Problem: Paving Bricks [Count All Possible Ways]

This is the problem of counting all possible ways to pave 1×2 bricks on a given square like Fig. 1 below.

Although this looks like a puzzle, it is closely related to some topics in statistical physics, and counting problems like this has been studied in depth in computational complexity theory.

Preliminaries Prohlem:

Count the number of ways to pave 1×2 bricks on the following square given by parameters m and n.

Fig.3: A square for the problem of the preliminaries.
Since the number becomes very large, an actual output is the number modulo a given k. In the case of $m=4$ and $n=3$, for example, we have the following 41 ways to pave the square; thus, the answer, for a given $\mathrm{k}=5$ must be 1 .

Fig.4: $m=4, n=3$, and $k=5$, the answer should be $41 \bmod 5=1$.

Finals Problem:

Count the number of ways to pave 1×2 bricks for a given set of 10,000 instances, i.e., squares like Fig.1. Each team is given 45 minutes and 9 nodes (i.e., 72 cores) of a subsupercomputer system of TSUBAME, and the one solves the largest number of instances among 10,000.

Winner: team ZATORIKU
(HARA Masaki, YOSHIZATO Riku, KAWAI Shinichiro)

We are waiting for your challenge next year 2011.

