td>2,000千円</td>
</tr>
<tr>
<td>小計</td>
<td>9件</td>
<td>46,000千円</td>
</tr>
<tr>
<td>合 計</td>
<td>27件</td>
<td>260,194千円</td>
</tr>
</tbody>
</table>
8. 研究活動報告
8-1 情報基盤部門

教授 伊東 利哉（情報流通分野）

ε 近似 k 限定最小値独立置換族の構成に関する研究
【研究の概要と成果】

ε 近似 k 限定最小値独立置換族は、任意の k 個以下の要素のどれもがほぼ同確率でその値域内で最小値となるような置換族のことであり、電子文書の高速な類似性判において有効であることが知られている。しかし、その置換族のサイズの下界に関しては、十分に解明されていないのが現状である。そこで、本研究では、ε 近似 k 限定最小値独立置換族に対して、代表的手法を用いて対角成分の絶対値が非対角成分の絶対値に比べて十分に大きな正方形行列を導出し、その行列の階数を評価することで、置換族上の一般分布に対して、以下のようないくつかの結果を導出した。

(1) 置換族 \(F \subseteq S_n \) が ε 近似 k 限定最小値独立置換族であるとき、\(0 \leq \varepsilon \leq 1/8 \) ならば

\[
|F| \geq \Omega\left(\frac{k \log n}{\varepsilon^2 \log(1/\varepsilon)}\right).
\]

(2) 置換族 \(F \subseteq S_n \) が ε 近似 k 限定最小値独立置換族であるとき、\(0 \leq \varepsilon \leq 1/11 \) ならば

\[
|F| \geq \Omega\left(\frac{k^2 \log n}{\varepsilon \log(1/\varepsilon)}\right).
\]

最適選好マッチングに関する研究
【研究の概要と成果】

卒論配属の際に、個々の学生が配属先希望研究室の優先度リストを提出する場合のように、多数の商品に対して、個々の顧客がその商品に対する優先順位をベクトル形式で提示する場合を考える。このとき、商品供給側は、顧客全体の満足度を最大化するために、個々の顧客に一つの商品を割り当てが求められる。このような商品割り当てを最適選好マッチング(Popular Matching)と呼ぶ。最適選好マッチングは常に存在するとは限らないことが知られている。そこで、顧客数を n、商品数を m としたとき、個々の顧客がその選好度ベクトルを独立かつ無作為に提示する場合に、

(1) もし \(m < 1.42n \) であるなら、高い確率で最適選好マッチングが存在しない

(2) もし \(m > 1.42n \) であるなら、高い確率で最適選好マッチングが存在する

となることが示されている。そこで、本研究では、これを以下のように一般化した問題を考える。顧客がグループ \(A_1, A_2, \ldots, A_k \) に分割されており、各グループ \(A_i \) は重み \(w_i \) が割り当
てられているとする（ただし \(w_1 > w_2 > \cdots > w_k \)）。このとき，\(k = 2 \) のときに，各顧客がその選好度ベクトルを独立かつ無作為に提示する場合，

(1) もし \(m/n^{4/3} = o(1) \) であるなら，高い確率で最適選好マッチングが存在しない

(2) もし \(n^{4/3}/m = o(1) \) であるなら，高い確率で最適選好マッチングが存在する

このように，顧客集合が単一グループである場合は，顧客数 \(n \) と商品数 \(m \) に関して \(m = 1.42n \) が臨界点であるのに対し，顧客集合が2つのグループに分類される場合は，顧客数 \(n \) と商品数 \(m \) に関して \(m = n^{4/3} \) が臨界点であることが明らかとなった。

価格設定問題に関する研究
【研究の概要と成果】

個々の顧客が特定の商品群に購入予定価格を提示している状況を考える。商品供給者が，
各商品の販売価格を設定した場合，顧客は購入希望商品群の販売価格の合計が購入希望金額を上回らない場合はその商品群を購入し，上回る場合は購入しないものとする。このような状況の下で，商品供給者は利益が最大となるように個々の商品の販売価格を決定する必要がある。商品の販売価格に関して，商品の原価を下回る販売価格を許さない場合を正価格モデル，商品の原価を下回る販売価格が許される場合を割引モデル，商品の原価を下回る販売価格が許されるが商品群全体での損失を許さない場合を非負割引モデルと呼ぶ。

また，最小購入希望金額と最大購入希望金額の比を \(r \) とする。本研究では，正価格モデルにおいて，各顧客は高々2個の商品の購入を希望する場合に，

- 0 \leq r < 2/3 ならば，最適解に対して \((2+r)/8 \) 以上の利益を保証する価格ベクトルを出力し，
- 2/3 \leq r \leq 1 ならば，最適解に対して \(1/(2(2-r)) \) 以上の利益を保証する価格ベクトルを出力する

を満たす多項式時間アルゴリズムを構成した。さらに，非負割引モデルにおいて，商品群が連続する線状高速道路問題と環状高速道路問題に対して，以下を導出した。

(1) 線上高速道路問題に対する \(4(1 - \ln r) \) ～近似アルゴリズムが構成可能

(2) 環状高速道路問題に対する \(4(1 - \ln r) \) ～近似アルゴリズムが構成可能

(3) 購入希望金額が全ての顧客に対して同一である単一価格環状高速道路問題に対する 2.747～近似アルゴリズムが構成可能

【発表論文・学会発表等】
大規模知識資源蓄積システムに関する研究

【研究の概要と成果】
東京工業大学 21 世紀 COE プログラム「大規模知識資源の体系化と活用基盤構築」の事業推進担当者として、平成 15 年度から 5 年間、大規模知識資源蓄積のための先進環境構築を担当してきた。同 COE プログラムでは、本学術国際情報センター、大学院情報理工学研究科、大学院社会理工学研究科の教員を核に、人文社会系・理工系の研究を融合した多様な学際的研究を目標として、多種多様の大量の知識素材を蓄積し、それらを整理・利用しながら研究が推進されてきた。その中で、知識素材を統一して長期に蓄積し、それらに対する高度な検索機能を提供するための知識資源構築研究基盤である、大規模知識資源蓄積システム KnowledgeStore (KS) の開発を分担した。KS は、柔軟なメタデータ定義が可能で、外部システムを Web サービスインタフェースで接続することで拡張性の高い蓄積・検索機能を提供する。このため、学術国際情報センターと附属図書館が中心となって開発を行い、平成 19 年 8 月から実運用が行われている、本学の学術論文等のリポジトリである T2R2 システム中でも、KS は実際に活用されている。

また、COE に関連する研究として、蓄積した講義用プレゼンテーション資料と講義ビデオを同期させ、スライド中のキーワードの出現位置や頻度、スライドの提示時間、前後のスライド提示との関係等の情報を利用して検索を行う Uprise の研究開発を行ってきた。Uprise では、同 COE のリーダである古井貞熙教授のグループと一緒にシーンの検索に講師の発話情報を利用する研究や、学術国際情報センターの直井聡客員教授と協力して、講義画像中のレーザーポインタの照射位置および照射期間情報をシーン検索に用いる方法に関して研究を行った。この他、講義コンテンツのダイジェストの作成方法に関しても、リコーと共同研究を行ってきた。これらの研究成果は、論文誌、国際会議、国内口頭発表等でその成果を多数報告している。

アクセスログの有効活用に関する研究

【研究の概要と成果】
近年、Web やファイルシステム等のアクセスログを解析して、有効利用する方法に関する研究が盛んにおこなわれるようになってきている。我々は、そのような状況の中で、科学研究費補助金特定研究の研究テーマとして、これまでにない Web アクセスログ解析による Web ページの推薦手法と、ファイルアクセスログを利用することによって、キーワードを含まないファイルに関する検索を可能とする手法の提案を行い、効果を示してきた。

Web アクセスログ解析による Web ページの推薦手法では、単なる各 Web ページのアクセス頻度だけでなく、アクセスパターンのシーケンスに着目し、アクセスログから LCS (Longest Common Sub-sequence) を抽出することで、適切な Web ページを推薦する手法を提案し、従来のアクセス頻度のみを解析する従来の手法と比較し、その効果を実証した。
一方、ファイルアクセスログを使った検索手法では、これまでのデスクトップ検索システムの対象がキーワードを含むドキュメントファイル等に限られていた制限を、アクセスログの解析に
よってファイル間の関係を抽出することで、キーワードは含まなくてもキーワードに関連するファイルを検索できる手法の提案と実装を行い、実際に、研究室の被験者の1年間のsambaアクセスログを使った評価でその効果を示した。

効率的な大容量データ管理に関する研究
【研究の概要と成果】
情報化社会に欠くことのできない高信頼で高性能な大容量の情報ストレージにおいて、管理コストは増大する一方で、効率的なデータ管理が望まれている。これまでに、磁気ディスク装置自体のインテリジェント化によってストレージ側で耐故障処理、リカバリ処理、負荷分散処理等を自律的に行い、データ管理コストを削減する、拡張性の高い先進ストレージシステム構成方法として自律ディスクを提案してきた。本テーマは、平成14年度から東京工業大学イノベーション研究推進体に承認され研究を行い、平成15年度からは独立行政法人科学技術振興機構（JST）の戦略的創造研究推進事業CRESTタイプ「情報社会を支える新しい高性能情報処理技術」研究領域の研究課題「ディペンダブルで高性能な先進ストレージシステム」としても採択されている。

平成19年度の主たる成果としては、ストレージ管理のためのデータ移動に伴う性能劣化をできるだけ抑え、システムのサービス品質を行う手法の評価や、性能や容量の異なるストレージ装置を接続しても、それらを有効利用できる手法の提案を行うと同時に、プロトタイプシステムの開発を行い、シンポジウム等の色々な機会のデモンストレーションでその実現性を示してきた。

XMLの蓄積と検索に関する研究
【研究の概要と成果】
XMLの普及により、様々な情報がXMLで記述され、蓄積される量も巨大化している。その中で、効率のよいXMLの蓄積と検索手法が求められている。XMLは、タグによって表現された要素間に包含関係があり、一組のタグをノードとして扱うことで木構造とみなすことができる。これまで我々は、関係データベース管理システムの豊富なデータベース管理機能や高速検索機能を有効活用することを念頭に、XMLの木構造を維持しながら関係データベースに格納する手法として、XMLの各ノードに割り当てるラベルのためのコードであるVLEIコードを提案してきた。

平成19年度の成果として、Dewey Orderに適用したVLEIコードをbitパターンによりさらにコンパクト化したC-DO-VLEIコードの提案とC-DO-VLEIコードの特徴を有効利用した検索手法性能向上を行い、その評価を行った。具体的には、MicroSoftが提案し、実際にSQLサーバーのXML格納・検索にも利用されているORDPATH手法と、C-DO-VLEIコードとの比較を行った。多数の実際のXMLデータを用いた比較によって、格納容量においても、検索性能においても、我々の提案するC-DO-VLEIコードが大幅に優位であることを実証した。

この他、増え続けるXMLデータに対する対応方法として、XMLデータを分散する複数の関係データベースに格納する手法の提案と評価も行った。具体的には、特徴的なタグに含まれるキーワードに基づくクラスタリングによる分散格納方法とそのためのインデックス構造が効果のあることを示した。

2) 小林大, 横田治夫, 「並列ストレージにおけるデータ再配置による長期的負荷均衡化と短期的応答性能の両立」, 情報処理学会論文誌データベース, Vol. 49, No. SIG15 (TOD37), 2008.3

4) レー ヒュウハン, ティティボーン, ルートラットデーチャークン, 渡部徹太郎, 横田治夫, 「講義講演ビデオの重要シーン抽出によるダイジェスト自動制作」, 情報処理学会第70回全国大会講演論文集, 2008.3.

5) 渡部徹太郎, 小林隆志, 横田治夫, 「キーワード非含有ファイルを検索可能とするファイル間関連度を用いた検索手法」, 情報処理学会第70回全国大会講演論文集, 2008.3.

6) 片居本誠, 横田治夫, 「仕様が異なるディスク混在ストレージの帯域・容量同時有効利用に向けた領域割当とデータ配置の評価」, 第19回データ工学ワークショップ, DEWS2008論文集, 電子情報通信学会, 2008.3.

7) 渡部徹太郎, 小林隆志, 横田治夫, 「キーワード非含有ファイルを検索可能とするファイル間関連度を用いた検索手法の評価」, 第19回データ工学ワークショップ, DEWS2008論文集, 電子情報通信学会, 2008.3.

8) 高橋昭裕, 梁文新, 横田治夫, 「要素挿入に強いXMLラベルの構造情報抽出手法の提案と評価」, 第19回データ工学ワークショップ, DEWS2008論文集, 電子情報通信学会, C8-4, 2008.3.

9) 吉野悠二, 梁文新, 横田治夫, 「部分文書処理コストを考慮したXMLデータの分割配置とアクセス手法」, 第19回データ工学ワークショップ, DEWS2008論文集, 電子情報通信学会, 2008.3.

10) 並木悠太, 神戸康多, 横田治夫, 「Fat-Btreeを用いたPostgreSQL分散化におけるページ分割手法の評価」, 第19回データ工学ワークショップ, DEWS2008論文集, 電子情報通信学会, 2008.3.

24) 渡部徹太郎, 小林隆志, 横田治夫, 「ファイル検索におけるアクセスログから抽出した関連度の利用」, 夏のデータベースワークショップ DBWS2007, 電子情報通信学会, ISSN

26) 山元理絵、吉原朋宏、小林大、小林隆志、横田治夫、「アクセスログに基づくWeb ページ推薦における LCS の利用とその解析」、情報処理学会論文誌データベース、Vol. 48, No. SIG 11 (TOD 34), pp. 38-48, 2007.6

27) DAI KOBAYASHI, RYO TAGUCHI, HARUO YOKOTA, "An Experimental Evaluation of the Adaptive Replica-assisted Migration for Parallel Storage Systems", in Proc. of International Special Workshop on Databases For Next Generation Researchers (SWOD 2007), in conjunction with ICDE 2007, 2007.4
准教授 飯田 勝吉（情報流通分野）

モバイルマルチホーム環境におけるフローマージの影響を低減するハンドオフ機構に関する研究

【研究の概要と成果】

モバイル環境では、多数の無線ネットワークメディアを同時に利用するマルチホームによるネットワーク接続が幅広く普及している。マルチホームを利用し、最適な無線ネットワークメディアを動的に選択する（ハンドオフする）ことで通信品質の向上が可能となる。しかし、ハンドオフによってあるフローの通信メディアが切り替わった場合、切り替わった先の通信メディアで通信中の他のフローの通信品質が低下してしまう。特に高帯域な通信メディアを流れていた TCP フローが低帯域な通信メディアに切り替わり、切り替わり後の通信メディアに実時間通信を行う UDP フローとマージする場合の通信品質の低下が深刻な問題となる。

そこで本研究では、ハンドオフ時に TCP フローが UDP フローの通信品質に与える影響を抑制するための TCP ハンドオフ機構を３種類提案し、性能評価によってそのうち cwnd_reset 方式と awnd_linear 方式が優れていることを、具体的には、UDP フローの通信品質だけでなく TCP フローの通信品質が大幅に改善することを明らかにした。

VPN 最低帯域保証方式におけるプロビジョニングアルゴリズムに関する研究

【研究の概要と成果】

地理的に離れた複数の拠点を持つ企業は VPN によって安全なネットワークを安価に実現している。しかし、VPN は多くの場合通信品質の保証を行わない。特に、現在主流のトランスポートプロトコルである TCP は利用する帯域が動的に変動するため、効率的な通信品質の保証が困難である。この問題を解決するために、VPN 最低帯域保証方式が提案された。しかし、VPN 最低帯域保証方式は帯域割り当てパラメータの事前設定（プロビジョニング）が終了していることを前提としており、プロビジョニングのアルゴリズムが別途必要となる。

プロビジョニングアルゴリズムの入力パラメータは、各顧客の各拠点間の最低帯域保証を希望する帯域の配列であり、出力パラメータは各顧客の各拠点間に与える重み値の配列である。しかし、各顧客の各拠点間で全く通信を行わないアイドル状態が発生する。各顧客の各拠点間がアクティブ状態であるかアイドル状態であるかのすべての組み合わせにおいて各顧客の各拠点間の最低帯域保証を満たす重み値の配列を探索する必要がある。そのため各通信状態の組み合わせにおいて最適な重み値の配列を非線形計画法で探索し、すべての通信状態を繰り返し探索するヒューリスティックアルゴリズムを構築した。

【発表論文・学会発表等】

1) Y. Nitta, T. Hashimoto, K. Iida, K. Yamaoka and Y. Sakai: "Novel Link Weight for Path

3) 嶋村昌義、飯田勝吉、古閑宏幸、門林雄基、山口英：「最低帯域保証を実現する VPN サービスにおける非線形計画法を用いたプロビジョニングアルゴリズム」、電子情報通信学会・技術研究報告、Vol.107, No.249, pp.35-40, IN2007-83，2007 年 10 月

6) 新里卓史、飯田勝吉、植松友彦、渡辺治：「東京工業大学におけるキャンパス共通認証認可システムを用いた安全なソフトウェア配布機構の設計と実装」、電子情報通信学会・技術研究報告、Vol.107, No.449, pp.45-50, IA2007-48，2008 年 1 月

7) 岸本幸一、飯田勝吉、鶴正人：「NSF FIND におけるポスト IP ネットワークの研究動向 －仮想化、情報トランスポート、プライバシー、レイヤ構造－」、電子情報通信学会・技術研究報告、Vol.107, No.524, pp.205-210, NS2007-167, 2008 年 3 月

8) 小林武史、飯田勝吉、中村豊、池永全志：「分散センサーによる異常トラヒック検出機構の評価モデルと性能解析」、電子情報通信学会・技術研究報告、Vol.107, No.524, pp.347-352, NS2007-194，2008 年 3 月

9) 高木想一郎、飯田勝吉：「DCCP を用いたネットワークゲームの品質制御に関する評価実験」、電子情報通信学会・技術研究報告、Vol.107, No.524, pp.375-380, NS2007-199, 2008 年 3 月

10) 高木想一郎、飯田勝吉：「DCCP を用いたネットワークゲームのトラヒック制御に関する研究」、電子情報通信学会 2008 年総合大会, B-16-1，2008 年 3 月

11) 新里卓史、飯田勝吉、植松友彦、渡辺治：「東京工業大学におけるキャンパス共通認証認可システムを用いた安全なソフトウェア配布機構」、電子情報通信学会 2008 年総合大会, BS-8-3，2008 年 3 月

12) 東島慶、中村豊、池永全志、飯田勝吉：「自動シグネチャ生成システムにおけるトラヒック情報収集方式に関する検討」、第 70 回情報処理学会全国大会講演論文集，4ZL-9，2008 年 3 月

13) 小林武史、飯田勝吉、中村豊、池永全志：「センサーからの情報に基づいたシグネチャ自動生成システムのモデル化と基礎検討」、第 70 回情報処理学会全国大会講演論文集，4ZL-10，2008 年 3 月
Web連携を用いた映像コンテンツからのテキスト検索情報の抽出
【研究の概要と成果】

ブロードバンド時代を迎え、P CやDVDのディスク容量が格段に増加し、映像コンテンツの蓄積・検索機能がより重要になってきている。映像コンテンツの検索方法として、テロップなどの文字情報検索、ナレーター等の音声情報検索、人物や建造物等の画像検索が考えられる。情報抽出精度の点からは、一般的に、音声情報はスピーカーの音声を学習できない限り精度は低く、画像検索に至っては、色、形状等で検索できるが、候補数が多いユーザが望む映像を見つけるのは非常に大変である。その点、文字情報は他の比せてその精度が期待できるので、本研究では映像コンテンツからの文字情報抽出に焦点を当てた。

しかしながら、文字情報抽出においてもTV映像（NTSC）の解像度の低さから60%から80%の精度が現状である。以下に、テロップ認識の処理フローを示す。

これまでテロップ認識の文字認識精度を向上させるのに、文字認識の後処理で文字認識の候補に対して知識処理を行う方法が考えられてきた。知識辞書に登録されている一般の単語については文字認識の誤りが修正されるが、知識辞書に登録されていない未登録語に対しては効果がなく、また、文字認識の候補文字がない場合については誤り修正が困難であった。そこで、今年度は、映像コンテンツに対応する記事をWebから見つけ、Webの記事を用いて文字認識の精度を向上させる研究に着手した。文字認識は現在P C上のソフトウェアで実現されているだけでなく、デジカメ付携帯でもOCR翻訳機能が実現されるなど適用範囲が拡大しているが、各機器においてもユビキタス・ブロードバンド時代が加速し、ソフトウェアのアプリケーションにおいてもインターネット連携が当たり前の時代が近づいてきている。つまり、我々の研究のねらいは、文字認識の高精度化を従来の固定の知識辞書で行うのではなく、Webの情報をダイナミックに活用して日々発生する新しい単語においても知識処理ができる仕組みを研究開発する。今年度から着手したテロップ認識の文字認識精度向上の研究は、その研究の一環である。
今年度の成果として、主に二つの課題を洗い出し、基礎検討を行った。一つは、テロップに対応するWeb記事の抽出で、文字認識の1次結果を用いてそのBigramやTri-gramが近いタイトルやコンテンツを探索することで対応する記事を抽出する方式を開発した。二つ目は、対応する記事を積極的に用いて文字認識の誤り、抜け、余分な文字の削除を行う課題であり、記事と文字認識の結果の対応を個別だけでなく、近接する文字（単語）と文字（単語）の関係を使用して行う方式を検討した。来年度はこれらについてさらなる評価、改良を行い、精度向上を実現する予定である。

【発表論文・学会発表等】
8-2 研究・教育基盤部門

教授 松岡 聡（問題解決支援環境分野）

性能モデルに基づいた資源選択による高速仮想クラスタの構築

【研究の概要と成果】

科学研究費・特定計画研究「情報爆発に対応する高度にスケーラブルな高性能自律構成実行基盤項目」の「性能モデルに基づいた資源選択による高速仮想クラスタの構築」において研究構築している VPC(Virtual Private Cluster) システムでは、1000 ノード規模の大規模な仮想クラスタをスケーラブルに2分程度で構築することを可能とし、そのために、クラスタのソフトウェアのパッケージ構成を効率的にキャッシュング・転送を行う新しいシステム技術を開発した。さらに、インストールシステム技術ノード毎の性能が非均一な大規模グリッド環境においても安定して高速な構築を行うために、構築時間のモデル化に基づいた資源選択手法を提案した。性能モデルは各計算ノードの性能 (CPU 周波数、ディスク読み書き速度、インストールパッケージ容量など) をパラメータとし、それらの線形結合で各ステップの実行時間を表現し、モデル係数の決定は、仮想クラスタを構築した性能データを基に重回帰分析を行う。エミュレートされた2サイト上の仮想クラスタの実験では、ランダムに計算ノードを選択する最も単純な手法 (FIFO) に比べて最大 68％の構築時間短縮を実現できること分かった（図1）。

図1．各資源選択法における仮想クラスタ構築時間の比較

性能モデルに基づいた資源選択による高速仮想クラスタの構築

【研究の概要と成果】

科学研究費・特定計画研究「情報爆発に対応する高度にスケーラブルな高性能自律構成実行基盤項目」の「大規模分散ソフトウェアの自律的な障害解析」では、大規模分散システムの実行状態を常に監視し、異常原因の解析を行う方式を開発した。図3 にあるように、
同解析手法はシステムの各構成プロセスの関数呼び出しを常に記録し、正常に実行された場合と故障が発生した場合を比較することで障害の原因を解析する。まず、正常実行時のトレースよりシステムの正常な振る舞いを表すモデルを構築し、システムに故障が発生した場合は、構築済みモデルと故障発生時のトレースを比較し、異常な関数呼び出しを検出し、実際には MPICH が適切に MPI ジョブを起動できない障害を、プロジェクト全体で他の大学と協調して構築した Intrigger 全国分散テストベッド基盤の上の 3 拠点、78 ノード構成での障害トレースを取得し、提案モデルを用いた異常検知を行って、同障害の原因バグに該当する箇所を容易に特定できることを示した。また、大規模並列実行のための MPI システムにおいて実行環境やアプリケーションの特性に適した耐故障機能を自律的に構成する研究も行い、特に提案フレームワークが動的負荷分散にも有用であることを示した。

図 2. 大规模故障の解析ステップ概要

広域分散環境の特性を考慮した集団通信アルゴリズムの提案と評価
【研究の概要と成果】
超広帯域通信を可能にする光ネットワーク技術がグリッドの基盤ネットワークとして注目されている。研究項目「広域分散環境の特性を考慮した集団通信アルゴリズムの提案と評価」では、光と電気のネットワークを、その性能モデルに応じて補完的に用いることによって、安価でかつレーテンシにリジェントな並列計算用のネットワークを構築できることを示した。また、広域環境における MPI の Scatter & Gather などの集団通信のアルゴリズムが、外部の上位ネットワークのバンド幅が大きいような新世代の光広域ネットワーク(例えば、ノードのネットワークが 1Gbps で、サイト間のネットワークが 40Gbps など)の特性を活かし、予備実行と性能モデルに基づいて効率良く行われるアルゴリズムを提案し、Intrigger 上でその有効性を示した。

ULP-HPC：超省電力型次世代ハイパフォーマンスコンピューティングの研究
【研究の概要と成果】
JST-CREST、およびマイクロソフト社の Technical Center of Innovation プログラムの支
援に基づき、超消費電力型の HPC の研究を行い、次世代の TSUBAME の設計の基礎研究として様々な技術の確立を行った。

① TSUBAME 上でアクセラレータと CPU をハイブリッドな異機種構成において高性能な Linpack 計算を行うアルゴリズムを研究開発した。これにより、世界のスーパコンランキングである Top500 リストにおいて、TSUBAME は ClearSpeed アクセラレータの増設などもありまって、4 期連続・2 年間連続に渡り、世界初の連続性能向上を果たし（38.18TeraFlops→47.38TeraFlops→48.88TeraFlops→56.43TeraFlops）、わが国 No.1 のスーパコンピュータの栄誉にあずかかった。

② 行列積や FFT などの数値計算を GPU で効率よく実行する手法の研究を推進した。まず、GPU 上での FFT 演算の高速化を行った。特に FFT では GPU とホスト間のデータ転送がボトルネックとなりやすいが、GPU 上のデバイスメモリへのアクセスを最適化することによって転送時間を含んだ場合でも最新の quad core CPU の 2 倍以上の性能を達成した [7]。また、GPU と CPU の併用、さらには複数の GPU を用いる並列処理手法の研究を推進した。まず、CPU と GPU へのタスク割り振りの決定を自動化するために、性能モデルを構築した。これにより、2D-FFT の実行時間を 15%以内の誤差で予測でき、その際、CPU 単体と比較して 1.5 倍の性能向上が得られた。また複数の性能が異なる GPU を用いた行列積の計算では、セルフスケジューリングによる動的タスク分配を用い、静的に割り振った場合よりも良い性能が得られることを確認した。

③ 電力型アクセラレータによる HPC の大規模加速実験およびモデリングを行った。大規模加速実験として、東京工業大学 TSUBAME システム上で並列 Linpack の実験を、本年度導入の ClearSpeed アクセラレータを併用して行った。10000 コア以上の汎用 CPU と 600 枚以上のアクセラレータにカーネル演算を適切に割り振ることにより、56.43TFlops の性能を達成した。この結果は Top500 スパコンランキングにおいて、日本 1 位、世界 16 位にランクされた。また、モデリングの研究として、汎用 CPU とアクセラレータが混在する HPC システムを想定し、性能モデルとジョブスケジューリングアルゴリズムの提案を行った。様々な加速特性を持つジョブ群をシミュレートし、make-span および ED 積の評価を行い、電力を考慮しない単純な手法に対する優位性を確認した。

④ 次世代低電力メモリを有効利用するシステムの提案・評価を行った。提案システムでは電力コストが大きい DRAM の搭載容量を削減するために、メインメモリの一部を MRAM に置き換え、スワップデバイスとして FLASH メモリを使用する。そしてメモリアクセスを高速な MRAM に集中させるような省電力ページング方式を提案した。シミュレーションにより、DRAM 容量を適切に削減した場合に、アプリケーションベンチマークの性能低下を 12%に抑えつつ、メモリモジュールの消費エネルギーを 26%に削減できることを示した。
図3. 本研究開発の異機種 Linpack による Top500 Linpack 性能向上

【発表論文・学会発表等】

2) 尾形泰彦, 丸山直也, 遠藤敏夫, 松岡聡「性能モデルに基づく CPU 及び GPU を併用する効率的な FFT ライブラリ」情報処理学会論文誌, Vol.49 No.SIG-ACS22, 2008 (刊行予定).

5) 尾形泰彦, 丸山直也, 遠藤敏夫, 松岡聡."性能モデルに基づく CPU およびGPUを併用する効率的な FFT ライブラリ”.2008年ハイパフォーマンスコンピューティングと

8) Shin' ichiro Takizawa and Toshio Endo and Satoshi Matsuoka. ”Locality Aware MPI Communication on a Commodity Opto-Electronic Hybrid Network”, Workshop on Large-Scale Parallel Processing (LSPP’08), in conjunction with IPDPS 2008, Miami, FL, USA, the IEEE Press, Apr 2008, (accepted, to be presented).

9) Naoya Maruyama and Satoshi Matsuoka. ”Model-Based Fault Localization in Large-Scale Computing Systems”, the 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS’08), Miami, FL, USA, Apr 2008, the IEEE Press, Apr. 2008 (accepted, to be presented).

12) 額田彰, 尾形泰彦, 遠藤敏夫, 松岡聡. 「CUDA 環境における高性能 3 次元 FFT」 先進的計算基盤システムシンポジウム SACSIS2008 論文集, June 2008 (査読採択済み・発表予定)

13) 山崎翔平, 丸山直也, 松岡聡 「情報爆発時代におけるモデルベース資源選択による高速な仮想クラスタ構築」 先進的計算基盤システムシンポジウム SACSIS2008 論文集, June 2008 (査読採択済み・発表予定)

14) 尾形泰彦, 丸山直也, 遠藤敏夫, 松岡聡「性能モデルに基づく CPU および GPU を併用する効率的な FFT ライブラリ」2008 年ハイパフォーマンスコンピューティングと計算科学シンポジウム論文集 (HPCS2008), pp. 107-114, 情報処理学会, 2008 年 1 月

15) 細萱祐人, 遠藤敏夫, 松岡聡「省電力ページング方式を実装した次世代メモリアーキテクチャ上の並列プログラム」2008 年ハイパフォーマンスコンピューティングと

23) 西川武志, 松岡聡「分散時刻認証局グリッドとパラメータ依存性の解析」先進的計算基盤システムシンポジウム SACSIS2007 論文集, 情報処理学会, 2007 年 5 月

25) Laurent Baduel, Satoshi Matsuoka. "A Peer-to-Peer Infrastructure for Autonomous Grid Monitoring", The third International Workshop on Hot Topics in Peer-to-Peer Systems, in conjunction with IPDPS2007, the IEEE Press, April,
28) 山崎翔平, 丸山直也, 松岡聡「情報爆発時代におけるモデルベース資源選択による高速な仮想クラスタ構築」情報処理学会第 70 回全国大会論文集第 5 分冊, pp119-120, 2008 年 3 月
29) 佐藤仁, 松岡聡, 遠藤敏夫「情報爆発時代のグリッドファイルシステム上での大規模データ管理」情報処理学会第 70 回全国大会論文集第 5 分冊, pp121-122, 2008 年 3 月
31) 西川武志, 松岡聡「情報爆発時代のスーパコンピュータ運用経験: TSUBAME Grid Cluster にて」情報処理学会第 70 回全国大会論文集第 5 分冊, pp129-130, 2008 年 3 月
32) 遠藤敏夫, 松岡聡「情報爆発時代へ向けた不均一アーキテクチャにおけるスーパーコンピューティング」情報処理学会第 70 回全国大会論文集第 5 分冊, pp131-132, 2008 年 3 月
33) 實本英之, 遠藤敏夫, 松岡聡「情報爆発に対応する耐故障性 MPI フレームワークの提案」情報処理学会第 70 回全国大会論文集第 5 分冊, pp133-134, 2008 年 3 月
34) 千葉浩, 遠藤敏夫, 松岡聡「情報爆発時代のグリッド環境に対応した MPI 集団通信アルゴリズムの最適化」情報処理学会第 70 回全国大会論文集第 5 分冊, pp135-136, 2008 年 3 月
35) 渋澤真一朗, 遠藤敏夫, 松岡聡「情報爆発時代の光インターコネクト上での MPI 通信アルゴリズム」情報処理学会第 70 回全国大会論文集第 5 分冊, pp137-138, 2008 年 3 月
37) 渋澤真一朗, 遠藤敏夫, 松岡聡「次世代光インターコネクトでの MPI 通信性能の評価」日本ソフトウェア科学会第 24 回大会(2007 年度)論文集
38) 丸山直也, 松岡聡「分散システムにおける故障の自律的な解析」日本ソフトウェア科学会第 24 回大会(2007 年度)論文集

40) 西川武志, 松岡聡「インターネット上での分散時刻認証グリッドのタイムスタンプ発行スケーラビリティの評価」情報処理学会研究報告 2007-HPC-112 (HPC Asia 併設 WS, Sep 9th), pp1-6, 2007年 9月

48) 西川武志, 松岡聡「分散時刻認証グリッドのインターネット上の動作実験」電子情報通信学会技術研究報告 2007-CPSY Vol.107 No.175 (SWoPP 2007, August 1-August 3, pp61-64), 2007年 8月

49) 西川武志, 松岡聡「時刻認証グリッドの構築と基礎実験」信学技報 Vol.107 No16, pp.13-18, 2007
教授 馬越 廉恭（遠隔・マルチメディア教育分野）

【研究の概要と成果】
尾崎（史郎）（NIME）（メディア教育開発センター）教授を GSIC 客員教授（2008.04.01－2008.03.31）として招聘し、遠隔マルチメディア教育分野として集中的にデジタルコンテンツ情報発信に関する著作権について学習し、夏前に著作権をテーマとする GSIC 講演会 2007 No.03 を企画・開催した。但し、学内外に大学全体としての教育デジタルコンテンツ情報発信全般に関わる仕組みを構築することには成功していない。

JOOW の幹事会・総会に出席し情報交換等に務め、MIT が 2007.11.27 に開催した MIT OCW 打ち上げ完成の Celebration に Invited Guest として招待され東京工業大学を代表して出席し、人的ネットワークの維持に努めた。

MIT OCW の Advisory Board 委員である MIT 宮川（繁）教授を 2 度目の GSIC 客員教授（2007.06.01－2007.08.31）として招聘し、OCW 及び OER（Open Educational Resources）についてのグローバルな情勢把握に努め、夏前と秋に、MIT 宮川（繁）教授を講師とする GSIC 講演会 2007 No.02 と GSIC 講演会 2007 No.04 を開催した。夏前は、OCW のグローバルな展開について、秋は USA、具体的には MIT に於けるテニュア（tenure）制度運用の実際をテーマとして企画・開催した。

【寄稿】
1）「e ラーニングとしてのオープンコースウェア」
東京農工大学総合情報メディアセンター 2007 年度シンポジウム
『大学教育における ICT 活用』予稿集, p.11-32

【招待講演】
1）「革新的な学び OCW」
弘前大学 21 世紀教育センター主催
『平成 19 年度 Web を通じた授業公開に関する講演会』
於：弘前大学，2007.11.15（木）

2）「e ラーニングとしてのオープンコースウェア」
東京農工大学総合情報メディアセンター 2007 年度シンポジウム
『大学教育における ICT 活用』
於：東京農工大学，2008.02.27（木）

【講演会・セミナーの企画・実施】
1）GSIC 講演会 2007 No.01 企画・実行委員長

2）GSIC 講演会 2007 No.02 企画・実行委員長

3）GSIC 講演会 2007 No.03 企画・実行委員長

4）GSIC 講演会 2007 No.04 企画・実行委員長
5) GSIC セミナー 2007 No.01 企画・実行委員長
6) GSIC セミナー 2007 No.02 企画・実行委員長

【各種プロジェクト・委員会】
1) 21世紀 COE プログラム“大規模知識資源の体系化と活用基盤構築”
サブリーダー

2) イノベーション研究推進体“次世代型多元的高度 TV 会議式教育システム”
研究代表者
（注）：2008.03.31を以て廃止。

3) NIME IT 教育支援協議会 4大学連合複合領域コース IT 化コンソーシアム代表

4) TokyoTech OCW WG 主査
 （日本OCW連絡会東京工業大学連絡代表者）

5) JOCW（Japan OCW Consortium）幹事
准教授 望月 祐洋（遠隔・マルチメディア教育分野）

多地点遠隔教育支援システムの高度化に関する研究
【研究の概要と成果】
遠隔講義を実施する多地点の講義室に設置されるさまざまなハードウェア（ビデオカメラ、プロジェクタ、ネットワークストリーミング用CODEC、AV機器、マトリクススイッチ等）やソフトウェアコンポーネントを協調制御・動作させることで、講師やTAによる講義中の複数機器操作のオーバヘッドを軽減し、ITを効果的に利用した遠隔講義の円滑な支援を目的とする研究を継続している。このようなユビキタスコンピューティング環境に存在する多様な要素サービスを組み合わせて複合サービスを実現する際に、サービス開発者が予備知識のない状態で、開発作業を進めるために必要な情報への一元的なアクセスを可能にし、簡便な操作によって新サービスのプロトタイピングを支援することを目的として研究を行った。複合サービス開発者が、要素サービスの設定情報に一元的にアクセスして情報共有できるようにし、開発現場で共同作業を進めつつ複合サービスの構成に必要なグルーポードを記述できるような開発スタイルを支援するためのシステムとして、タップルスペースモデルに基づくWikiエンジンの一種であるWikiφ（「うぃきふぁい」と発音）ベースとする開発支援ツールを構築した。Wikiφでは、ユビキタスサービス初期化時に外部制御コマンド、イベントハンドラ、ログ情報、デバッグ出力に関する情報の集合をWikiページとして登録することで、従来のWikiの編集作業と同様の感覚での各種設定情報の共有、共同編集・管理を可能にした。このしくみによって、複数のユビキタスサービスが協調することで構成される新たな複合サービスのラピッドプロトタイピングが容易となった。

教育用動画コンテンツ管理システムに関する研究
【研究の概要と成果】
講義収録した動画データおよびプレゼンテーション資料を元に、動画コンテンツの動的生成、蓄積、共有、閲覧を支援するシステムについて研究を進めた。プロトタイプシステムの作成を行うとともに、GSIC講演会およびGSICセミナーを対象に試験的なコンテンツ化を進め、GSICアーカイブ（http://www.gsic.titech.ac.jp/contents/archive.html.ja）のWebページで試験運用を行った。

【発表論文・学会発表等】
2) 望月祐洋：Wikiφによるユビキタス複合サービス開発支援、情報処理学会論文誌（採録決定）
特任准教授 西川 武志（問題解決支援環境分野）

NAREGI ミドルウェア利用複数拠点間連携ジョブ実行および VO 課金システム開発
【研究の概要と成果】
超高速コンピュータ網形成プロジェクト（NAREGI : NAtional REsearch Grid Initiative）で
開発中の NAREGI β2 ミドルウェアを用いて東工大のスパコン TSUBAME と他の CSI 事業
参加大学の計算資源を連携させて運用試験を行い、実証実験を通じて NAREGI β ミドルウェアの改良を検討した。以上の実証実験のジョブのアカウント情報を用いて昨年度開発した「VO(Virtual Organizaiton)課金システム」のフィールドテストを行い、改良検討を行った。
以上の成果を米国ネバダ州リノにて 2007 年 11 月 10 日から 15 日に開催された SC07 の NAREGI ブースにてデモンストレーションを行った。

VO 課金システムの開発と試験運用
【研究の概要と成果】
昨年度に CSI の資金で開発検討し策定した仕様書に従い「VO(Virtual Organizaiton)課金
システム」を開発した。VO 課金システムを昨年度の仕様書に従い実装したところ、平成 18 年 11 月から開始した TSUBAME システムの実際の課金運用方針が、仕様書では検討していなかった、非従量時間制課金を行うということになり、仕様書を修正して拡張し、実装した。これにより従量資源の他、資源量予約額制課金に対応出来るようになった。
NAREGI 開発チームより試験データの提供を受け、VO 課金システムが仕様書通りに動作する事を確認した。

分散時刻認証局を利用したデジタル実験ノート実証実験
【研究の概要と成果】
国内 7 基盤センターおよび高エネルギー研究機構との連携体制を構築し、分散時刻認証局
ミドルウェアのインストールと連係動作確認を実施した。分散時刻認証局ミドルウェアに
よる時刻認証の仕組みのアプリケーションとしてデジタル知財存在証明システム（デジタ
ル実験ノート）を昨年度開発版から改良した。分散時刻認証局ミドルウェアをインストー
ルした分散時刻認証局ユニット（Time-Stamping Unit:TSU）のサーバの設置を大阪大学、
慶応義塾大学、高エネルギー研究機構、九州大学の協力を得て行った。分散時刻認証局を
構成する TSU のサーバ証明書に異なる 2 種を混合して運用し、TSU の信頼性に複数階層が
存在する場合、実際インターネット上でどの程度の割合で 2 種の TSU が混合して利用され
るかを調査した。設置した分散時刻認証ユニットが連携して動作し、分散時刻認証局とし
て動作する事を確認した。以上によりデジタルデータの存在・非改ざん証明を誰もが簡単に
利用出来るようになった。
『みんなのスパコン』TSUBAME ASP:WebMO Gaussian, GAMESS 対応版の開発
【研究の概要と成果】
本プロジェクトでは Web インターフェースで量子化学計算プログラムを利用することができる米国 WebMO LLC.開発の WebMO を東工大認証認可システムおよび TSUBAME のアカウント管理システムと連携させシングルサインオンを実現するとともに、ジョブ管理システム Ni GridEngine および課金システムとの連携を実現し、『みんなのスパコン TSUBAME ASP:WebMO システムとして Gaussian, GAMESS に対応した。東工大 ID カードを持つ人は申請すれば誰でも Web ブラウザ経由で利用者が入力ファイルの作成、計算条件の指定、ジョブの実行、結果の解析までを行える。
これにより、例えば学部生の量子化学プログラムを使う演習で、演習の目的である量子化学計算を行う前に、端末画面を開いて SSH で TSUBAME に接続して、キャラクタユーザーアンタフェースでテキストエディタを用いて入力ファイルを編集したり、ジョブ管理システムの使用方法を教えたり、計算結果の膨大なテキストファイルの中から所望の物理量を探して抜き出したりする必要が無くなり、目的とする量子化学の理解を深めることが可能になる。
【発表論文・学会発表等】

2) 西川武志、松岡聡、時刻認証グリッドの構築と基礎実験、電子情報通信学会技術研究報告 2007-CPSY Vol.107 No.16, pp.13-18, 2007.04.20

3) 西川武志、松岡聡、分散時刻認証局グリッドとパラメータ依存性の解析、先進的計算基盤システムシンポジウム SACSIS2007, 学術総合センター講堂・会議室（東京）, 2007.5.24.

7) 松岡聡、西川武志, 東工大 TSUBAME 運用の一年, IPAB 第 8 回シンポジウム, 東京工業大学, 2007.11.29

9) 西川武志、松岡聡、情報爆発時代のスーパコンピュータ運用経験: TSUBAME Grid Cluster にて, 情報処理学会 第 70 回全国大会, 筑波大学,2008.3.15
特任講師　遠藤　敏夫（問題解決支援環境分野）

大規模異種プロセッサ混合環境における高性能演算技術
【研究の概要と成果】
混用プロセッサと、より特殊用途に特化したプロセッサを混合したヘテロ(異種混合)型
アーキテクチャは、現代のスーパーコンピュータ構築における最大の障害のひとつである
消費電力の上昇問題への対応と、多岐にわたりユーザの計算の要求への対応を両立させる
上非常に有望と考えられている。東工大 GSIC の TSUBAME スーパーコンピュータはそ
のようなアーキテクチャを採っており、計算資源として汎用 CPU である Opteron 約
10,000 コアに加え、ClearSpeed SIMD アクセラレータボードを 600 枚以上備える(本年
度増設分を含む)。しかしながらヘテロな計算資源の効率的な利用や計算割り当て手法に
に関する研究は、特に大規模計算環境において、我々のものを除きほとんど行われていない。

本研究では昨年度に引き続き、ヘテロな大量の計算資源上での並列計算の効率化手法の
研究を行った。演算として、Top500 スーパーコンピュータランキングでも用いられる
Linpack(連立一次方程式)を題材とした。方針として、計算のカーネル部分のみをアクセ
ラレータに行わせる、各計算資源の能力を仮想化してそれらを複数のプロセスに共有
するとなる方針をとる。昨年度に比べ、ボードの枚数やカーネルライブラリの性能に変更
があったため再チューニングを行っている。TSUBAME 全体を用いた計測を 2007 年 5
月および 9 月に行い、それぞれ 48.88TFlops(世界 14 位)，56.43TFlops(世界 16 位)を達
成した。これは TSUBAME 自身が持っていた、異種混合プロセッサを用いた世界記録を
更新するものである。

大規模で柔軟な分散環境のためのミドルウェアの研究
【研究の概要と成果】
計算資源への性能要求はますます高まっており、計算環境の大規模化は必須である。そ
のような環境では、資源の管理、通信アルゴリズムなどにおいて、スケーラブルかつ資源
状況の変化に対応できるミドルウェアが必要である。柔軟な分散環境のためのミドルウェ
アの研究を、松岡聡研究室と共同で行っている。研究項目の一部は以下の通りである。
スケーラブルな耐故障 MPI フレームワーク：事実上の並列プログラミングにおける標
準である MPI について、アプリケーションや環境の特性に応じた耐故障機能を実現する
フレームワークの研究を行った。分散計算環境における故障の種類は多岐に渡り、一時
的・永続的故障、ノード・ネットワーク不調、性能異常などが考えられる。そのような場
合に故障からの復旧手法は、故障の種類に応じるべきであるため、故障の発見手法、復旧
手法をカスタマイズ可能なプロトタイプシステムを開発している。NAS parallel
benchmark などを用い、人工的に様々な種類の(仮想的な)故障を再現することにより、シ
ステムの性能評価を行った。また、同一フレームワークにより動的負荷分散が可能である
広域分散環境に対応可能な集団通信アルゴリズム：大規模並列プログラムの性能に大きな影響を及ぼす要素のひとつは集団通信の性能であり、集団通信アルゴリズムは環境に適合している必要がある。我々は特に広域分散環境であり、WAN帯幅が充実に広く、LANのそれと同等かそれ以上であるようなケースを主な対象とし、アルゴリズムの研究を行っている。主な方針は、可能な場合には各ノードのネットワークインタフェースの帯幅を下り・上りともフルに活用すること、WANの大遅延環境でも帯幅を活用するよう、充分な数のTCP接続を用いることである。Broadcast, Gather, Scatterアルゴリズムの設計・実装・評価を行い、素朴なアルゴリズムより大幅な性能向上を達成した。

【発表論文・学会発表等】
1）遠藤 敏夫, 松岡 聡. 情報爆発時代へ向けた不均一アーキテクチャにおけるスーパーコンピューティング. 第70回情報処理学会全国大会論文集, March 2008.
2）佐藤 仁, 松岡 聡, 遠藤 敏夫. 情報爆発時代のグリッドファイルシステム上での大規模データ管理. 第70回情報処理学会全国大会論文集, March 2008.
3）室本 英之, 遠藤 敏夫, 松岡 聡. 情報爆発に対応する耐故障性MPIフレームワークの提案. 第70回情報処理学会全国大会論文集, March 2008.
4）瀬澤 真一朗, 遠藤 敏夫, 松岡 聡. 情報爆発時代の光インターコネクト上でのMPI通信アルゴリズム. 第70回情報処理学会全国大会論文集, March 2008.
5）千葉 立寛, 遠藤 敏夫, 松岡 聡. 情報爆発時代のグリッド環境に対応したMPI集団通信アルゴリズムの最適化. 第70回情報処理学会全国大会論文集, March 2008.
7）尾形 泰彦, 遠藤 敏夫, 松岡 聡. 同性能モデルに基づくCPU及びGPUを併用する効率的なFFTライブラリ. 情報処理学会ハイパフォーマンスコンピューティングと計算科学シンポジウム論文集(HPCS2008), pp.107-114, January 2008.
8）瀬澤 真一朗, 遠藤 敏夫, 松岡 聡. 次世代光インターコネクト上でのMPI通信性能の評価. 日本ソフトウェア学会第24回大会論文集, September 2007.

核融合粒子モデルの計算グリッド適応性に関する研究
【研究の概要と成果】
核融合の大規模シミュレーションのグリッド・コンピューティングへの適応性の研究の一環で、CPU間のコミュニケーション負荷が比較的小さく、PCクラスタシステムに向いている、軌道追跡モンテカルロ法コードのグリッドバージョンの開発とそれを用いた研究を東工大原子炉研究所との共同研究で進めている。2007年度は、前年度の研究で発見されていた共鳴拡散の特異的なエネルギー依存性（M字構造）についてマッピングモデルによる解析を進めた。
また、新しい研究課題として、トカマク型核融合炉の定常化の最重要課題である非誘導プラズマ電流駆動の大規模シミュレーション研究をTSUBAMEを用いて行った。従来のパルクプラズマの新古典論的な自発電流に加えて、核融合反応生成高エネルギーアルファ粒子が電流を駆動する可能性を、軌道追跡モンテカルロコードを用いて、世界で初めて示した。なお、この計算はモンテカルロ誤差レベルを非常に小さくするため、約百万個のテスト粒子を必要としたが、それには、TSUBAMEの512並列で約10時間を要した。
次世代ハイエンド計算機に関する調査検討
【研究の概要と成果】
過去約3年間にわたり、次世代のハイエンド計算機に関する調査検討を進めた。その内容は、アプリケーションの調査から始め、その結果から次世代システムに求められる機能、性能を抽出し、それらを実現するために必要な、ハードウェア、システム・ソフトウェア、大規模データマネジメント、外部記憶装置などの技術課題をまとめた。さらには、次世代の計算機システムをモーリ、ロジック、実装技術などから展望した。
これらは、数多くの専門家にヒアリングを実施することでまとめられたが、せっかく幅広い知見が集約されたので、形あるものとして残すべく、一冊の本としてまとめて出版した。
【発表論文・学会発表等】
1）監修 矢川元基、編著 谷啓二、奥田洋司、福井義成、上島豊、「ペタフロップス・コンピューティング—地球シミュレータを原点に“和”のスーパコンを求めて」、培風館、2007年5月。
2）谷啓二、「第13章シミュレーション支援法 ハードウェアの発展」、機械工学便覧、日本機械学会編、2007年6月。

4) 谷 啓二, 「アルファ粒子電流駆動について」, 電気学会 ST 調査専門委員会会合, 東京, 2007年8月。

5) 三又 秀行, 谷 啓二, 飛田 健次, 筒井 広明, 飯尾 俊二, 嶋田 隆一, 「トカマクにおけるα粒子のリップル共鳴拡散」, プラズマ・核融合学会第24回年会, 姫路市, 2007年11月。

6) 谷 啓二, 奥田 洋司, 福井 義成, 上島 豊, 「日本の次世代大規模シミュレーションを概観して」, IBM第23回HPC天城セミナー, 2007年11月。

7) 谷 啓二, 「S T炉におけるα駆動電流」, 電気学会 ST調査専門委員会会合, 富士, 2008年1月。

9) 谷 啓二, 「トカマク炉におけるアルファ粒子駆動電流」, 第13回NEXT研究会, 京都, 2008年3月.
8-3 学術国際交流部門

教授 青木 崇之（国際共同研究分野）

保存形 IDO 法による津波の遡上計算
【研究の概要と成果】

双曲型偏微分方程式である浅水波方程式は広域の津波伝播の支配方程式であり、高精度数値計算を行う手法として開発してきた保存形の局所補間微分オペレータ (IDO) 法を適用することで津波解析の研究を進めている。IDO 法はマルチモーメント・スキームであり、物理量の値だけでなくセル積分値を導入することで局所高次補間が可能になるだけでなく、水深と流速モーメントとのカップリングが著しく向上することが明らかになった。また、海底地形が変化する場合にも、推進＋地形に対して離散化を行うことにより、静水圧平衡が離散化レベルで完全に保たれることを示し、1 次元リーマン問題では解析解と非常に良い一致が得られた。

津波の遡上については、水深ゼロの先端部分のみ浅水波近似が崩れるが、他の領域は浅水波方程式に従う。そこで、移流項の計算に minmod フィルターを入れた単調性を保証する補間関数を用いて水深がゼロ以下に下がらないようにし、陸上については 10^{-7} m 程度の非常に薄い水深を仮定することで水陸を問わず浅水波方程式の計算領域とした。ただし、遡上界面をキャプチャして水陸を区別し、陸上では重力加速度をかけないようにすることにより妥当な遡上計算が可能になった。

陰的ルンゲクッタ時間積分による保存形 IDO 法の安定性解析
【研究の概要と成果】

陽的な保存形 IDO 法の移流方程式、拡散方程式、拡角方程式に対する計算精度と安定性については既に非保存形 IDO 法と厳密に一致することが示されている。保存形 IDO 法は高次精度スキームであり、空間精度に見合った時間積分をすることにより精度が保証される。陰的ルンゲクッタ時間積分は 2 段で 4 次精度が得られるなど高次精度の時間積分が可能であり、大きな \Delta t に対して安定であるという利点がある。陰的ルンゲクッタ法を用いて保存形 IDO 法の時間積分を行い、Fourier 解析を行ってこれで大きな \Delta t に対する計算精度の検証を行った。計算精度に対する要求が最も厳しい移流方程式に対して、CFL 数が 1.3 以下であれば、位相誤差、散乱誤差ともに保存形 IDO 法の方が非保存形 IDO 法より良いことが明らかになった。しかし、CFL 数が 1.5 以上になると保存形 IDO 法は高波数領域の位相誤差が急激に大きくなり、伝播とともに波形が大きく崩れる結果となった。Euler 方程式や浅水波方程式などの非線形方程式に対して、陰的ルンゲクッタ法で保存形 IDO 法を時間積分した結果は、CFL 数が 1 程度まで非常に良い結果が得られ、陽的な保存形 IDO 法で小さな \Delta t を用いて時間ステップを刻んだ場合と極めて良い結果が得られることが明らかになった。
垂直軸型風力発電ブレードの空力特性

風力発電は CO₂削減の候補として最も期待される新エネルギーである。従来から建設されている水平軸型風車は風向きに応じて方向を変える必要があり、強風に対する構造的問題から大型化に対して多くの問題点がある。一方、垂直軸型風車は風向きに依存せず、風車ブレードを高所に設置できるなどのメリットが多い。一方、風車ブレードの空力特性が十分解析されていなく、大型化した際の発電効率を予測する上で、数値流体シミュレーションが強く求められている。

高精度数値計算手法である IDO 法をベースに、ブレードの回転に合わせて円筒座標系の計算格子を回転させ、背景の静止している直交格子と重合させる重合格子法を用いた。円筒座標系の中心の特異点を避けるために計算領域はドーナツ型になっている。また、ブレード周囲の境界層を解像するために適合細分化格子法を用い、ブレード周辺に細かい格子を配置している。さらに移流項に単調性を保証する有理関数型の補間関数を用いたセミ・ラグランジュ解法を用い、陰的な LES 作用を期待した。

シミュレーションの検証を目的として、10cm スケールの模型実験を高速度カメラで撮影し、流れ場の様子を実験と数値計算結果の比較を行った。ブレードがどの位置にきたときか示され、後流が次ブレードとどのように干渉するか、回転の中心部分には殆ど流れが到達しないことが明らかになった。

GPU による Poisson 方程式の定常反復解法

SIMD 型の数値計算アクセラレータとして GPU (Graphics Processing Unit) が注目を浴びている。GPU は PC 用のグラフィックスカード上で実装され、従来は高速なポリゴン・レンダリングに用いられてきた。最近の GPU は高速化に加えプログラマブルな Shader が可能になり、nVIDIA などからは CUDA という環境がリリースされ、C 言語の拡張として汎用的な数値計算が可能になってきた。通常の CPU と比較して、SP (Streaming Processor) が 100 倍以上あり、並列計算により高速に浮動点数演算が可能であること、ビデオメモリとして使われるメモリへのアクセスがPC などより 10 倍程度速いなどの特徴を持ち、GPU のピーク性能は 500GFLOPS を超えている。

GPU を利用して CFD (Computational Fluid Dynamics) の最も計算負荷の高い部分である Poisson 方程式の計算を試みた。理研ベンチマークテストにも指定されている問題であり、この問題を nVIDIA のGPU (GeForce 8800 Ultra) を用いて 65536 スレッドに分割し並列処理させた。また、ビデオメモリへのアクセス回数を大幅に低減させるために SP を 8 個まとめた単位で共有できる shared メモリを有効活用するアルゴリズムを開発した。さらに 4 枚の GPU ボードを用いた並列処理も行い、通常の CPU と比較して 65x65x129 格子サイズでは 58 倍の高速化、257x257x512 では 95 倍の高速化を達成することができた。このベンチマークテストはベクトル型スパコンに有利な問題であるにも関わらず、GPU を用いることで SX-8 の 15 CPU に相当する性能を引き出すことができた。
【発表論文・学会発表等】

2) 青木 尊之, 計算力学ハンドブック, 担当章 CIP 法, 朝倉書店, pp.34-50 (2007)

3) 青木 尊之, マルチモーメント・スキーム CIP/IDO 法を用いた大規模高精度流体計算, 放電研究, Vol.50, No. 2, pp.26-30 (June 2007)

11) 小川慧, 青木尊之, 玉川徹, 内山久和, 垂直軸型風車周りの流れの重合格子IDO法によるシミュレーション, 計算工学講演会論文集第12巻第2号, pp.891-894 (2007)

111

19) 森口周二, 青木尊之: 境界埋め込み法を用いた地盤の液状化解析手法の開発, 第20回計算力学講演会, p171-172, 2007年11月（京都）

20) 杉原健太, 青木尊之: 保存形 IDO 法を用いた Shallow Water 模型による津波の遇上計算, 第21回数値流体力学シンポジウム P.51, 2007年12月（東京）

22) Kenta Sugihara and Takayuki Aoki: Tsunami Run-up phenomena with shallow water modeling solved by conservative IDO scheme, 2nd Int'l Workshop on Numerical Simulation for Disastrous Phenomena, 2008, Jan 31, Bangkok, Thailand

23) Satoi Ogawa, Takayuki Aoki: GPU-Based CFD for On-site Real-time Disaster Simulation 2nd Int'l Workshop on Numerical Simulation for Disastrous Phenomena, Jan 31, Bangkok, Thailand

24) 小川慧, 青木尊之: G80-GPU による IDO 法を用いた流体計算, 第20回計算力学講演会 (CMD 2007), P.591-592, 2007年11月（京都）

25) 杉原健太、青木尊之: 保存形 IDO 法の安定性解析, 日本機械学会第20回計算力学講演会 P.593-594, 2007年11月（京都）
教授 山口 しのぶ（国際共同研究分野）

UNESCO 世界文化遺産地域の維持可能な開発における情報技術（ICT）の応用に関する研究

【研究の概要と成果】
前年に引き続き、UNESCO 世界文化遺産センター、ラオス政府、東京工業大学との三者間 MOU に基づき、世界文化遺産地域ルアンパバーンでの UNESCO 代表者、現地政府・研究者との協議を通じ、包括的地域開発への、情報管理・情報技術の導入に関する研究を実施した。具体的にはルアンパバーンの世界文化遺産地域における情報管理・情報技術分野におけるニーズアセスメントを通じ、4 分野における情報技術の応用
①情報管理のためのデーターベース構築、②無線LAN導入実験、③ルアンパバーン WEB の開発、④ICT センター設立・運用、を実施した。2007 年 12 月には現地シンポジウムを通じ、研究プロジェクト成果の現地政府、研究機関への還元を図り、ICT センター活動の評価を実施した。

国際連合人間の安全保障基金（UNHSF）プロジェクト：モンゴル・ゴビ3県における学校再建と遠隔教育導入

【研究の概要と成果】
ユネスコ東アジア事務所との国際協働研究事業 2004 年から 2006 年まで実施された国際連合人間の安全保障基金（UNHSF）モンゴルプロジェクトに大学院生を中心とした 11 名の学生を参加する交流プログラムを実施した。本 ACCU/ユネスコ青年交流信託基金事業プログラム“持続可能な開発への理解を目指して：モンゴルにおける遠隔教育教材開発活動に関する視察・ワークショップを通じての考察”では、国際開発工学を学ぶ大学院生が、現地のプロジェクト視やワークショップ参加を通じて、持続可能な開発プロジェクトを促進し、うる要因について考察し、その重要性を理解することを目指した。2007 年 3 月に 2 週間、モンゴル・ゴビ砂漠地方2県のプロジェクト3校における現地調査を実施。プロジェクトサイトのインフラ視察、現地プロジェクト遠隔教材の試行への参加、プロジェクト参加者の聞き取り調査を行なった。帰国後、ユネスコ東アジア事務所との連携の下、1）プロジェクトの効果についての観察、分析、2）遠隔教材の使用状況および、利点・留意点について整理し、3）本経験を通じての開発プロジェクトの持続可能性についての考察をまとめ、分析ペーパーは、ユネスコウェブサイトに掲載された。このような連携を通じ、国際協力現場で必要とされる積極性、判断力、行動力、柔軟性を若手研究者が習得することを視野に入れている。
ケーラスメソッドを用いた国際開発プロジェクト教材開発
【研究の概要と成果】
米国の専門大学院を中心に、ビジネス・公共政策の人材育成手法として活用されているケースメソッドの国際開発分野における応用および教材開発に従事。国際開発の各専門分野を代表する研究者と共に教材開発チームを形成し、日本の高等教育機関、開発専門機関に適応した教材作成に取り組んだ。中国、フィリピン、モンゴルなどにおける現地調査に基づく開発事例を取り上げると同時に、今後、各研究者が専門とする分野での協力者の執筆を依頼する。特に、教育開発、農村開発、保健衛生開発、沿岸開発分野における問題点に焦点をあて、実践的な教材開発に取り組んでいる。現在、国際開発工学専攻の大学院科目“International Development Project with Case Methods”にて大学院の講座に活用。東京海洋大学、学習院女子大学との共同研究。

【発表論文・学会発表等】

弾塑性構成モデルに関する研究
【研究の概要と成果】
自然堆積した正規圧密粘土は、一般に側方変形を許さないKo圧密された状態であるとされる。このような地盤を対象に構造物の建設を想定して弾塑性解析を行う場合、Ko圧密された粘土の力学挙動を表現できる弾塑性構成モデルを使用する必要がある。本研究では、Scofield&Wroth(1963)によって解釈した共存状態と、関口·太田モデル(1977)を対象に、異方圧密された粘土を想定した弾塑性構成モデルのKo圧密理論式を導出する。導いたKo理論式は弾塑性構成モデルの破壊条件との関係を明らかにした。さらに過去実験結果と比較し、よい傾向が得られた。

土／水連成解析に関する研究
【研究の概要と成果】
飽和・不飽和地盤の力学挙動は、土骨格の変形と間隙水の移動からなり、連立偏微分方程式によって記述される。土／水連成有限要素解析手法において、非常に広く用いられている連続条件式の空間離散化の一つは、連続条件式を隣り合う要素間の関係式に書き直して空間離散化を行う方法である。但し、この方法では、任意形状の要素に対して適用することはできず、メッシュ分割の方法によって、要素境界から流出する水量を正しく計算することができない問題があることが判明した。そこで、本研究では要素内部の全水頭を一次関数に近似し、要素境界から流出する水量がメッシュ分割に依存しない手法を提案した。

国際交流に寄与する事業の研究
【研究の概要と成果】
本年日タイ修好120周年記念事業として、8月26日～9月3日、「JAYSES（Japan–Asia Young Scientist and Engineer Study Visit）」：日本アジア理工系学生交流プログラム」で東工大生15名がタイに渡航し、タイの主要4大学の学生23名とともに、バンコクおよび近郊のタイ政府機関、大学、研究施設、ODAプロジェクト、日系企業、タイ企業等さまざまな機関を訪問しました。この学生交流プログラムでは、単なる訪問ではなく理工系の学生として日本の科学技術が海外に与える効果と影響について考える基礎作りを行い、学生たちの建設的な意見をまとめた。

【発表論文・学会発表等】

5) 杉田芙紗子、飯塚敦、河井克之、T. Pipatpongsa, “地球環境問題の階層的整理と砂漠化問題の位置付け”, 第42回地盤工学研究発表会、1-2, 2007年7月

6) 大野進太郎、竹山智英、飯塚敦、T. Pipatpongsa、太田秀樹、“関口・太田による弾粘塑性構成モデルにおける負荷判定の改良”, 第42回地盤工学研究発表会, 261-262, 2007年7月

7) 竹山智英、大野進太郎、T. Pipatpongsa、飯塚敦、太田秀樹、“弾塑性構成モデルのMetastability特性とその定量化”, 第42回地盤工学研究発表会, 263-264, 2007年7月

9) T. Pipatpongsa, 竹山智英, 大野進太郎, 飯塚敦, 太田秀樹, “Substepping schemes for the numerical integration of the Sekiguchi-Ohta model”, 第42回地盤工学研究発表会, 265-266, 2007年7月

13) 太田秀樹, 飯塚敦、T. Pipatpongsa, 竹山智英, “オリジナル・カムクレイと修正カムクレイの比較一致を温ね, 新しさを知る－”, 第44回地盤工学会関東支部発表会発表講演集, 455-460, 2007年10月

16) T. SHIMURA, T. Pipatpongsa, “Discussion on influence of Japanese investment and cooperation to Thai society by students from Thai, Japanese and other neighboring countries -JAYSES: Japan-Asia Young Scientist and Engineer Study Visit; the official event to celebrate the 120th anniversary of Japan-Thailand diplomatic relations-”, the 10th International Conference on Thai Studies, "Science and Society” Panel of the 10th International Conference on Thai Studies, CD-ROM, Jan 2008.
分子動力学軌道のマルチプルアラインメントによって見出された、山羊αラクトアルブミンのアンフォールディング軌道
【研究の概要と成果】
分子動力学を利用して、タンパク質の高温に伴うアンフォールディングシミュレーションを、山羊αラクトアルブミンの天然型とリコンビナント型（N末端にメチオニンが付加されている）について実行した。立体構造が酷似しているにも拘わらず、2つのタンパク質は全く異なったアンフォールディング速度を持っている。たった1つメチオニンがついただけで、振る舞いが変わってしまう原因を解明するために、多くのアンフォールディング軌道について、タンパク質配列のマルチプルアラインメント法で利用される方法を適用して分類した。マルチプルアラインメントから導かれた樹形図は天然型とリコンビナント型ではアンフォールディング経路が明らかに異なることを示した。つまり、天然型は遷移状態を境にしてきわめて2状態転移をおこすのに対し、リコンビナント型は非協同的な振る舞いを示す。また、分類によって2つのタンパク質の遷移状態は同じであること、その状態はφ値解析という実験によって類推される遷移状態とよく一致していることがわかった。この研究は横浜市大、東大、分子研との共同研究であり、結果は文献（1）で発表した。

多くのタンパク質フォールディング軌道への、拡張部分オーダー曲線比較法の適用
【研究の概要と成果】
タンパク質が如何にしてフォールドし、固有の立体構造を獲得するのかを理解することは、分子レベルで如何に生命現象が実現しているのかを理解するためには根本的である。現在、コンピュータパワーが向上し、我々は非常に多くのタンパク質フォールディングシミュレーションに関するデータを得ることが可能となった。従って、データを解析し、新しいフォールディングに関する特徴的な運動を抽出し、それらを解釈する必要性が高まっている。ここで我々は、タンパク質のフォールディング軌道を高次元空間中の曲線によってモデル化する。そして、これら曲線に対し有効な曲線比較のアルゴリズム、拡張部分オーダー曲線比較法を適用し、多様化したフォールディング軌道（フォールドが成功したものと失敗したものを含む）からフォールディング成功の特徴となる運動を抽出する。この方法はいくつかの新しい、高次元空間中の曲線を比較するための技法を含んでいる。対象としては小さなタンパク質であるTrpCageを利用した。新しい方法はフォールディングが成功した軌道に共通の弱い特徴（リングネック構造）を見出すことができた。この研究はオハイオ州立大との共同研究であり、結果は文献（2）で発表した。
最小細胞機能セットの探求
【研究の概要と成果】
多くの種でゲノム配列が決定されたことを受け、生物が生きていく上で最低限必要な遺伝子セットはどのようなものか、という問いに対し、実験的に、もしくは生命情報論的に答える試みが行われている。ここでは最小の遺伝子セットではなく、最小の細胞機能セットを問うこととした。まず30種類の冗長性のないバクテリアゲノム配列を利用し、それらが多く含むオーソログ遺伝子を求めて、その共通オーソログ遺伝子をKEGGが提供しているパスウェイマップにアサインし、多くの共通オーソログ遺伝子を含むマップ（一次必須マップ）を選出した。次にそれらマップの入力物質を作ることができるマップ（二次必須マップ）があれば順次それを加えていくこととし、マップ数が最小となるようなグリーディサーチを行った。その結果、およそ30マップからなるネットワーク構造を得ることができた。機能分類の結果から、一次必須マップには遺伝情報処理に関係するものの多いが、二次必須マップにはエネルギー代謝に関係するものが多かった。このことから、遺伝情報処理の機能はバクテリアで保存される傾向があるが、エネルギー代謝は環境などに依存して多様化しており、カセットのように付け替えることが可能であると示唆された。この研究は文献（3）で発表した。

【発表論文・学会発表等】
論文
3) 東裕介, 太田元規 最小細胞機能セットの探求 化学と工業 60 (2007) 590–592
4) 磯貝泰弘, 太田元規 λ Croフォールドのデノボデザイン 生物物理 271 (2007) 185–189
著作
1) 太田元規「バイオデータベースとウェブツールの手とり足とり活用法」中村保一, 石川淳, 磯合敦, 平川美夏, 坊農秀雅 編 羊土社 (2007) 第3章 No.16 SCOP (Structural Classification of Proteins) (pp134–140)
2) 太田元規「トコトンやさしいタンパク質の本」 東京工業大学大学院生命理工学研究科編 日刊工業新聞社 (2007) 「タンパク質の構造①一次構造」, 「タンパク質とバイオインフォマティクス」
学会発表

4) 太田元規, 池口満徳, 木寺詔紀「タンパク質の真のフォールディングファネルは初期トポロジーによって分断されている」第7回日本蛋白質科学会年会、仙台、2007年5月24日-26日

5) 西羽美, 太田元規「アミノ酸酸組成から見たタンパク質の相互作用面形成」第7回日本蛋白質科学会年会、仙台、2007年5月24日-26日

6) 小池亮太郎, 太田元規, 木寺詔紀「確率アライメントによるプロファイル-プロファイル比較法の向上」第7回日本蛋白質科学会年会、仙台、2007年5月24日-26日

7) 丹谷恵子, 太田元規, 西川建「酵素の多機能化: 触媒ドメインを含むドメイン構成データの解析」第7回日本蛋白質科学会年会、仙台、2007年5月24日-26日

8) Ota, M. Protein folding funnel of a mini-protein, TrpCage, Los Alamos National Laboratory, November, 29, 2007

10) 西羽美, 太田元規「タンパク質ファミリー内に見られる会合状態の変化」日本生物物理学会45回年会、横浜、2007年12月21－23日

11) 小池亮太郎, 太田元規, 木寺詔紀「確率的アライメントによるプロファイル-プロファイル法の性能向上」日本生物物理学会45回年会、横浜、2007年12月21－23日

12) 東裕介, 太田元規「微生物ゲノムから同定された必須マップに関する実現性の検証」日本生物物理学会45回年会、横浜、2007年12月21－23日

13) 小田浩之, 佐藤哲也, 太田元規, 藤博幸「タンパク質間相互作用のインターフェース解析のためのプロファイル比較」 日本生物物理学会45回年会、横浜、2007年12月21－23日

14) 石田学, 山崎伊織, 村上祐太, 太田元規, 磯貝泰弘, 今井清博「組換え祖先型ミオグロビン: 酸素結合特性に対するpHおよび温度の効果」日本生物物理学会45回年会、横浜、2007年12月21－23日

15) 石田学, 村上祐太, 安田温, 山崎伊織, 太田元規, 磯貝泰弘, 今井清博「祖先型と最近接現在種ミオグロビンの自動酸化反応の温度依存性」日本生物物理学会45回年会、横浜、2007年12月21－23日
開発途上国における産学連携コーディネーターの効果的育成法
【研究の概要と成果】
本研究では、開発途上国における大学工学で「目利きのできる産官学連携コーディネーター」を効果的に育成するための手法を研究する。知財に関する基礎知識、技術経営に関する基礎知識を教授しながら、企業ニーズの調査、シーズを持った教員へのアプローチ法、ニーズ・シーズのマッチングに関する基礎スキルを実習を通して訓練し、コーディネーターとして育成していく。この中で、ニーズ・シーズマッチングスキルをいかに効率的に向上させるか、その方法を研究する。JICAの集団研修スキームを使用しながら、2007年度から研究を実施している。本年度のJICA集団研修で9カ国、15名の大学教員を研修する中で、本研究で開発した育成方法は試行し、かなりの成果を上げたが、2008年度以降効果的育成方法の改善を図っていく。

開発途上国における産学連携システムの構築
【研究の概要と成果】
開発途上国の経済発展を実現するためには産業競争力の向上を効果的に図る必要がある。我が国の経験は自立発展的な産業競争力の向上に産学連携が非常に有効であることを示している。産学連携を成功させるには、大学の高い研究能力および技術力、産業界の研究開発への高い投資意欲、そして政府の支援体制の整備が不可欠である。しかし、開発途上国においては、上記の条件が必ずしも整っていない。一方、国民一人当たりの所得が1,000US$以上の中所得国は産学連携への意欲が十分にあり、国際協力機関からの支援も行われているが、まだ十分な成果は得られていない。

本研究事業では3年間の活動期間に、産学連携センターの整備、産学連携コーディネーターの育成、産学連携活動に係わる規則の整備、ならびに研究資金の循環システムの確立を行い、上記項目を組み込んだ自立発展的な開発途上国用産学連携モデルを構築し、その有効性をスリランカ・モロツア大学で実証するとともに、この活動を通して大学工学部の機能強化を図る。

開発途上国向けの産学連携システムの有効性がモロツア大学で実証され、活用効果の早期発現が可能なモデルが完成する。

最終成果として以下のものが期待である。
① モロツア大学に産学共同研究をコーディネートできる産学連携センターが設立される。
② 目利きのできる産学連携コーディネーターが少なくとも3名育成される。
③ 研究資金の循環システムが構築される。

本研究は、文部科学省の「国際教育協力イニシアチブ」の一つとして、実施される。
【発表論文・学会発表等】

8-4 受賞学術賞等

横田 治夫
（社）電子情報通信学会・フェロー称号授与（2007年11月）

青木 尊之
JACM (Japan Association for Computational Mechanics) Fellow Award (Dec 2007)

第12回 計算工学講演会・ベストペーパーアワード（2007年5月）

平成19年度 理研ベンチマークコンテスト IPC部門 優勝（2008年3月）
東京工業大学学術国際情報センター年報
2007年度
第6号

（2008年6月発刊）

編集 東京工業大学学術国際情報センター広報専門委員会
発行 東京工業大学学術国際情報センター
〒152-8550 東京都目黒区大岡山2-12-1
電話 03-5734-2087